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Abstract—The problem of classifying Woven Fabric Motifs through pattern recognition can be addressed using Convolutional Neural 

Networks (CNNs). Existing CNN architectures like VGG, ResNet, MobileNet, and DenseNet offer diverse propagation methods. These 

architectures, trained on datasets like imagenet, have demonstrated competence in solving large-scale classification tasks. The CNN 

model trained on the ImageNet dataset, hereinafter referred to as the pre-trained model, can be utilized to address the classification 

issue of NTT woven fabric motifs. This involves retraining the model using a new output layer and dataset, a method known as Transfer 

Learning. In addition to Transfer Learning, this research employs Fine Tuning, which entails retraining several classification layers. 

The pre-trained model used in this research is DenseNet121. This model was chosen because it does not require too much storage space 

and has good classification performance so that it can be embedded in smartphones. The results of this study indicate that of the three 

pre-trained models tested (DenseNet121, MobileNetV2, and ResNet50V2), the pre-trained Model DenseNet121 is the model that has the 

highest accuracy and the smallest loss, namely 92.58% accuracy and 29.62% Loss. Tests on mobile devices also show that from 130 test 

data, this model gets an accuracy of 99.23%. Overall, the classification model of NTT woven fabric motifs embedded in mobile devices 

can be used as an alternative to help the community or people who want to learn about NTT woven fabric motifs. 
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I. INTRODUCTION

Woven fabric is one of the artistic and cultural heritage of 

the Nusantara and the world community. Woven fabrics are 

usually used in formal events such as traditional ceremonies 

and wedding receptions. In Nusa Tenggara Timur (NTT) the 

tradition of weaving is usually done by a woman who fills 

their spare time in the dry season. The motifs of woven fabrics 

produced in NTT are generally abstract and have a philosophy 

inherited from their ancestors [1]. For ordinary people, 

distinguishing the motifs of woven fabrics is not easy, 
especially to know the meaning of these motifs. Information 

about woven fabric motifs in the NTT area is usually only 

known by older adults who used to make woven fabrics and 

people who are experts. For information about the motifs of 

NTT woven fabrics to be well documented, the information 

must be stored and processed using the Information 

Technology platform. 

In this study, efforts to solve the pattern recognition 

problem of NTT Weaving motifs were carried out using an 

algorithm from Deep Learning. Deep Learning is one of the 

most effective areas of Artificial Intelligence for solving 

image classification problems [2]–[4]. This method can also 

be ascertained to perform image classification of woven fabric 
motifs effectively. In deep learning, neural networks 

commonly used to complete tasks related to image 

classification and pattern recognition are called convolutional 

neural networks (CNN) [4]. CNN works by imitating the 

Visual Cortex in the brain to recognize images [5]. The use of 

CNN is what makes Deep Learning more effective in solving 

Image classification problems when compared to traditional 

Machine Learning methods. This is because CNN already has 

a Feature Extractor, while in Traditional Machine Learning, 

the Feature Extractor technique must be designed from 

scratch. The main focus of this research is its application to 
the regional arts and culture field.  

In the field of computer vision, CNN can be applied to 

various fields such as agriculture [6]–[9], health [10]–[14]. 

Rasyidi et al. [15] using the CNN algorithm to classify the 

types of batik cloth. The number of datasets used is 944 batik 

motifs which are categorized into six classes, namely Banji, 

Ceplok, Kawung, Mega Mendung, Parang, and Sekar Jagad. 
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Various CNN architectures, such as AlexNet, DenseNet, 

Resnet, SquezeNet, and VGG, were also compared to solve 

problems related to the classification of batik motifs. The 

results of this study indicate that the DenseNet architecture is 

the best in this study, with an accuracy of 94%. As for other 

studies related to the classification of batik motifs using the 

ResNet Architecture as conducted by Negara et al. [16], CNN 

architecture can also be formulated independently as done by 

Azhar et al. [17]. This research uses 3 Convolution Layers 

interspersed with Max Pooling Layer, 2 Dropout Layers, and 
2 Dense Layers. The activation function used for the 

Convolution layer is ReLU. The results of this study indicate 

that the model that has been developed and trained on the 

Batik300 and Batik41K datasets has an accuracy of up to 

100% in the testing process. 

