
Vol.13 (2023) No. 1

ISSN: 2088-5334

Cost-effective and Low-complexity Non-constrained Workflow

Scheduling for Cloud Computing Environment

Célestin Tshimanga Kamanga a,*, Emmanuel Bugingo b,c, Simon Ntumba Badibanga a,

Eugène Mbuyi Mukendi a, Olivier Habimana b
a University of Kinshasa, Mathematics and Computer Sciences, Kinshasa, 127, Democratic Republic of Congo

b University of Rwanda, KK 737 Street, Gikondo, Kigali, 4285, Rwanda
c University of Kigali, KG 7 Ave, Kigal, Rwanda

Corresponding author: *celestin.tshimanga@unikin.ac.cd

Abstract— Cloud computing possesses the merit of being a faster and cost-effective platform in terms of executing scientific workflow

applications. Scientific workflow applications are found in different domains, such as security, astronomy, science, etc. They are

represented by complex sizes, which makes them computationally intensive. The main key to the successful execution of scientific

workflow applications lies in task resource mapping. However, task-resource mapping in a cloud environment is classified as NP-

complete. Finding a good schedule that satisfies users' quality of service requirements is still complicated. Even if different studies have

been carried out to propose different algorithms that address this issue, there is still a big room for improvement. Some proposed

algorithms focused on optimizing different objectives such as makespan, cost, and energy. Some of those studies fail to produce low-

time complexity and low-runtime scientific workflow scheduling algorithms. In this paper, we proposed a non-constrained, low-runtime,

and low-time-complexity scientific workflow scheduling algorithm for cost minimization. Since the proposed algorithm is a list

scheduling algorithm, its key success is properly selecting computing resources and its operating CPU frequency for each task using the

maximum cost difference and minimum cost-execution difference from the mean. Our algorithm achieves almost the same cost

reduction results as some of the current states of the arts while it is still low complex and uses less run-time.

Keywords— Workflow scheduling; resource management; difference from the mean; weighted sum difference; low complexity.

Manuscript received 16 May 2022; revised 18 Aug. 2022; accepted 17 Sep. 2022. Date of publication 28 Feb. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Cloud computing is a leading resource management system

to run and manage high-performance applications from

various natures. Such applications, including engineering,

science, healthcare, finance, security, and business, require

large amounts of data from diverse sources. It is

straightforward that cloud applications require high-power

computing resources, which are expensive to afford. Cloud
computing services are provided by cloud providers and

consumed by cloud clients [1].

Many users, individuals, and companies, now prefer to use

cloud services over running their resources locally, as they

provide high technical support with fewer implications for the

users. To provide cloud services, a few concepts are

combined. Most importantly, CPUs have been priced

accordingly [2] and per application. Organizing its budget is

still an ongoing concern in the cloud computing community,

and providing the same cloud services with lower costs raises
the bar. However, choosing a cost-effective configuration

becomes even more difficult for users. The frequency

required for a cost-effective configuration can vary in

different scenarios, depending on the provider's pricing model

and the characteristics of the application [3].

As a result, cloud computing utilizing virtualization

technology has emerged as a new paradigm for large-scale

distributed computing [4]. One of the basic challenges is to

schedule a large set of heterogeneous tasks while maintaining

load balancing between different heterogeneous systems to

meet the requirement between the cloud users and providers
[5]. Metrics to consider in this case include makespan and

service fees which should be minimized and resources that

should be highly used [6], [7].

Though cloud computing services have multiple

advantages over traditional systems (i.e., hosting their own

resources locally), some issues need to be addressed. One

371

question lies in the security of the used information being

hosted by a third party. In other words, it is not easy to protect

large amounts of data when it is stored in the cloud. Another

issue is the recovery of lost data in contingency.

The issue considered in this work is that the resources

required to manage and maintain user data in the cloud can be

expensive. There are two principal factors considered when

pricing cloud services. First, cloud providers aim to maximize

profits, and cloud users need services of high quality at low

prices. Second, cloud services are very competitive due to the

high number of cloud providers. Other things that are taken
into account to price cloud services include the cost of

maintenance, age of services, and rate of depreciation.

This paper aims to balance cloud provider's profit against

customer's satisfaction. A new approach is proposed to

optimize the prices of services for both cloud providers and

customers. There are still challenges in designing algorithms

to meet user quality of service (QoS), minimize service costs,

and reduce processing and response times. Cloud computing

provides users with different computing resources and CPU

configuration settings for each resource that they must choose

to run workflow applications within their QoS requirements.
Researchers in the cloud community use workflow, a

Directed Acyclic Graph (DAG), to model cloud-related

problems. For the problem considered in this paper, DAG

contains nodes with the following characteristics: expected

execution time and the amount of data to be transferred

between each pair of dependent nodes. Here, nodes are tasks

that need to be executed.

