
Vol.13 (2023) No. 2

ISSN: 2088-5334

XGBoost Classifier for DDOS Attack Detection in Software Defined

Network Using sFlow Protocol

Nadhir Fachrul Rozam a, Mardhani Riasetiawan a,*
a Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada,

Yogyakarta, 55281, Indonesia

Corresponding author: *mardhani@ugm.ac.id

Abstract— From a security perspective, Software Defined Network (SDN) separates security concerns into Control Plane and Data

Plane. The Control Plane is responsible for managing the entire network centrally. Centralized SDN generates high vulnerability against

the Distributed Denial of Service (DDOS). When the Software Defined Network overwhelms by DDOS, both Control Plane and Data

Plane will lack resources. It can cause the SDN to fail to work if not detected early. Using the ability of sFlow Protocol to capture the

flow traffic in real time, the data could be used to detect DDOS attacks. This sFlow sampling approach can reduce the workload of the

network by lower down the processing in switches. This paper uses Extreme Gradient Boosting (XGBoost), Support Vector Machine

(SVM), and Random Forest as detection methods. We use ONOS as SDN Controller and build the topology in GNS3. Prometheus

retrieves data from the sFlow Collector as a time series database. The classifier then uses the data from Prometheus for DDOS detection.

For the dataset, we use four different datasets. Datasets 1 and 2 consist of 6109 data, each divided into two classes and three classes.

Datasets 3 and 4 consist of 400488 data divided into 2 and 3 classes, respectively. The evaluation results have proved the effectiveness

of the proposed method. XGBoost has the highest accuracy of another algorithm. The best accuracy is 99.84% using Dataset 4 as the

training set.

Keywords— Software defined network; sFlow; distributed denial of service; extreme gradient boosting.

Manuscript received 24 May 2022; revised 7 Nov. 2022; accepted 5 Jan. 2023. Date of publication 30 Apr. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The main challenges in developing computer networks are

to build a smart network architecture to simplify activation

and adjustments to support increasingly diverse application

needs. However, traditional networks are less relevant to

supporting applications efficiently and massively [1]–[5].

SDN separates security concerns into Control Plane and Data

Plane. This Control Plane is responsible for managing the

entire network centralized on a controller that maintains the

whole network so that it is easier to design and operate the

network through a logical point. A centralized Control Plane

in Software Defined Network (SDN) generates high
vulnerability against the Distributed Denial of Service

(DDOS) attack. In case of no early detection of this attack, the

system immediately reduces the performances of the control

plane, data plane, and secure channel between them. In the

worst case, it can make SDN fail to work [6]–[8].

The research on DDOS attack detection on SDN is still

ongoing to find an effective method. There are several

techniques to detect DDOS in SDN, such as entropy-based

[9]–[11], connection rate [12], [13], probabilistic [14], traffic
pattern analysis [15], and machine learning based. According

to Yan et al. [2], one of the effective methods is a machine

learning based. The capability of centralized control of the

entire node makes implementing big data analytics for attack

detection effective. SDN will come to a new stage in

proactive, intelligent systems with big data analytics and

artificial intelligence.

Most machine learning in SDN uses packets sent from the

switch to the controller for control, not traffic monitoring.

Those control packets are only sent under certain conditions,

and when used continuously, will make high utility of
resources [16]–[18]. Furthermore, [19]–[21] creates a module

to send control packets for certain intervals to all the switches

to get statistical data from the switch. It can use the switch

resources, which can be used for forwarding purposes. For the

same reason, then [22]–[24] improves to reduce the resource

718

utility using the sFlow protocol, which can monitor packets

on the switch with a sampling technique. In a previous study

[22], the research proposes a new sampling technique,

Adaptive Polling Sampling. The sFlow sampling protocol

method, which has become the industry standard, got better

results. sFlow protocol with sampling technique will reduce

the load of the network. In addition, the sFlow makes the

attack detection more modular, and the network scalability

would be better. However, the classification method [22],

SAE (Stacked Autoencoder), which belong to unsupervised
learning, is not performing better than other paper with

supervised learning methods [18], [20], [25]. Unsupervised

learning provides convenience by not labeling the dataset,

usually used to recognize the similarity of data patterns

through clustering. Nevertheless, Supervised Learning would

obtain more accurate results regarding data classification

whose data class is known.