CNN will be influential if the data used for the training 

process is available in large quantities. Transfer Learning and 

Fine-tuning are solutions to overcome problems related to 

developing CNN models from scratch [18]. Transfer Learning 

is a technique for transferring features from the Convolutional 

Neural Network (CNN) architecture that has been engineered 
to solve image classification problems with many classes 

[19]. At the same time, Fine Tuning is a technique used to 

improve classification performance when using Transfer 

Learning by re-weighting the top few layers of the pre-trained 

model. 

Sreenivasulu et al. [20] proved that the neural network 

model developed with the transfer learning approach (pre-

trained inception model) has better accuracy than the CNN 

neural network model developed from the beginning, where 

the accuracy was obtained with the transfer learning approach 

(pre-trained inception model). -trained model Inception) has 
an accuracy of 95.23%, while the CNN neural network model 

which was developed from scratch only has an accuracy of 

91.32%. 

Research conducted by Hussain et al. [21] utilizing 

Transfer Learning to recognize patterns on woven fabrics 

which consist of 3540 image data and are grouped into 3 data 

classes. The pre-training models used for comparison are 

ResNet-50 and VGGNet. The results of this study indicate 

that the Pretrained ResNet-50 model (99.3% accuracy) has 

better-woven fabric pattern classification performance than 

the VGGNet model (92.4% accuracy). 

In 2021, Rasyidi et al. [22] used Transfer Learning to 
identify Batik fabric-making techniques. The pre-trained 

models used in this study include ResNet, DenseNet, and 

VGG with Batch Normalization. This study uses 120 datasets, 

which are divided into four classes. Each existing data is then 

split into 30 smaller images. The original DenseNet161 

dataset has the best performance with an accuracy of 79.71%, 

while the modified Pretrained Model VGG13 with Batch 

Normalization has the best accuracy of 87.61%, while for 

DenseNet161 the accuracy is only 82.78%. 

As mentioned earlier, research related to the application of 

Deep Learning and Transfer Learning for image classification 

tasks has not yet reached the implementation stage on systems 

that can be accessed by the wider community, such as web-

based or mobile applications. Harjoseputro et al. [23] utilized 

the Mobile Client-Server Architecture and Convolutional 

Neural Network to classify Javanese letters. This study 

utilizes a mobile client-server architecture so that the 

computational load of Java letter classification can be carried 

out on the server. The model developed by Harjoseputro et al. 
has a fairly large size and is only suitable to be applied to the 

server, so this model still requires an internet connection. The 

same technique has also been used by Lanjewar et al. [24] to 

classify diseases of tea leaves. 

The model needs to be compressed for the developed 

Neural Network model to be embedded into mobile devices. 

If the Neural Network model developed uses the tensorflow 

library, then the model can be compressed into tensorflow lite 

form. Lee et al. [25] used this technique to classify 

arrhythmia. The model developed in this study can be 

embedded into a wearable device. 
The research that the author himself will carry out is the 

image classification of woven fabric motifs from the NTT 

area using the Fine-Tuning approach from the CNN 

DenseNet121 architecture. The classification model that has 

been trained is then compressed to be embedded into the 

smartphone. 

The main contributions of this research are as follows: 

 We adapted the Transfer Learning technique which was 

improved with Fine Tuning to classify the motifs of 

NTT woven fabrics which were divided into 13 classes, 

Buna Ayotupas, Buna Insana, Krawang Nunkolo, Kaif 
Berantai Nunkolo, Futus Amarasi, Futus Biboki, Lotis 

Bebnisse, Lotis Biklusu, Naisa Pahat, Andungu, 

Biklusu, Mamuli, and Sotis. 

 We will also compare several pre-trained models such 

as MobileNetV2, ResNet50V2, and DenseNet121 in 

solving problems related to image classification of 

woven fabric motifs. 

 The application that has been developed in this research 

can be used by the World community and anyone who 

wants to learn about NTT Woven Fabrics. 

