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Abstract— From a security perspective, Software Defined Network (SDN) separates security concerns into Control Plane and Data 

Plane. The Control Plane is responsible for managing the entire network centrally. Centralized SDN generates high vulnerability against 

the Distributed Denial of Service (DDOS). When the Software Defined Network overwhelms by DDOS, both Control Plane and Data 

Plane will lack resources. It can cause the SDN to fail to work if not detected early. Using the ability of sFlow Protocol to capture the 

flow traffic in real time, the data could be used to detect DDOS attacks. This sFlow sampling approach can reduce the workload of the 

network by lower down the processing in switches. This paper uses Extreme Gradient Boosting (XGBoost), Support Vector Machine 

(SVM), and Random Forest as detection methods. We use ONOS as SDN Controller and build the topology in GNS3. Prometheus 

retrieves data from the sFlow Collector as a time series database. The classifier then uses the data from Prometheus for DDOS detection. 

For the dataset, we use four different datasets. Datasets 1 and 2 consist of 6109 data, each divided into two classes and three classes. 

Datasets 3 and 4 consist of 400488 data divided into 2 and 3 classes, respectively. The evaluation results have proved the effectiveness 

of the proposed method. XGBoost has the highest accuracy of another algorithm. The best accuracy is 99.84% using Dataset 4 as the 

training set.  
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I. INTRODUCTION

The main challenges in developing computer networks are 

to build a smart network architecture to simplify activation 

and adjustments to support increasingly diverse application 

needs. However, traditional networks are less relevant to 

supporting applications efficiently and massively [1]–[5]. 

SDN separates security concerns into Control Plane and Data 

Plane. This Control Plane is responsible for managing the 

entire network centralized on a controller that maintains the 

whole network so that it is easier to design and operate the 

network through a logical point. A centralized Control Plane 

in Software Defined Network (SDN) generates high 
vulnerability against the Distributed Denial of Service 

(DDOS) attack. In case of no early detection of this attack, the 

system immediately reduces the performances of the control 

plane, data plane, and secure channel between them. In the 

worst case, it can make SDN fail to work [6]–[8]. 

The research on DDOS attack detection on SDN is still 

ongoing to find an effective method. There are several 

techniques to detect DDOS in SDN, such as entropy-based 

[9]–[11], connection rate [12], [13], probabilistic [14], traffic 
pattern analysis [15], and machine learning based. According 

to Yan et al. [2], one of the effective methods is a machine 

learning based. The capability of centralized control of the 

entire node makes implementing big data analytics for attack 

detection effective. SDN will come to a new stage in 

proactive, intelligent systems with big data analytics and 

artificial intelligence. 

Most machine learning in SDN uses packets sent from the 

switch to the controller for control, not traffic monitoring. 

Those control packets are only sent under certain conditions, 

and when used continuously, will make high utility of 
resources [16]–[18]. Furthermore, [19]–[21] creates a module 

to send control packets for certain intervals to all the switches 

to get statistical data from the switch. It can use the switch 

resources, which can be used for forwarding purposes. For the 

same reason, then [22]–[24] improves to reduce the resource 
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utility using the sFlow protocol, which can monitor packets 

on the switch with a sampling technique. In a previous study 

[22], the research proposes a new sampling technique, 

Adaptive Polling Sampling. The sFlow sampling protocol 

method, which has become the industry standard, got better 

results. sFlow protocol with sampling technique will reduce 

the load of the network. In addition, the sFlow makes the 

attack detection more modular, and the network scalability 

would be better. However, the classification method [22], 

SAE (Stacked Autoencoder), which belong to unsupervised 
learning, is not performing better than other paper with 

supervised learning methods [18], [20], [25]. Unsupervised 

learning provides convenience by not labeling the dataset, 

usually used to recognize the similarity of data patterns 

through clustering. Nevertheless, Supervised Learning would 

obtain more accurate results regarding data classification 

whose data class is known. 

This paper focuses on classifying DDOS attacks using 

sFlow as a data source. The data is used from the sFlow 

Collector as it receives sFlow packets. The combination of 

DDOS detection in SDN using sFlow to reduce the load and 
apply the Supervised Learning method to improve 

classification performance. The supervised learning method 

applied is Extreme Gradient Boosting (XGBoost). XGBoost 

is an ensemble learning method. The method has more than 

one classifier to minimize false negatives (error prediction). 

For the comparison, we also use Random Forest, which is 

ensemble learning and Support Vector Machine. 