This paper focuses on classifying DDOS attacks using

sFlow as a data source. The data is used from the sFlow

Collector as it receives sFlow packets. The combination of

DDOS detection in SDN using sFlow to reduce the load and
apply the Supervised Learning method to improve

classification performance. The supervised learning method

applied is Extreme Gradient Boosting (XGBoost). XGBoost

is an ensemble learning method. The method has more than

one classifier to minimize false negatives (error prediction).

For the comparison, we also use Random Forest, which is

ensemble learning and Support Vector Machine.

In this paper, we first describe the architecture of SDN. The

structural characteristics of the controller will make it

vulnerable to DDoS attacks. Then, referring to the simulation

tools [26], we use GNS3 for emulating network topology,
ONOS [27] as a controller to build our system model, and use

Hping3, SlowLoris, and GoldenEye for performing an attack,

and Cisco TRex [28] for generating benign traffic. SFlow-RT

collects the sampling flow traffic as the sFlow Collector,

while Prometheus will get and save the data from sFlow-RT.

Finally, the algorithms are used as the detection method.

Compared with other classifiers, the DDoS attack detection

results show that XGBoost performs more accurately than

others. The rest of this paper is organized as follows. In

Section II, Materials and Methods, we introduce the SDN’s

architecture as well as our system model and implementation.

The Section III, Results and Discussion, we discuss the
evaluation of our model as well as the data training. We have

implemented our method in SDN environment and compare

it with other classifiers also in this section. In Section IV, we

conclude this paper

II. MATERIAL AND METHOD

This section discusses the SDN architecture and the

vulnerability against DDOS attacks. Our system model and
implementation are also explained in this section.

A. SDN Architecture

Open Networking Foundation (ONF) [29] develops the

SDN architecture, where network administrators can manage

network services centrally. The SDN's programmatic features

allow the network administrator to manipulate the network

states and configuration with less effort.

SDN architecture separates into three layers: Application,

Control, and Infrastructure. This architecture is shown in Fig

1. Application Layer is an interface used to manage or develop

a SDN Network. Communicate with Control Layer using

North Bound Interface (NBI) in this layer. The control Layer

is a centralized controller and software-based used to control

function and forwarding monitoring. Infrastructure Layer has

network elements used to run the switching and forwarding

packet function. The interface between Controller Plane and

Data Plane is called SouthBound Interface (SBI) or Control-
to-Data-Plane Interface (CDPI).

Fig. 1 Software Defined Network Architecture

B. DDOS Attack in SDN

The idea of SDN is separate between Control Plane and

Data Plane. The controller is software in Control Plane, which

acts as decision maker and is responsible for managing the

entire network. It makes it easier to design and operate the

network through a logical point. In Data Plane there are

network devices such as a switch connected with Controller

via OpenFlow protocol. It performs packet forwarding

according to the flow table defined by the controller. As

shown in Fig 2, when a new packet arrives at the switch, it

will look up the flow table if there is a matching entry, as
shown by arrow (1). If the flow matches, it will forward to the

destination accordingly, as shown by (5). However, if the first

packet to the destination is not found in the flow table, the

switch will send the packet to SDN Controller as a packet, as

shown by (2). The controller then will look up its flow table

to see if the rule is matched. If it matches, the controller will

send back a new rule to the switch, and the switch will be

stored in its flow table for any subsequent packet with the

same flow (shown as arrow (3) in the diagram).

Fig. 2 Packet forwarding in SDN

The DDOS attacks could randomly generate a huge

number of malicious packets and could not match the switch

flow table, resulting in a large packet sent to the controller.
This could overwhelm the control channel and exhaust

controller resources [4]. The lack of resources will make the

719

controller unable to process the legitimate requirement, and this

threat could make the controller fail to serve normal users. An

attacker may impersonate the controller to steal user

information or initiate a much more attack during this time.

This DDOS attack can impact various places in SDN network.

Three main possible places are the data plane, the control

plane, and the secure channel between the control and data

plane [30].

Fig. 3 Proposed system implementation

C. System Model and Implementation

In this paper, the system shown in Fig 3 runs on GNS3

emulator. The red line figured Control Plane path and the

black line was Data Plane. We use ONOS as the SDN

Controller as it is more modern, modular, and scalable [31].

This experiment will save the data directly from sFlow-RT

(Collector) to Prometheus, so the saved data is the data from

sFlow Collector. In addition to reducing computer utility,

using sFlow-RT and Prometheus make the system more

modular. Prometheus is an open-source time series database

optimized for gathering large volumes of metrics [32]. We use

sFlow-RT as the sFlow Collector, which has all the network

traffic data from the sFlow Agent sampling results. The data
can be accessed via REST API. Prometheus then gets the data

from sFlow-RT every second to be stored in the database.