While provisioned computational resources allow parallel

execution of independent tasks and execution of

computationally intensive scientific workflow applications,

mapping workflow tasks to resources remains an NP-
complete problem [8].

It even becomes more complex when other characteristics,

such as resource configuration settings, have to be taken care

of. Some service providers, such as ElasticHosts and cloud-

sigma [9], charge the user based on the CPU frequency

selected for each computing resource. Choosing a high CPU

frequency for each task and allocating task resources

appropriately will reduce the execution time of the workflow

application but will increase the overall cost charged to the

user. On the other hand, choosing the lowest CPU frequency

can reduce the overall financial cost and increase the

execution time.
However, the cost of minimum CPU frequency is not

efficient because the total cost depends on the execution time.

Therefore, choosing the minimum CPU frequency for each

selected computing resource is not cost-effective [10], but it

can be achieved by careful selection of the CPU frequency

between minimum and maximum.

HEFT [11] is a well-known list-scheduling algorithm

known for its low complexity. Despite the improvement and

modification made for this algorithm, it is initial [12] purpose

was to minimize the makespan of the workflow. Even if

HEFT has been proposed over a few decades, it still carries
the flag of low complexity.

Over the last few years, the problem of total monetary

optimization has become the most difficult issue, resulting

from the number of configuration settings the user can choose

when performing each task in the workflow. Various studies

have been conducted, and various algorithms have been

proposed to find a solution to this problem [13].

These algorithms find the best schedule within the user's

deadline, but response time and complexity are still high. In

this article, we have proposed an unconstrained list

scheduling-based workflow scheduling algorithm with low

response time and complexity.

The proposed algorithm allows users to choose

computational resources and their operational CPU

frequencies to optimize the total economic cost of running

workflow applications in a cloud computing environment.
Two different scientific workflows (Montage and Inspiral) of

different sizes (small, medium, and large) were used to

evaluate the proposed algorithm through simulation.

Considering the user's deadline, the results show that the

proposed algorithm works well in a small workflow and with

a small number of computing resources because it is within

the deadline used. Considering the main objective (cost

minimization), our previous work [2] has proposed three

scheduling heuristics named WS-HEFT, MD-HEFT, and ED-

HEFT, and evaluated them by simulation. In this new paper,

the main contributions are listed as follows:
 we proposed a list scheduling-based workflow with low

complexity and less response time.

 instead of overlapping mutations, the proposed

algorithm selects computing resources and their

operating CPU frequencies based on the difference

between the average cost and execution time of each

task.

 while the proposed algorithm is non-constrained, the

simulation results have shown that the proposed

algorithm participates even in deadline acceptance for

any small-sized workflow type and a small number of
computing resources.

 like all compared state-of-the-art algorithms, the

proposed algorithm reduced the cost over HEFT.

Additionally, in many cases, the proposed algorithm

even reduced the cost over the compared state-of-the-

art algorithms.

Workflow scheduling and resource provisioning are the

hottest topics in cloud computing [14]. Different studies have

been carried out, and workflow scheduling and resource

provisioning algorithms have been proposed to address the

mentioned problems and deal with different optimization

objectives in workflow scheduling and resource provisioning.
Some scheduling algorithms focused on the minimization

of the execution time of the whole workflow [15], [12], others

concentrated on the total monetary minimization [16], [17],

[18], while others concentrated on the optimization of the

energy used by the computation resources during workflow

execution [4], [19], [20]. Some studies proposed

metaheuristics such as evolutionary algorithms and particle

swarm optimization [21], [22] to tackle workflow scheduling

problems.

However, those meta-heuristics do not converge so

quickly. Recent studies are using deep learning techniques
[23], [24], [25] for task scheduling and resource provisioning.

In terms of resource provisioning, the most focused objective

is the maximization of resource utilization [24], [25]. To

minimize the makespan, HEFT [26] was proposed. In its

nature, HEFT is a list-scheduling algorithm with low

372

complexity. Given workflow tasks and computing resources,

HEFT arranges tasks in a list according to their upwards rank

values and then schedules one after another to the computing

resource capable of minimizing task's execution time while

considering the communication time of dependent tasks.

This algorithm has been extended in various [12] ways to

address different scheduling problems. Since HEFT manages

to generate a fair schedule with low complexity, it has been

widely employed in many other meta-heuristic algorithms

[27], and in scheduling algorithms [10], [28], [29] to generate

the initial schedule. Workflow scheduling can be based either
on a single objective or a multi-objective. Most of the existing

work has considered single objective programming, such as

minimization of total monetary cost under different

constraints like the deadline [30], [31]. However, real-world

workflow scheduling sometimes requires more than one

objective to satisfy the user's QoS requirement.