In this paper, we first describe the architecture of SDN. The 

structural characteristics of the controller will make it 

vulnerable to DDoS attacks. Then, referring to the simulation 

tools [26], we use GNS3 for emulating network topology, 
ONOS [27] as a controller to build our system model, and use 

Hping3, SlowLoris, and GoldenEye for performing an attack, 

and Cisco TRex [28] for generating benign traffic. SFlow-RT 

collects the sampling flow traffic as the sFlow Collector, 

while Prometheus will get and save the data from sFlow-RT. 

Finally, the algorithms are used as the detection method. 

Compared with other classifiers, the DDoS attack detection 

results show that XGBoost performs more accurately than 

others. The rest of this paper is organized as follows. In 

Section II, Materials and Methods, we introduce the SDN’s 

architecture as well as our system model and implementation. 

The Section III, Results and Discussion, we discuss the 
evaluation of our model as well as the data training. We have 

implemented our method in SDN environment and compare 

it with other classifiers also in this section. In Section IV, we 

conclude this paper 

II. MATERIAL AND METHOD 

This section discusses the SDN architecture and the 

vulnerability against DDOS attacks. Our system model and 
implementation are also explained in this section. 

A. SDN Architecture 

Open  Networking  Foundation  (ONF) [29] develops the 

SDN architecture, where network administrators can manage 

network services centrally. The SDN's programmatic features 

allow the network administrator to manipulate the network 

states and configuration with less effort. 

SDN architecture separates into three layers: Application, 

Control, and Infrastructure. This architecture is shown in Fig 

1. Application Layer is an interface used to manage or develop 

a SDN Network. Communicate with Control Layer using 

North Bound Interface (NBI) in this layer. The control Layer 

is a centralized controller and software-based used to control 

function and forwarding monitoring. Infrastructure Layer has 

network elements used to run the switching and forwarding 

packet function. The interface between Controller Plane and 

Data Plane is called SouthBound Interface (SBI) or Control-
to-Data-Plane Interface (CDPI). 

 

 

Fig. 1  Software Defined Network Architecture 

B. DDOS Attack in SDN 

The idea of SDN is separate between Control Plane and 

Data Plane. The controller is software in Control Plane, which 

acts as decision maker and is responsible for managing the 

entire network. It makes it easier to design and operate the 

network through a logical point. In Data Plane there are 

network devices such as a switch connected with Controller 

via OpenFlow protocol. It performs packet forwarding 

according to the flow table defined by the controller. As 

shown in Fig 2, when a new packet arrives at the switch, it 

will look up the flow table if there is a matching entry, as 
shown by arrow (1). If the flow matches, it will forward to the 

destination accordingly, as shown by (5). However, if the first 

packet to the destination is not found in the flow table, the 

switch will send the packet to SDN Controller as a packet, as 

shown by (2). The controller then will look up its flow table 

to see if the rule is matched. If it matches, the controller will 

send back a new rule to the switch, and the switch will be 

stored in its flow table for any subsequent packet with the 

same flow (shown as arrow (3) in the diagram). 
 

 
Fig. 2  Packet forwarding in SDN 

The DDOS attacks could randomly generate a huge 

number of malicious packets and could not match the switch 

flow table, resulting in a large packet sent to the controller. 
This could overwhelm the control channel and exhaust 

controller resources [4]. The lack of resources will make the 
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controller unable to process the legitimate requirement, and this 

threat could make the controller fail to serve normal users. An 

attacker may impersonate the controller to steal user 

information or initiate a much more attack during this time. 

This DDOS attack can impact various places in SDN network. 

Three main possible places are the data plane, the control 

plane, and the secure channel between the control and data 

plane [30]. 

 

 

Fig. 3  Proposed system implementation 

 

C. System Model and Implementation 

In this paper, the system shown in Fig 3 runs on GNS3 

emulator. The red line figured Control Plane path and the 

black line was Data Plane. We use ONOS as the SDN 

Controller as it is more modern, modular, and scalable [31]. 

This experiment will save the data directly from sFlow-RT 

(Collector) to Prometheus, so the saved data is the data from 

sFlow Collector. In addition to reducing computer utility, 

using sFlow-RT and Prometheus make the system more 

modular. Prometheus is an open-source time series database 

optimized for gathering large volumes of metrics [32]. We use 

sFlow-RT as the sFlow Collector, which has all the network 

traffic data from the sFlow Agent sampling results. The data 
can be accessed via REST API. Prometheus then gets the data 

from sFlow-RT every second to be stored in the database. 