We use Cisco TRex tools with Advanced Stateful (ASTF)

operating mode to generate normal traffic. TRex is an open-

source, customizable packet generator tool that can be used to

test firewalls and load balancing, as it can concurrently

construct packets in multiple streams. In ASTF mode, it

allows the tool to work stateful. It can perform TCP

communication while monitoring the reply from the server if

the TCP session has not ended. One of the advantages of using

this advanced stateful mode is being able to emulate

connections until the application layer, such as HTTP, DNS,

DHCP, etc. This paper uses two hosts for the TRex tool to be
configured as a server and a client. The tools for attack traffic

run on the client side while there is an Apache2 web server

using default configuration on the server. Use GoldenEye,

SlowLoris (Application Layer Attack), and Hping3 (Protocol

Layer Attack) for DDOS attack tools. The detail of the tools

runs on the client and server host are shown in Fig 4.

Fig. 4 Used tools in client and server host

720

The IP address on the attacker's computer and web server

(DDOS target) using the /8 subnet accommodates the T-Rex

tool to generate normal traffic. TRex will generate traffic with

source IP network 16.0.0.0/8 and destination IP network

48.0.0.0/8. In ONOS as the SDN controller, routing is added

to make the two networks can be connected to each other.

Besides the routing, we need to activate the Reactive Routing

application in ONOS. This reactive routing application will

create a virtual gateway. Hosts in a legacy IP network use the

gateway as the default router to access the Internet. However,

an SDN network uses SDN switches to connect a network

rather than routers, so the SDN network has no physical

gateway router. Without a gateway, there is an issue for hosts

inside SDN network. When hosts want to communicate with

other hosts in different subnetworks, they do not know the

next hop where the packets should be sent. Also, hosts do not

know the MAC address of the next hop and cannot compose

the entire packet and send it out.

TABLE I

THE DATASETS DETAIL

Dataset
Prometheus

Pool Interval
Classes

Number of Data

Label 0 Label 1 Label 2 Total Training Set Test Set

Dataset 1 1 minute 2 3280 2829 - 6109
4887 1222

Dataset 2 1 minute 3 3280 1629 1200 6109
Dataset 3 1 second 2 202533 197955 - 400488

320390 80098
Dataset 4 1 second 3 202533 127078 70877 400488

D. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is the learning

method to solve regression and classification problems based

on the Gradient Boosting Decision Tree (GDBT). In,

XGBoost is an improved GDBPT, generating boosted trees

efficiently and operating in parallel [33]. XGBoost uses

gradient descent to minimize errors when creating new

models. Gradient Boosting starts with loading the model into

the data specified in Eq (1).

 ����� = � (1)

Furthermore, the results from the model are used to
calculate the residuals in the previous process, which is given

by Eq. (2). Then a new model is created as written in Eq. (3).

The final model is obtained from a combination of n iteration

models to produce the smallest error value from the residual.

The final model can be defined in Eq. (4)

 ℎ���� = � − ����� (2)

 �
��� = ����� + ℎ���� (3)

��� = ����� → �
��� = ����� + ℎ���� …
→ �����

 = ������� + ℎ������

(4)

The final model from Boosting which can be written in Eq.

(5)

 ���� = �� + ∑ �
��� �� ℎ�

��� (5)

where �� = �� and �� ��� = �� ℎ�
��� for m = 1,2,3, … M

with the value ℎ����� �−1,1�

The final goal of this process is to obtain the closest

function �����to ���� by reduce the value of the loss

function ���, ���� which is defined in Eq. (6). Finally, the

general gradient boosting algorithm formula which can be

obtained as in Eq. (7).

 ����� = �� !"#$ %�,&'�(�, ����)* (6)

 + �� ℎ�
, = �� !"# ∑ �

�-� ���., ��������.� + �� ℎ� ��.�� (7)

III. RESULT AND DISCUSSION

In this section, we discuss the evaluation of our model as

well as the data training. How we get the data and the feature

set used are explained.

A. Dataset Source

Tools used for the attack traffic are SlowLoris, GoldenEye,

and Hping3. SlowLoris and GoldenEye are both Slow DDOS

attacks. These types of attacks exploit the HTTP processing

attribute of a web server by maintaining a connection until a

HTTP request is completed, and the attacker uses a

compromised host to establish a number of connections to the

web server and makes the web server unavailable by

continuing to send incomplete HTTP requests via each

connection [34]. This Slow DDOS or commonly called Low-rate
Distributed Denial-of-Service (LDDoS), is a recent evolution of

DDoS attack that has emerged as one of the most serious

vulnerabilities for the Internet, cloud computing platforms, the

Internet of Things (IoT), and large data centers [35].