II. MATERIALS AND METHOD 

A. Transfer Learning and Fine Tuning 

Transfer Learning is an enhancement of Machine Learning 

on a new task through the transfer of knowledge features of 

similar tasks that have been learned [19]. The application of 

transfer learning has also been proven to be more effective 

and efficient when compared to deep learning model learning 

from the start [26],[27],[28],[29]. Figure 1 illustrates the 

application of Transfer Learning to solve new problems.  
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Fig. 1  Transfer Learning and Fine Tuning 

 

Based on Figure 1, a learning model that has been trained 

using a large number of datasets, the pre-trained model 

extracts its knowledge or feature map to be used in solving 

new problems. In this study, the type of Transfer Learning 

used is Transductive Transfer Learning [30], [31], where the 

source and target domains are different but have the same 

task. Transfer Learning is usually used to overcome problems 

related to limited computing resources and the lack of datasets 
[22]. 

The pre-trained model consists of two parts, namely the 

Convolutional Base and Output Layer. When implementing 

Transductive Transfer Learning, the output layer is not 

extracted. This is because the previous layer output will show 

the classification results based on the classes in the large-scale 

dataset. For that, the new layer output needs to be re-

engineered in the new model so that the resulting output can 

correspond to the existing classes in the new dataset. The 

performance of the Deep Learning model that uses the 

Transfer Learning approach can also be improved. This 
increase is done by fine-tuning or re-weighting some parts of 

the Feature Map from the Convolutional base pre-trained 

model. 

Re-weighting or fine-tuning does not occur in all parts of 

the Convolutional base. The weighting only occurs in the top 

few layers. This is intended to reduce overfitting problems 

because in Deep Learning, if the number of convolutional 

layers being trained increases, then the trained Deep Learning 

model will study the dataset too deeply, so the engineered 

model will also study noise. 

B. DenseNet 

DenseNet is one of the discoveries in neural networks for 

visual object recognition [32]. DenseNet is very similar to 

ResNet [33] but has some basic differences. ResNet uses the 

additive (+) method which combines the previous layer 

(identity) with the future layer, whereas DenseNet combines 

the (.) output of the previous layer with the future layer. 

 
Fig. 2  DenseNet Connection [32] 

 

The traditional convolutional feedforward network 

connects the output of the th-layer as input to the next layer (ℓ 
+ 1)th layer, where the layer transition becomes: xℓ = 

Hℓ(xℓ−1). In the ResNet CNN architecture, a skip connection 

is added, which passes a non-linear transformation with an 

identity function: 

 �ℓ =  �ℓ(�ℓ − 1) +  �ℓ − 1 (1) 

An advantage of ResNets is that the gradient can flow directly 

through the identity function from later to earlier layers. 

However, the identity function and the output of Hℓ are 

combined by summation, which may impede the information 

flow in the network.  
In DenseNet Convolutional Neural Network Architecture, 

the connection patterns between layers are linked directly 

from any layer to all subsequent layers. Figure 2 illustrates the 
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schematically generated DenseNet layout. As a result, the th-

layer receives the feature map of all previous layers, x0, . . . , 

xℓ−1, as input: 

 �ℓ =  �ℓ([�0, �1, . . . , �ℓ − 1]), (2) 

where [x0,x1,.., xℓ−1] refers to the feature-map set produced 

in layer 0, …, 1. Because the connectivity between layers is 

quite dense, the CNN architecture is referred to as DenseNet. 

DenseNet Has various variants (DenseNet-121, 

DenseNet160, DenseNet-201), according to its number of 
layers. In this research, the DenseNet architecture used is 

DenseNet121. Details of the DenseNet121 is following: 

DenseNet121 = 5+(6+12+24+16) *2, where: 

5 – Convolution and Pooling Layer 

3 – Transition Layers (6, 12, 24) 

1 – Classification Layer (16) 

2- Dense Block (1*1 and 3*3 convolutional layer) 

C. Data Collection and Processing 

This study collected datasets from the Craft House 
belonging to the East Nusa Tenggara Regional National Craft 

Council, the Ina Ndao 2 Weaving Production House, and 

others sourced from the Internet. Images of each woven fabric 

motif are taken using a camera with a resolution of 25 MP. 