We use Cisco TRex tools with Advanced Stateful (ASTF) 

operating mode to generate normal traffic. TRex is an open-

source, customizable packet generator tool that can be used to 

test firewalls and load balancing, as it can concurrently 

construct packets in multiple streams. In ASTF mode, it 

allows the tool to work stateful. It can perform TCP 

communication while monitoring the reply from the server if 

the TCP session has not ended. One of the advantages of using 

this advanced stateful mode is being able to emulate 

connections until the application layer, such as HTTP, DNS, 

DHCP, etc. This paper uses two hosts for the TRex tool to be 
configured as a server and a client. The tools for attack traffic 

run on the client side while there is an Apache2 web server 

using default configuration on the server. Use GoldenEye, 

SlowLoris (Application Layer Attack), and Hping3 (Protocol 

Layer Attack) for DDOS attack tools. The detail of the tools 

runs on the client and server host are shown in Fig 4. 
 

 
Fig. 4  Used tools in client and server host 
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The IP address on the attacker's computer and web server 

(DDOS target) using the /8 subnet accommodates the T-Rex 

tool to generate normal traffic. TRex will generate traffic with 

source IP network 16.0.0.0/8 and destination IP network 

48.0.0.0/8. In ONOS as the SDN controller, routing is added 

to make the two networks can be connected to each other. 

Besides the routing, we need to activate the Reactive Routing 

application in ONOS. This reactive routing application will 

create a virtual gateway. Hosts in a legacy IP network use the 

gateway as the default router to access the Internet. However, 

an SDN network uses SDN switches to connect a network 

rather than routers, so the SDN network has no physical 

gateway router. Without a gateway, there is an issue for hosts 

inside SDN network. When hosts want to communicate with 

other hosts in different subnetworks, they do not know the 

next hop where the packets should be sent. Also, hosts do not 

know the MAC address of the next hop and cannot compose 

the entire packet and send it out.  

TABLE  I 

THE DATASETS DETAIL 

Dataset 
Prometheus 

Pool Interval 
Classes 

Number of Data   

Label 0 Label 1 Label 2 Total Training Set Test Set 

Dataset 1 1 minute 2 3280 2829 - 6109 
4887 1222 

Dataset 2 1 minute 3 3280 1629 1200 6109 
Dataset 3 1 second 2 202533 197955 - 400488 

320390 80098 
Dataset 4 1 second 3 202533 127078 70877 400488 

 

D. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is the learning 

method to solve regression and classification problems based 

on the Gradient Boosting Decision Tree (GDBT). In, 

XGBoost is an improved GDBPT, generating boosted trees 

efficiently and operating in parallel [33]. XGBoost uses 

gradient descent to minimize errors when creating new 

models. Gradient Boosting starts with loading the model into 

the data specified in Eq (1). 

 ����� = �  (1) 

Furthermore, the results from the model are used to 
calculate the residuals in the previous process, which is given 

by Eq. (2). Then a new model is created as written in Eq. (3). 

The final model is obtained from a combination of n iteration 

models to produce the smallest error value from the residual. 

The final model can be defined in Eq. (4) 

 ℎ���� = � − ����� (2) 

 �
��� = ����� + ℎ���� (3) 

��� = ����� →  �
��� = ����� + ℎ���� …
→ ����� 

    =  ������� + ℎ������ 

(4) 

The final model from Boosting which can be written in Eq. 

(5) 

 ���� = �� + ∑  �
��� ��  ℎ� 

���   (5) 

where  �� = ��  and ��  ��� = ��  ℎ� 
��� for m = 1,2,3, … M 

with the value ℎ����� �−1,1� 

 
The final goal of this process is to obtain the closest 

function  �����to  ����  by reduce the value of the loss 

function  ���, ����  which is defined in Eq.  (6). Finally, the 

general gradient boosting algorithm formula which can be 

obtained as in Eq. (7). 

 ����� = �� !"#$ %�,&'�(�, ����)*  (6) 

 + ��  ℎ� 
, = �� !"# ∑  �

�-�  ���., ��������.� + ��  ℎ� ��.�� (7) 

III. RESULT AND DISCUSSION 

In this section, we discuss the evaluation of our model as 

well as the data training. How we get the data and the feature 

set used are explained. 