Meanwhile, Hping3 will be used to send SYN flood attack

to exploit the TCP protocol 3-way handshake. For the benign

traffic we use TRex with 3 different profiles. Data collection

is done by generating packets alternately for all attack tools

and profiles from TRex. Each session will generate traffic for

1 hour. Within 1 hour, Prometheus get the data from sFlow-

RT with 1 minute and 1 second interval configuration. The
process of how the data is collected can be seen in Fig 5. In

the labeling for two classes label 0 is normal traffic while

label 1 is DDOS attack trafic. For three clasees label 0 is

normal traffic, label 1 is Slowloris and GoldenEye attack

traffic, label 2 is Hping3 attack traffic. Slowloris and

GoldenEye are included in the HTTP DDoS Attack

(Application Layer Attack) labeled 1 while Hping3 is the TCP

SYN Attack (Protocol Layer Attack) labeled 2. The amount

of data for each class in the dataset present in Table I. Dataset

will split into training and testing set with the proportion of

sharing 80% and 20%, respectively.

TRex configuration for generating benign packets using 3
different profiles. This profile determines what types of traffic

and how much traffic is sent. A PCAP file determines the type

of traffic, TRex then read the pcap and generate with the rate

of the traffic as in the Connection Per Second (CPS) value.

721

With this scheme TRex could be used for custom traffic

generation, simply capture the packet to a PCAP file then

define the profile. The first and second profile are called SFR

Full and SFR Full 2K. TRex provides both of those profiles

in package including the PCAP file. The profiles are defined

to meet the IMIX (Internet MIX) [31] testing profile or a

mixture of internet traffic. Network equipment vendors use

IMIX profiles to simulate real-world traffic patterns and

packet distribution. IMIX profiles are based on statistical

sampling performed on Internet routers.
Meanwhile the third profile is custom profile. The SFR Full

and SFR 2k profiles are more dominant for packet streaming.

In the real world, the most packets are for streaming, both

streaming for video access and video calls. Therefore, to

balance the data in dataset, a custom profile is made from the

modified SFR profile. Using the PCAP provided in the

package, the thing needs to done is only customize the CPS.

For the detail of each profile can be seen in Table II and Fig. 5.

TABLE II

TREX PROFILES

Traffic

Connection per Second (CPS)

SFR

Full

SFR Full

2k

SFR

Custom

HTTP GET 102 404.52 404.52
HTTP POST 102 404.52 404.52
HTTPS 33 130.87 130.87
HTTP Browsing 179 709.89 709.89
Mail Exchange 64 253.81 25.81

POP Mail 1.2 4.759 9.759
POP Mail (Port

111)

1.2 4.759 -

POP Mail (Port
112)

1.2 4.759 -

Oracle 20 79.31 79.31
RTP 160k 0.7 2.776 -
RTP 250k 0.5 1.982 -
SMTP 1.85 7.33 1.85
SMTP (Port 26) 1.85 7.33 1.85

SMTP (Port 27) 1.85 7.33 1.85
Video Call 3 24 1.7
Video Call RTP 7.4 29.347 -
Citrix 11 43.62 7
DNS 498 417 498.0
SIP 7.4 29.34 5.4
RSTP 1.2 4.8 2.2

Fig. 5 Data gathering from sFlow

TABLE III

EVALUATION RESULTS

To evaluate the model, along with test set from the dataset

we evaluate from the real-time data. Real-time data is

obtained by generating data with the tool. While the tools

generating data, the sampling results from sFlow-RT is stored

by Prometheus. At the same time data can be retrieved the

data from Prometheus. The data from Prometheus then

classified directly by the machine learning model. For real-

time testing, the data is taken every second for 1 minutes, 5

minutes, and 10 minutes respectively for each tools. The
classification output of the model is saved and evaluated.

Because the data source is come from sFlow, the dataset

features are closely related to sFlow capabilities to sampling

the traffic packets. Different device version might has

different capability of the sFlow Agent to sample the traffic

flow. Here we determine the suitable features we can use to

classify the traffic—the features used in this paper as shown

in Table IV.

Common features such as IP Source, IP Destination, and

Time to Live (TTL) could be use also as it is supported in

sFlow. However, it is irrelevant for data modelling as it will

change in different network topology and scenarios.