Figure 3 is an example of a sample dataset used. 

 

 
Fig. 3  Dataset Sample 

 

The dataset that has been collected for the training and 

testing process is 1729 with the following details in Table 1: 

TABLE I 

DATASET INFORMATION 

No Pattern Total 

1 Buna Ayotupas 154 
2 Buna Insana 112 
3 Krawang Nunkolo 143 

4 Kaif Berantai Nunkolo 155 
5 Futus Amarasi 139 
6 Futus Biboki 146 
7 Lotis Bebnisse 144 
8 Lotis Biklusu 130 
9 Naisa Pahat 130 
10 Andungu 105 
11 Kurangu 102 

12 Mamuli 126 
13 Sotis 143 

 TOTAL 1729 

For the developed neural network model to study the 

dataset optimally, we add a synthetic image generated through 

the data augmentation process. This technique is intended to 

increase the variety of training data. This method has also 

been proven effective in improving the performance of Deep 

Learning Models that require large-scale data [34]–[36]. The 

augmentation process is carried out by randomly applying 

rotation, flip, and crop and adding Gaussian noise to the data 

to be augmented. The data augmentation process is carried out 

using the Augmentor library [37]. 

D. CNN Model Development 

The neural network model was developed using Transfer 

Learning techniques. The concept of developing this model 

can be seen in Figure 1. In this phase, the pre-trained model 

chosen is DenseNet121, which was chosen because its size is 

not large but has a high enough accuracy and computation 

time, which is relatively low. When using transfer learning to 

solve a new problem, the first step must be to freeze the 
convolutional base of the pre-trained model so that it is not re-

weighted and to engineer a new output layer. 

 

 
Fig. 4  Developed CNN model 

 

The engineered output layer consists of 1 pooling layer, 1 

dropout layer, and 1 dense or fully connected layer, with the 

activation function used being SoftMax. The SoftMax 

activation function on Dense Layer is intended to display a 

list of classification results with a probability level of 

confidence. Equation 3 is the formulation of SoftMax: 

 (�⃗)� = ���

∑ �
���

���
, (3) 

� = ����� �,  
�⃗ = !"#$�,  
%&� = '� "( )� %�#�"%"�! * ��) !"#$� +%,��),  
%&� = '� "( )� %�#�"%"�! * ��) �$�#$� +%,��),  
- = "$� ,* ''%' 

  

After the classification model is ready, the next step is to 

compile the model. At the compilation stage, the Optimizer 

used is Adam. The Adam optimizer is intended to make the 

learning rate-adaptive, along with changes in loss generated 

for each iteration [38]. This Optimizer has also been proven 

to provide optimal performance on neural network models 

[39]. Because the number of weaving motif classes is more 
than two, the Loss function used is Categorical Cross Entropy. 

The following is the formulation of the Categorical Cross 

Entropy loss function: 

 .�'' =  − ∑ /� log345678
�9:  (4) 

/� = ;)$% <$�#$�, /5= = >)%(!,�%( <$�#$�  
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E. Model Compression 

This study uses Tensorflow as a library for developing 

Neural Network models so that the process of converting the 

Model into TFLite form (Tensorflow Lite) is also assisted by 
a library from Tensorflow. Figure 5 is a schematic of 

converting the Deep CNNs model into TFLite form. 

 
Fig. 5  Model Conversion Scheme into TFLite form [40] 

 

When the Deep CNNs model has been trained and gets 

optimal accuracy, the model is first saved in the form of .pb 

or .h5. After the model is saved, the model will be converted 

using a TFLite Converter, and the output of the conversion of 

this model is a TFLite Flatbuffer, later known as.TFLite. The 

classification model that has been developed can be applied 

to mobile devices based on Android and IoS, or to 
microcontrollers because the Classification model developed 

has been converted into TFLite form, which is supported in 

several programming languages such as Java, Swift, 

Objective-C, C++, and Python. This conversion of the Model 

into TFLite form has several advantages, namely the absence 

of communication between the server and client so that the 

classification process can be carried out without internet 

connectivity, performance improvement with hardware 

acceleration, and model optimization. 