A. Dataset Source 

Tools used for the attack traffic are SlowLoris, GoldenEye, 

and Hping3. SlowLoris and GoldenEye are both Slow DDOS 

attacks. These types of attacks exploit the HTTP processing 

attribute of a web server by maintaining a connection until a 

HTTP request is completed, and the attacker uses a 

compromised host to establish a number of connections to the 

web server and makes the web server unavailable by 

continuing to send incomplete HTTP requests via each 

connection [34]. This Slow DDOS or commonly called Low-rate 
Distributed Denial-of-Service (LDDoS), is a recent evolution of 

DDoS attack that has emerged as one of the most serious 

vulnerabilities for the Internet, cloud computing platforms, the 

Internet of Things (IoT), and large data centers [35].  

Meanwhile, Hping3 will be used to send SYN flood attack 

to exploit the TCP protocol 3-way handshake. For the benign 

traffic we use TRex with 3 different profiles. Data collection 

is done by generating packets alternately for all attack tools 

and profiles from TRex. Each session will generate traffic for 

1 hour.  Within 1 hour, Prometheus get the data from sFlow-

RT with 1 minute and 1 second interval configuration. The 
process of how the data is collected can be seen in Fig 5. In 

the labeling for two classes label 0 is normal traffic while 

label 1 is DDOS attack trafic. For three clasees label 0 is 

normal traffic, label 1 is Slowloris and GoldenEye attack 

traffic, label 2 is Hping3 attack traffic. Slowloris and 

GoldenEye are included in the HTTP DDoS Attack 

(Application Layer Attack) labeled 1 while Hping3 is the TCP 

SYN Attack (Protocol Layer Attack) labeled 2. The amount 

of data for each class in the dataset present in Table I. Dataset 

will split into training and testing set with the proportion of 

sharing 80% and 20%, respectively. 

TRex configuration for generating benign packets using 3 
different profiles. This profile determines what types of traffic 

and how much traffic is sent. A PCAP file determines the type 

of traffic, TRex then read the pcap and generate with the rate 

of the traffic as in the Connection Per Second (CPS) value. 
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With this scheme TRex could be used for custom traffic 

generation, simply capture the packet to a PCAP file then 

define the profile. The first and second profile are called SFR 

Full and SFR Full 2K.  TRex provides both of those profiles 

in package including the PCAP file. The profiles are defined 

to meet the IMIX (Internet MIX) [31] testing profile or a 

mixture of internet traffic. Network equipment vendors use 

IMIX profiles to simulate real-world traffic patterns and 

packet distribution. IMIX profiles are based on statistical 

sampling performed on Internet routers. 
Meanwhile the third profile is custom profile. The SFR Full 

and SFR 2k profiles are more dominant for packet streaming. 

In the real world, the most packets are for streaming, both 

streaming for video access and video calls. Therefore, to 

balance the data in dataset, a custom profile is made from the 

modified SFR profile. Using the PCAP provided in the 

package, the thing needs to done is only customize the CPS. 

For the detail of each profile can be seen in Table II and Fig. 5. 

TABLE II 

TREX PROFILES 

Traffic 

Connection per Second (CPS) 

SFR 

Full 

SFR Full 

2k 

SFR 

Custom 

HTTP GET 102 404.52 404.52 
HTTP POST 102 404.52 404.52 
HTTPS 33 130.87 130.87 
HTTP Browsing 179 709.89 709.89 
Mail Exchange 64 253.81 25.81 

POP Mail 1.2 4.759 9.759 
POP Mail (Port 

111) 

1.2 4.759 - 

POP Mail (Port 
112) 

1.2 4.759 - 

Oracle 20 79.31 79.31 
RTP 160k 0.7 2.776 - 
RTP 250k 0.5 1.982 - 
SMTP 1.85 7.33 1.85 
SMTP (Port 26) 1.85 7.33 1.85 

SMTP (Port 27) 1.85 7.33 1.85 
Video Call 3 24 1.7 
Video Call RTP 7.4 29.347 - 
Citrix 11 43.62 7 
DNS 498 417 498.0 
SIP 7.4 29.34 5.4 
RSTP 1.2 4.8 2.2 

 

 

Fig. 5  Data gathering from sFlow 
 

TABLE III 

EVALUATION RESULTS 

 

To evaluate the model, along with test set from the dataset 

we evaluate from the real-time data. Real-time data is 

obtained by generating data with the tool. While the tools 

generating data, the sampling results from sFlow-RT is stored 

by Prometheus. At the same time data can be retrieved the 

data from Prometheus. The data from Prometheus then 

classified directly by the machine learning model. For real-

time testing, the data is taken every second for 1 minutes, 5 

minutes, and 10 minutes respectively for each tools. The 
classification output of the model is saved and evaluated. 