TABLE IV

THE DATASET FEATURES

Feature Description

ipflags IP Flags in binary (3-bit)
sourceport Source port
destinationport Destination port
ipbytes IP packet size in bytes
frames Frame per sampling
ipprotocol Type of ip protocol. Eg. 6 for TCP, 17 for UDP.
tcpflags TCP Flags in binary (8-bit)
payload Payload size in bytes

bytes Packet request size in bytes
frame Number of frames from flow sampling

B. Detection Results and Analysis

In this section, we discuss the results of classification using

XGBoost and compared it with two other machine learning

algorithms, Random Forest and Support Vector Machine

(SVM). The main comparison measures are classification

 Random Forest Support Vector Machine Extreme Gradient Boosting

Train Dataset 1 2 3 4 1 2 3 4 1 2 3 4
Dataset Test Accuracy 99.59 99.67 99.81 99.81 99.59 98.45 99.47 99.48 99.75 99.75 99.84 99.84

Realtime Test Accuracy 98.60 99.65 99.80 99.84 99.43 95.22 99.82 99.88 99.55 99.72 99.90 99.78
Dataset Test Precision 99.82 99.80 99.81 99.83 99.46 98.02 99.47 99.52 100 99.85 99.84 99.86
Realtime Test Precision 98.27 99.77 99.94 99.90 99.28 95.39 99.95 99.91 99.76 99.82 100 99.82
Dataset Test Recall 99.28 99.60 99.81 99.85 99.64 97.96 99.47 99.56 99.46 99.70 99.84 99.87
Realtime Test Recall 99.18 99.61 99.67 99.83 99.53 91.07 99.68 99.85 99.33 99.71 99.78 99.76
Dataset Test F1 99.55 99.70 99.81 99.84 99.55 97.98 99.47 99.54 99.73 99.77 99.84 99.86
Realtime Test F1 98.72 99.69 99.80 99.86 99.40 92.57 99.81 99.88 99.55 99.76 99.89 99.79

722

accuracy, precision, recall and F1. The evaluation also

compares the real-time data with test set result.

TABLE V

BEST PARAMETERS FOR EACH ALGORITHM

Algorithm Parameter
Best Parameter Value

D1 D2 D3 D4

SVM
Kernel poly poly poly poly

C 5 15 10 10

RF
N Estimator 75 50 75 100

Max Feature sqrt sqrt log2 auto

XGB

N Estimator 100 25 75 100

Learning Rate 0.1 1 0.5 0.75

Tree Method approx approx auto auto

Each algorithm is trained with all four datasets. In each

training, GridsearchCV will find the best parameters of the

algorithm. Cross validation for GridsearchCV is set to 5-fold.

There are different parameters for each algorithm.

For Random Forest, hyperparameter used to find the best

combination of parameters are as follow:
 N Estimator: 25,50,75, and 100

 Max Feature: sqrt, log2, and auto

For Support Vector Machine, hyperparameter used are as

follow:

 Kernel: Linear, RBF, and Polynomial

 C : 0.1, 0.5, 1, 5, and 10

For Xtreme Gradient Boosting, hyperparameter used are as

follow:

 N Estimator: 25, 50, 75, and 100

 Learning Rate: 0.1, 0.3, 0.5, 0.75 , and 1

 Tree Method: auto, exact, approx, hist, and gpu_hist
To find the best parameters of each algorithm

GridsearchCV try each parameter combination and do

training and cross validation. The result in Table III is the

score of the best parameter. For the best parameters of each

dataset can be seen in Table V.

As shown in Fig. 6 and Fig. 7, each dataset for each

algorithm has an accuracy value above 99%, except for the

Support Vector Machine with Dataset 2 which has 98,45%.

The Support Vector Machine has decreased with Dataset 2

with 3 classes, but in Dataset 4 which also has 3 classes SVM

get accuracy score above 99%. It means SVM with a smaller
number of sample data has an impact on classification

performance. The unseen data could not be classified

correctly by SVM. The unseen data exist because in the

Dataset 2 Prometheus pooling interval are set for 1 minutes.

The data in intervals of one minute may be different from the

next minute. The SVM with the hyperplane made was not able

to handle it. On the other hand, both ensemble learning

algorithms with a decision tree basis i.e. Random Forest and

XGB, can actually handle it. By increasing the amount of

training data can also increase the accuracy of the Random

Forest and XGB algorithms. XGBoost has the highest

accuracy with Dataset 3 and 4 training set with 99,84%
accuracy score followed by Random Forest with 99,81% for

the same dataset.