F. Mobile Apps Development 

For this study, we implemented the model on an Android-

based mobile device. Android application coding uses the 

Java programming language, and the IDE is Android Studio. 

The architectural design of the application to be developed 

can be seen in Figure 6. 

 
Fig. 6  Mobile Application Architecture 

 

In conditions without an internet connection, this 

application can still classify because the classification process 

occurs on mobile devices, but detailed information about 

woven fabric motifs cannot be displayed because the 

information is on the server. Information stored on the server 

includes information about the motif's origin, manufacturing 

technique, purpose of use, and a description of the weaving 

motif. The last stage in developing this mobile application is 

to evaluate the accuracy and average computation time 

required during the classification process. 

III. RESULT AND DISCUSSION 

A. CNN Model Development 

The development of the neural network model was carried 

out using a computer with the following specifications: 

Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 

2.71 GHz, NVIDIA GeForce 930MX 2GB GPU, and 8192 

MB RAM. The neural network model that has been 

constructed is then trained to learn all the weights and biases 
from the NTT woven fabric data. This training process aims 

to minimize the loss generated by the model, where loss is the 

distance between the actual data and the predicted results. The 

training is carried out in stages, starting from training the 

model constructed using transfer learning and following the 

fine-tuning process. The number of epochs used during the 

Transfer Learning training process is 50, and the Optimizer 

used is Adam, with a Learning Rate of 1 x 10-3. To measure 

the effectiveness of the DenseNet121 pre-trained model in the 

Transfer Learning process, the same data will also be used as 

material for training the CNN model, which was developed 

from scratch, and several other pre-trained models: 

TABLE II 

TRANSFER LEARNING ACCURACY 

Method Train Acc Val Acc Test Acc 

CNN from scratch 100 54.37 55.49 
ResNet50V2 86.75 82.69 81.70 
MobileNetV2 81.71 78.53 79.57 
DenseNet121 72.6 81.55 78.45 

TABLE III 

TRANSFER LEARNING LOSS 

Method Train Loss Val Loss Test Loss 

CNN from scratch 0.004 472 480 
ResNet50V2 37.72 57.94 56.07 
MobileNetV2 54.79 63.93 65.12 
DenseNet121 80.02 60.69 64.62 

 

Based on the data in Table II and Table III, it can be seen 

that the CNN model that was developed from scratch is 

overfitting. This can be seen from the accuracy and loss 

generated in the training process, which is much different 

from the results of the model evaluation in the model 

evaluation data on the validation data. The best classification 

performance is obtained from Transfer Learning with the pre-

trained Model ResNet50V2 where this model has the highest 

accuracy value and the smallest loss. The model evaluation 

results on the test data also show that the model developed 
using the Transfer Learning approach with the pre-trained 

ResNet50V2 model has the highest accuracy and the lowest 

loss. Models that have been trained with the Transfer 

Learning approach can be improved with the Fine-Tuning 
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approach or the process of re-weighting the top few layers of 

the Pre-Trained Model. The process of applying Fine Tuning 

will provide more training time because there will be several 

CNN layers that will be retrained. Table IV is a detailed 

parameter that is trained and generated by the model 

developed from the pre-trained model to be tested: 

TABLE IV 

TRAINABLE PARAMETER 

Method Trainable 

TL Params 

Trainable 

FT Params 

Total Params 

ResNet50V2 26,637 7,906,317 23,591,437 

MobileNetV2 16,653 429,453 2,274,637 
DenseNet121 13,325 181,453 3,442,701 

At this stage, the Fine-Tuning process is carried out on the 

Top 10 Layers of the pre-trained Model. Because the 

propagation formula for each pre-trained model is different, 

the number of parameters being trained is also different. The 
retrained parameter is the number of parameters generated by 

the Convolution layer only. This is because the weighting 

process only occurs in the convolution layer. To determine the 

effectiveness of Fine Tuning, Table V, and Table VI provides 

information related to model training using Fine Tuning: 

TABLE V 

FINE-TUNING ACCURACY 

Method Train Acc Val Acc Test Acc 

ResNet50V2 86.75 82.69 81.70 
MobileNetV2 98.76 83.51 84.95 
DenseNet121 98.62 92.41 92.58 