Because the data source is come from sFlow, the dataset 

features are closely related to sFlow capabilities to sampling 

the traffic packets. Different device version might has 

different capability of the sFlow Agent to sample the traffic 

flow. Here we determine the suitable features we can use to 

classify the traffic—the features used in this paper as shown 

in Table IV. 

Common features such as IP Source, IP Destination, and 

Time to Live (TTL) could be use also as it is supported in 

sFlow. However, it is irrelevant for data modelling as it will 

change in different network topology and scenarios. 

TABLE   IV 

THE DATASET FEATURES 

Feature Description 

ipflags IP Flags in binary (3-bit) 
sourceport Source port 
destinationport Destination port  
ipbytes IP packet size in bytes 
frames Frame per sampling 
ipprotocol Type of ip protocol. Eg. 6 for TCP, 17 for UDP. 
tcpflags TCP Flags in binary (8-bit) 
payload Payload size in bytes 

bytes Packet request size in bytes 
frame Number of frames from flow sampling 

B. Detection Results and Analysis 

In this section, we discuss the results of classification using 

XGBoost and compared it with two other machine learning 

algorithms, Random Forest and Support Vector Machine 

(SVM). The main comparison measures are classification 

  Random Forest Support Vector Machine Extreme Gradient Boosting 

Train Dataset 1 2 3 4 1 2 3 4 1 2 3 4 
Dataset Test Accuracy 99.59 99.67 99.81 99.81 99.59 98.45 99.47 99.48 99.75 99.75 99.84 99.84 

Realtime Test Accuracy 98.60 99.65 99.80 99.84 99.43 95.22 99.82 99.88 99.55 99.72 99.90 99.78 
Dataset Test Precision 99.82 99.80 99.81 99.83 99.46 98.02 99.47 99.52 100 99.85 99.84 99.86 
Realtime Test Precision 98.27 99.77 99.94 99.90 99.28 95.39 99.95 99.91 99.76 99.82 100 99.82 
Dataset Test Recall  99.28 99.60 99.81 99.85 99.64 97.96 99.47 99.56 99.46 99.70 99.84 99.87 
Realtime Test Recall 99.18 99.61 99.67 99.83 99.53 91.07 99.68 99.85 99.33 99.71 99.78 99.76 
Dataset Test F1  99.55 99.70 99.81 99.84 99.55 97.98 99.47 99.54 99.73 99.77 99.84 99.86 
Realtime Test F1 98.72 99.69 99.80 99.86 99.40 92.57 99.81 99.88 99.55 99.76 99.89 99.79 
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accuracy, precision, recall and F1. The evaluation also 

compares the real-time data with test set result. 

TABLE  V 

BEST PARAMETERS FOR EACH ALGORITHM 

Algorithm Parameter 
Best Parameter Value 

D1 D2 D3 D4 

SVM 
Kernel poly poly poly poly 

C 5 15 10 10 

RF 
N Estimator 75 50 75 100 

Max Feature sqrt sqrt log2 auto 

XGB 

N Estimator 100 25 75 100 

Learning Rate 0.1 1 0.5 0.75 

Tree Method approx approx auto auto 

 

Each algorithm is trained with all four datasets. In each 

training, GridsearchCV will find the best parameters of the 

algorithm. Cross validation for GridsearchCV is set to 5-fold. 

There are different parameters for each algorithm.  

For Random Forest, hyperparameter used to find the best 

combination of parameters are as follow: 
 N Estimator: 25,50,75, and 100 

 Max Feature: sqrt, log2, and auto 

For Support Vector Machine, hyperparameter used are as 

follow: 

 Kernel: Linear, RBF, and Polynomial 

 C : 0.1, 0.5, 1, 5, and 10 

For Xtreme Gradient Boosting, hyperparameter used are as 

follow: 

 N Estimator: 25, 50, 75, and 100 

 Learning Rate: 0.1, 0.3, 0.5, 0.75 , and 1 

 Tree Method: auto, exact, approx, hist, and gpu_hist 
To find the best parameters of each algorithm 

GridsearchCV try each parameter combination and do 

training and cross validation. The result in Table III is the 

score of the best parameter. For the best parameters of each 

dataset can be seen in Table V. 