Fig. 6 Accuracy result from dataset test

Fig. 7 Accuracy comparison from real-time test and dataset test results

Furthermore, the detail of evaluation shown in Table III.

The values of precision, recall, and F1 displayed in the table

are the average value of all classes. Overall, the Xtreme

Gradient Boosting algorithm get the highest score among

other algorithms for each dataset. Extreme Gradient Boosting

Algorithm in terms of accuracy is also quite stable for each
dataset. Even for classification with 3 classes this algorithm

has better scores than classification with 2 classes. This can

be interpreted that the data is indeed more suitable to be

categorized into three categories. Hping3 attack traffic, a

Protocol Layer Attack category, is better to be separated from

SlowLoris and GoldenEye attacks, which are Application

Layer Attack categories.

As in Table III, most algorithms have insignificant

differences between tests using datasets and real-time data.

This means that most classification models can be applied to

real-time traffic classification. As shown in Fig 7, the biggest
difference in the test result is the Support Vector Machine

algorithm with Dataset 2. SVM has the worst results than

other algorithms for classifying three classes with the low

amount of data. The difference between real-time test and

dataset test for SVM with Dataset 2 also the highest,

indicating that the model is not robust when applied to traffic

classification in real time. This high difference is because

during the real-time test Prometheus interval pooling

configuration is set at 1 second while the training data from

Dataset 2 is data taken every 1 minute. SVM cannot perform

with the Dataset 2 test, it is intended with real-time data will

be worse as they will be more unseen data while classifying
the traffic. Other than SVM, Random Forest and Xtreme

Gradient boosting has similar results between dataset and

real-time tests. Both algorithms have excellent performance

723

in multiple class classifications even with the less data

training data.

IV. CONCLUSION

This research shows that sFlow can be used as a data source

without any extract module. Sflow-RT and Prometheus are

works together to provides real-time data. The data sampling
result is consistent according to the real-time data test

compared to dataset test. The best classification model for

DDOS attack detection on SDN in this study is using the

Xtreme Gradient Boosting algorithm with training set Dataset

4. From the test results, Dataset 4 with 3 classes has the most

optimal results for each algorithm. The classification model

using a combination of XGBoost – Dataset 4 has an accuracy

of 99,84% for test with a test set from the dataset and 99,78%

with real-time data. With Dataset 4 also, SVM and Random

Forest has lower results with 99,48% and 99,81% accuracy,

respectively. XGB and Random Forest are extremely stable
for all dataset with two or three classes. Lower amount of the

data in dataset still has a good result for XGB and Random

Forest, but apparently it is not for SVM. The ensemble

learning algorithm worked very well in this study. Both

boosting and bagging method with the Decision Tree base are

performing well for the classification. Binary classification

with SVM has pretty good results, but for multiclass

classification SVM requires more data to perform better.

For the further research, it is suggested to compare with

other learning algorithm with the difference approach. The

other suggestion is to make a mitigation action to counter the

DDOS with the proposed method in this study. There is a
potential to create a machine learning based framework for

mitigating the DDOS attack as all the server applications run

in a Docker Container. This will make the implementation

modular and fast to deploy. For a large scale of the

implementation a benchmark would be a great research. The

dataset used in this study can also be used for similar research

that use sFlow as a data source.

REFERENCES

[1] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A Survey

of Networking Applications Applying the Software Defined

Networking Concept Based on Machine Learning,” IEEE Access, vol.

7, pp. 95397–95417, 2019, doi: 10.1109/ACCESS.2019.2928564.

[2] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking

(SDN) and distributed denial of service (DDOS) attacks in cloud

computing environments: A survey, some research issues, and

challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 602–

622, 2016, doi: 10.1109/COMST.2015.2487361.

[3] S. Gupta and D. Grover, “A Comprehensive Review on Detection of

DDoS Attacks using ML in SDN Environment,” Proc. - Int. Conf.

Artif. Intell. Smart Syst. ICAIS 2021, pp. 1158–1163, 2021, doi:

10.1109/ICAIS50930.2021.9395987.

[4] S. Kaur, K. Kumar, and N. Aggarwal, “Analysis of DDoS Attacks in

Software Defined Networking,” 2022 IEEE Delhi Sect. Conf.

DELCON 2022, 2022, doi: 10.1109/DELCON54057.2022.9753224.