TABLE VI 

FINE-TUNING LOSS 

Method Train Loss Val Loss Test Loss 

ResNet50V2 37.72 57.94 56.07 

MobileNetV2 3.65 80.31 82.29 
DenseNet121 4.02 28.91 29.62 

TABLE VII 

TRAINING DURATION 

Method Transfer Learning 

Time 

Fine Tuning Time 

ResNet50 6:26:27 7:58:48 

MobileNetV2 2:00:30 2:09:11 
DenseNet121 7:30:44 7:43:53 

 

The model that has been applied to fine-tuning is then 

retrained using 50 epochs and a learning rate of 1 x 10-4. The 

size of the learning rate is reduced by 10% to prevent the 
model from reaching convergence at the beginning of the 

training process. Based on the information in Table VI and 

Table VII, it can be seen that the application of Fine Tuning 

can improve the performance of neural network models that 

utilize Transfer Learning techniques. Fine Tuning on the Top 

10 Layers of the pre-trained DenseNet121 model has the best 

classification performance. In the pre-trained Model of 

MobilenetV2, the accuracy produced is quite large, but the 

resulting loss is also quite large. In the pre-trained Model 

ResNet50V2 the resulting changes are not significant enough 

the resulting accuracy only increases by 3.25%, and the 
resulting loss remains the same. 

In terms of training time (can be seen in Table VII) 

MobileNetV2 has the smallest computational time both 

during the Transfer Learning and Fine-Tuning processes, the 

number of layers contained in the pre-trained Model 

MobileNetV2 is also only 154, ResNet50V2 is 190, and 

DenseNet121 is 427. In the Transfer Learning stage, the 

number of layers will significantly affect the computation 

time, while during Fine Tuning, the number of parameters 

being trained will significantly impact the training time. The 

model that has been trained is then compressed into a TFLite 

form so that it can be tested on a mobile device. 

B. Mobile Application Development 

The neural network model that has been embedded in the 

mobile application will be tested on devices with 8 Core 

processor specifications with a speed of 449 - 1768 MHz and 

4GB of RAM. When making data predictions, the engineered 

mobile application will display the top 3 classes of 

classification results and the percentage confidence level. The 

class with the highest level of confidence will display detailed 

information, as shown in Figure 7. 
 

  
Fig. 7  Application Result in Mobile Phone 

 

The model will be tested using test data to find out how 

well the neural network model performs classification on 

mobile devices. The test data used in this study amounted to 

130 data, with each motif class having 10 images. Table VIII 

to Table X results from testing the model on mobile devices 

when classifying.  

TABLE VIII 

RESNET50V2 TESTING RESULT 

Pattern 
ResNet50V2 

precision recall f1-score 

_amarasi 1,00 1,00 1,00 
_andungu 0,91 1,00 0,95 
_ayotupas 1,00 0,90 0,95 
_bebnisse 1,00 1,00 1,00 
_biboki 1,00 0,90 0,95 
_biklusu 1,00 1,00 1,00 
_insana 1,00 1,00 1,00 
_kaif_berantai 

_nunkolo 
1,00 0,90 0,95 

_krawang 

_nunkolo 
0,91 1,00 0,95 

_kurangu 0,82 0,90 0,86 
_mamuli 1,00 0,90 0,95 
_naisa 1,00 1,00 1,00 
_sotis 0,91 1,00 0,95 

Accuracy 0,96 
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TABLE IX 

MOBILENETV2 TESTING RESULT 

Pattern 
MobileNetV2 

precision recall f1-score 

_amarasi 0,91 1,00 0,95 
_andungu 0,91 1,00 0,95 
_ayotupas 0,82 0,90 0,86 
_bebnisse 1,00 1,00 1,00 

_biboki 1,00 0,70 0,82 
_biklusu 1,00 1,00 1,00 
_insana 0,83 1,00 0,91 
_kaif_berantai 