As shown in Fig. 6 and Fig. 7, each dataset for each 

algorithm has an accuracy value above 99%, except for the 

Support Vector Machine with Dataset 2 which has 98,45%. 

The Support Vector Machine has decreased with Dataset 2 

with 3 classes, but in Dataset 4 which also has 3 classes SVM 

get accuracy score above 99%. It means SVM with a smaller 
number of sample data has an impact on classification 

performance. The unseen data could not be classified 

correctly by SVM. The unseen data exist because in the 

Dataset 2 Prometheus pooling interval are set for 1 minutes. 

The data in intervals of one minute may be different from the 

next minute. The SVM with the hyperplane made was not able 

to handle it. On the other hand, both ensemble learning 

algorithms with a decision tree basis i.e. Random Forest and 

XGB, can actually handle it.  By increasing the amount of 

training data can also increase the accuracy of the Random 

Forest and XGB algorithms. XGBoost has the highest 

accuracy with Dataset 3 and 4 training set with 99,84% 
accuracy score followed by Random Forest with 99,81% for 

the same dataset. 

 

 
Fig. 6  Accuracy result from dataset test 

 

 
Fig. 7  Accuracy comparison from real-time test and dataset test results 

 

Furthermore, the detail of evaluation shown in Table III. 

The values of precision, recall, and F1 displayed in the table 

are the average value of all classes. Overall, the Xtreme 

Gradient Boosting algorithm get the highest score among 

other algorithms for each dataset. Extreme Gradient Boosting 

Algorithm in terms of accuracy is also quite stable for each 
dataset. Even for classification with 3 classes this algorithm 

has better scores than classification with 2 classes. This can 

be interpreted that the data is indeed more suitable to be 

categorized into three categories. Hping3 attack traffic, a 

Protocol Layer Attack category, is better to be separated from 

SlowLoris and GoldenEye attacks, which are Application 

Layer Attack categories. 

As in Table III, most algorithms have insignificant 

differences between tests using datasets and real-time data. 

This means that most classification models can be applied to 

real-time traffic classification. As shown in Fig 7, the biggest 
difference in the test result is the Support Vector Machine 

algorithm with Dataset 2. SVM has the worst results than 

other algorithms for classifying three classes with the low 

amount of data. The difference between real-time test and 

dataset test for SVM with Dataset 2 also the highest, 

indicating that the model is not robust when applied to traffic 

classification in real time. This high difference is because 

during the real-time test Prometheus interval pooling 

configuration is set at 1 second while the training data from 

Dataset 2 is data taken every 1 minute. SVM cannot perform 

with the Dataset 2 test, it is intended with real-time data will 

be worse as they will be more unseen data while classifying 
the traffic. Other than SVM, Random Forest and Xtreme 

Gradient boosting has similar results between dataset and 

real-time tests. Both algorithms have excellent performance 
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in multiple class classifications even with the less data 

training data. 

IV. CONCLUSION 

This research shows that sFlow can be used as a data source 

without any extract module. Sflow-RT and Prometheus are 

works together to provides real-time data. The data sampling 
result is consistent according to the real-time data test 

compared to dataset test. The best classification model for 

DDOS attack detection on SDN in this study is using the 

Xtreme Gradient Boosting algorithm with training set Dataset 

4. From the test results, Dataset 4 with 3 classes has the most 

optimal results for each algorithm. The classification model 

using a combination of XGBoost – Dataset 4 has an accuracy 

of 99,84% for test with a test set from the dataset and 99,78% 

with real-time data. With Dataset 4 also, SVM and Random 

Forest has lower results with 99,48% and 99,81% accuracy, 

respectively. XGB and Random Forest are extremely stable 
for all dataset with two or three classes. Lower amount of the 

data in dataset still has a good result for XGB and Random 

Forest, but apparently it is not for SVM. The ensemble 

learning algorithm worked very well in this study. Both 

boosting and bagging method with the Decision Tree base are 

performing well for the classification. Binary classification 

with SVM has pretty good results, but for multiclass 

classification SVM requires more data to perform better. 

For the further research, it is suggested to compare with 

other learning algorithm with the difference approach. The 

other suggestion is to make a mitigation action to counter the 

DDOS with the proposed method in this study. There is a 
potential to create a machine learning based framework for 

mitigating the DDOS attack as all the server applications run 

in a Docker Container. This will make the implementation 

modular and fast to deploy. For a large scale of the 

implementation a benchmark would be a great research. The 

dataset used in this study can also be used for similar research 

that use sFlow as a data source. 
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