[5] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on

SDN based network intrusion detection system using machine learning

approaches,” Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 493–501,

2019, doi: 10.1007/s12083-017-0630-0.

[6] Y. Cui et al., “Towards DDoS detection mechanisms in Software-

Defined Networking,” J. Netw. Comput. Appl., vol. 190, no. November

2020, p. 103156, 2021, doi: 10.1016/j.jnca.2021.103156.

[7] M. P. Singh and A. Bhandari, “New-flow based DDoS attacks in SDN:

Taxonomy, rationales, and research challenges,” Comput. Commun.,

vol. 154, no. March, pp. 509–527, 2020, doi:

10.1016/j.comcom.2020.02.085.

[8] B. Mladenov, “Studying the DDoS Attack Effect over SDN Controller

Southbound Channel,” in 2019 X National Conference with

International Participation (ELECTRONICA), May 2019, pp. 1–4,

doi: 10.1109/ELECTRONICA.2019.8825601.

[9] Institute of Electrical and Electronics Engineers, “Detection of DDoS

in SDN Environment Using Entropy-based Detection,” in 2019 IEEE

International Symposium on Technologies for Homeland Security

(HST), Nov. 2019, pp. 1–4, doi: 10.1109/HST47167.2019.9032893.

[10] R. Neres Carvalho, J. Luiz Bordim, and E. Adilio Pelinson Alchieri,

“Entropy-based DoS attack identification in SDN,” in Proceedings -

2019 IEEE 33rd International Parallel and Distributed Processing

Symposium Workshops, IPDPSW 2019, May 2019, pp. 627–634, doi:

10.1109/IPDPSW.2019.00108.

[11] U. Ahmed, J. C. W. Lin, and G. Srivastava, “Network-Aware SDN

Load Balancer with Deep Active Learning based Intrusion Detection

Model,” Proc. Int. Jt. Conf. Neural Networks, vol. 2021-July, 2021,

doi: 10.1109/IJCNN52387.2021.9534424.

[12] B. H. Lawal and A. T. Nuray, “Real-time detection and mitigation of

distributed denial of service (DDoS) attacks in software defined

networking (SDN),” 26th IEEE Signal Process. Commun. Appl. Conf.

SIU 2018, pp. 1–4, 2018, doi: 10.1109/SIU.2018.8404674.

[13] M. Imran, M. H. Durad, F. A. Khan, and H. Abbas, “DAISY: A

Detection and Mitigation System against Denial-of-Service Attacks in

Software-Defined Networks,” IEEE Syst. J., vol. 14, no. 2, pp. 1933–

1944, 2020, doi: 10.1109/JSYST.2019.2927223.

[14] P. Maity, S. Saxena, S. Srivastava, K. S. Sahoo, A. K. Pradhan, and N.

Kumar, “An Effective Probabilistic Technique for DDoS Detection in

OpenFlow Controller,” IEEE Syst. J., vol. 16, no. 1, pp. 1345–1354,

2022, doi: 10.1109/JSYST.2021.3110948.

[15] Y. Wang, T. Hu, G. Tang, J. Xie, and J. Lu, “SGS: Safe-Guard Scheme

for Protecting Control Plane Against DDoS Attacks in Software-

Defined Networking,” IEEE Access, vol. 7, pp. 34699–34710, 2019,

doi: 10.1109/ACCESS.2019.2895092.

[16] F. Khashab, J. Moubarak, A. Feghali, and C. Bassil, “DDoS Attack

Detection and Mitigation in SDN using Machine Learning,” Proc.

2021 IEEE Conf. Netw. Softwarization Accel. Netw. Softwarization

Cogn. Age, NetSoft 2021, pp. 395–401, 2021, doi:

10.1109/NetSoft51509.2021.9492558.

[17] C. B. Zerbini, L. F. Carvalho, T. Abrão, and M. L. Proença, “Wavelet

against random forest for anomaly mitigation in software-defined

networking,” Appl. Soft Comput. J., vol. 80, pp. 138–153, 2019, doi:

10.1016/j.asoc.2019.02.046.

[18] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno, “Machine

learning algorithms to detect DDoS attacks in SDN,” Concurr.

Comput. Pract. Exp., vol. 32, no. 16, pp. 1–14, 2020, doi:

10.1002/cpe.5402.

[19] M. Myint Oo, S. Kamolphiwong, T. Kamolphiwong, and S.

Vasupongayya, “Advanced Support Vector Machine-(ASVM-) based

detection for Distributed Denial of Service (DDoS) attack on Software

Defined Networking (SDN),” J. Comput. Networks Commun., vol.