_nunkolo 
0,83 1,00 0,91 

_krawang 

_nunkolo 
1,00 0,90 0,95 

_kurangu 1,00 0,90 0,95 
_mamuli 1,00 1,00 1,00 

_naisa 1,00 0,90 0,95 
_sotis 1,00 0,90 0,95 

Accuracy 0,94 

TABLE X 

DENSE121 TESTING RESULT 

Pattern 
DenseNet121 

precision recall f1-score 

_amarasi 1,00 1,00 1,00 
_andungu 1,00 1,00 1,00 
_ayotupas 1,00 1,00 1,00 
_bebnisse 1,00 1,00 1,00 
_biboki 1,00 1,00 1,00 
_biklusu 1,00 1,00 1,00 

_insana 1,00 1,00 1,00 
_kaif_berantai 

_nunkolo 
0,91 1,00 0,95 

_krawang 

_nunkolo 
1,00 0,90 0,95 

_kurangu 1,00 1,00 1,00 
_mamuli 1,00 1,00 1,00 
_naisa 1,00 1,00 1,00 
_sotis 1,00 1,00 1,00 

Accuracy 0,99 

 

Based on the data in Table VIII to Table X, it can be seen 

that the pre-trained DenseNet121 model has the most optimal 

accuracy, followed by ResNet50V2 and MobileNetV2. Of the 
130 images tested, the DenseNet121 Model only has one 

prediction error, with one image of the Krawang Nunkolo 

motif, which the model predicts as a Kaif Berantai Nunkolo 

motif. Hence, the precision of the model prediction for the 

Kaif Berantai Nunkolo motif decreases and recalls the 

Krawang Nunkolo motif. 

After looking at the model's performance for classifying, 

the next step is to check the resource usage required by the 

application when running on a mobile device. Table XI 

summarizes the resource usage the application requires when 

running on a mobile device.  

TABLE XI 

RESOURCES USAGE EVALUATION OF EACH PRE-TRAINED MODEL 

Component 
Pre-Trained Model 

ResNet50V2 MobileNetV2 DenseNet121 

CPU 21% 19% 23% 
RAM 221MB 115MB 166MB 
Energy 

Consumption 

Light-

Medium 

Light Light-

Medium 

Component 
Pre-Trained Model 

ResNet50V2 MobileNetV2 DenseNet121 

Application 

Size After 

Compilation 

111MB 37,67MB 44,95MB 

Avg. 

Inference 

Time (ms) 

898,67 140,67 800,11 

 
Regarding CPU usage, RAM, Application Size, Energy 

Consumption, and Average computing time MobileNetV2 is 

superior to ResNet50V2 and DenseNet. This is because this 

model is specifically engineered for mobile devices, but even 

so, the DenseNet121 model has a lot of convoluted neural 

networks. Also, the size is not much different from the 

MobileNetV2 model because the number of parameters 

generated by the model is not large enough, in contrast to 

ResNet50V2, which has a large number of parameters (see 

Table IV). 

IV. CONCLUSION 

The training and testing results show that fine-tuning can 

improve the performance of the pre-trained model used 

during the Transfer Learning process. It can be seen that the 

implementation of fine-tuning can also effectively increase 

accuracy and reduce loss during the training, validation, and 

testing processes. DenseNet121 is the best pre-trained model 

(92.58% accuracy and 29.62% Loss) after the model applies 

fine-tuning for the top 10 Layers. 
The results of this study also show that the developed NTT 

woven fabric motif classification model can be implemented 

into a smartphone. The application of the model on 

smartphones also shows that the model developed using 

DenseNet121 as the pre-trained model has the best accuracy 

(99.23% accuracy in 130 test data), but when viewed in terms 

of resource use efficiency on mobile devices, the model 

developed using MobileNetV2 as the pre-trained model is the 

most efficient model used in smartphones. 

Although there are some shortcomings in the engineered 

model, especially regarding resource efficiency, the 
application that has been developed can be used as an 

alternative to help the world community or people who want 

to learn about NTT culture, especially woven fabrics from 

NTT. Further development needs to be done, such as adding 

motif classes and datasets, developing a classification model 

to make it more efficient for mobile devices, and utilizing a 

mobile application development framework that supports 

various operating systems. 
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