2019, 2019, doi: 10.1155/2019/8012568.

[20] K. S. Sahoo et al., “An Evolutionary SVM Model for DDOS Attack

Detection in Software Defined Networks,” IEEE Access, vol. 8, pp.

132502–132513, 2020, doi: 10.1109/ACCESS.2020.3009733.

[21] R. Fadaei, O. Ermiş, and E. Anarim, “A DDoS attack detection and

countermeasure scheme based on DWT and auto-encoder neural

network for SDN,” Comput. Networks, vol. 214, no. March, p. 109140,

2022, doi: 10.1016/j.comnet.2022.109140.

[22] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz, and J.

González, “Towards sFlow and adaptive polling sampling for deep

learning based DDoS detection in SDN,” Futur. Gener. Comput. Syst.,

vol. 111, pp. 763–779, 2020, doi: 10.1016/j.future.2019.10.015.

[23] M. Wang, Y. Lu, and J. Qin, “Source-Based Defense Against DDoS

Attacks in SDN Based on sFlow and SOM,” IEEE Access, vol. 10, pp.

2097–2116, 2022, doi: 10.1109/ACCESS.2021.3139511.

[24] Z. A. El Houda, A. S. Hafid, and L. Khoukhi, “A Novel Machine

Learning Framework for Advanced Attack Detection using SDN,”

2021 IEEE Glob. Commun. Conf. GLOBECOM 2021 - Proc., 2021,

doi: 10.1109/GLOBECOM46510.2021.9685643.

[25] H. A. Alamri and V. Thayananthan, “Bandwidth control mechanism

and extreme gradient boosting algorithm for protecting software-

defined networks against DDoS attacks,” IEEE Access, vol. 8, pp.

194269–194288, 2020, doi: 10.1109/ACCESS.2020.3033942.

[26] S. Sirijaroensombat, C. P. Nangsue, and C. Aswakul, “Development

of software-defined mesh network emulator testbed for DDoS defence

study,” 2019 IEEE 4th Int. Conf. Comput. Commun. Syst. ICCCS

2019, pp. 468–472, 2019, doi: 10.1109/CCOMS.2019.8821667.

724

[27] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” pp.

1–6, 2014, doi: 10.1145/2620728.2620744.

[28] TRex, “Cisco T-Rex: Realistic traffic generator.,” https://trex-

tgn.cisco.com/. https://trex-tgn.cisco.com/ (accessed May 21, 2022).

[29] O. N. Foundation, “Software-Defined Networking: The New Norm for

Networks [white paper],” ONF White Pap., pp. 1–12, 2012, doi:

citeulike-article-id:12475417.

[30] A. T. Kyaw, M. Zin Oo, and C. S. Khin, “Machine-Learning Based

DDOS Attack Classifier in Software Defined Network,” in 2020 17th

International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology (ECTI-

CON), Jun. 2020, pp. 431–434, doi: 10.1109/ECTI-

CON49241.2020.9158230.

[31] K. Smida, H. Tounsi, M. Frikha, and Y. Q. Song, “Efficient SDN

Controller for Safety Applications in SDN-Based Vehicular Networks:

POX, Floodlight, ONOS or OpenDaylight?,” 2020 8th Int. Conf.

Commun. Networking, ComNet2020 - Proc., pp. 1–6, 2020, doi:

10.1109/ComNet47917.2020.9306095.

[32] A. Bader, O. Kopp, and M. Falkenthal, “Survey and Comparison of

Open Source Time Series Databases,” Gesellschaft für Inform., vol. P-

266, pp. 249–268, 2017.

[33] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting

System,” in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Aug. 2016,

vol. 42, no. 8, pp. 785–794, doi: 10.1145/2939672.2939785.

[34] J. Singh and S. Behal, “Detection and mitigation of DDoS attacks in

SDN: A comprehensive review, research challenges and future

directions,” Comput. Sci. Rev., vol. 37, p. 100279, 2020, doi:

10.1016/j.cosrev.2020.100279.

[35] A. A. Alashhab, M. S. M. Zahid, M. A. Azim, M. Y. Daha, B. Isyaku,

and S. Ali, “A Survey of Low Rate DDoS Detection Techniques Based

on Machine Learning in Software-Defined Networks,” Symmetry

(Basel)., vol. 14, no. 8, p. 1563, Jul. 2022, doi: 10.3390/sym14081563.

725