Taking cost as one of those objectives [32] has developed

multi-objective models to deal with workflow scheduling

problems in the cloud environment. Most works done on

workflow scheduling have considered time used as the only

feature to use, charging the monetary cost [33]. However,
ElasticHosts and cloud sigma [9] have proven that it is

possible to charge the user based on the CPU frequency used

to execute each task on a given computing resource.

With this new schema, the problem that arises is the proper

selection of computing resources and tuning its operating

CPU frequency for each task so that the total monetary cost is

minimized under a given constraint.

To provide the solution to the problem of selecting a cost-

efficient CPU frequency configuration, Faragardi et al. [10]

have assumed that the users are charged based on the CPU

frequency allocated to each resource during the execution
time of scientific workflow. Their works have considered the

new pricing feature (CPU frequency). They have used a set of

pricing models (linear, sublinear, and superlinear), which can

be used to reduce costs. Their models and feature of

consideration are reasonable for scientific workflow

application processing.

In conjunction with CSFS-Max and CSFS-Min [34], HEFT

has been used to help the user to choose the best CPU

frequency configuration setting for each. Saeedizade et al.

[35], employed HEFT to perform optimization of makespan

while satisfying the user's QoS requirement(budget

constraints). HEFT has also been employed [36] as the
makespan-aware scheduler.

Note that the main objective of the algorithm proposed in

this study [37] was to help users split a sum of frequency onto

a fixed number of resources by giving each resource an

identical frequency configuration so that the makespan can be

reduced. CFMAX, CFMIN, and CCR aim to minimize the

total monetary cost the user must pay when scheduling his/her

workflow application in a cloud computing environment [16].

All of those algorithms employed HEFT to generate their

initial schedule.

They remap the task to another computing resource and
change the CPU frequency based on the initial schedule

generated using HEFT. The algorithm [27] proposed

employed HEFT for two reasons: task ranking technique and

managing the deadline based on makespan. Considering this

fact, the complexity of those algorithms increases because

they have to wait for the schedule generated by HEFT before

they start to produce their schedules. Moreover, this will also

increase the run-time of those algorithms.

Contrarily to those algorithms, the algorithm proposed in

this paper employs only from HEFT task ranking technique

and does task resources mapping based on the maximum and

minimum cost-execution difference values from the mean

value. As the proposed algorithm is not constrained, it is

straightforward; no task remapping is needed, which reduces

run-time. Most of the existing works have concentrated on the

optimization of different constraints related to workflow
scheduling by considering both at the same time or one of

them [38], [39], [40], [41].

Considering the budget constraint, proposed a bi-criteria

priority particle swarm optimization (BPSO) algorithm to

schedule workflow applications to cloud computing resources

in a manner that optimizes both the monetary cost execution

time related to scheduling user's workflow in a cloud

environment. One-phase algorithm IC-PCP and two-phase

PCP algorithm [42] employed a partial critical path algorithm

and proposed polynomial time complexity suitable for large

workflows. The objective of this work was to minimize the
cost and execution of a workflow while still meeting the user's

deadline.

Like this group of algorithms, our algorithm focused on

minimizing cost. Contrarily, they are constrained, while our

algorithm is not constrained. Unlike all the research above,

the algorithm presented in this paper assumes the presence of

different cloud computing resources with different CPU

frequency configuration settings. The selected computing

resources and their operating CPU frequencies determine the

monetary cost the user has to pay.

This paper proposes a workflow scheduling algorithm that
is less complex and has no run-time constraints. To achieve

this, the algorithm uses the minimum and maximum cost and

execution values generated by each CPU frequency

configuration setting.

II. MATERIALS AND METHOD

This paper considered the problem of selecting a proper

computing resource and tuning its CPU frequency so

executing a task requires less monetary cost. Note that even if
we considered an unconstrained system, the user's long

execution time of the whole schedule is not acceptable. This

section describes the considered application model, the

parameter settings of the considered environment, and the

cost model.

A. Computing Resources Model

In this paper, we described the cloud computing

environment using a set of computing resources �� =��1, ��2, . . . , �
. Each of the �� configured with CPU

frequency parameter settings in between maximum fmax and

minimum fmin with a step CPU frequency fstep that is used to

change the frequency from maximum to minimum frequency,

as shown in Table II.

Each computing resource is provisioned for the whole

execution time of the user's application. However, the user is

only charged based on the CPU frequency allocated to each ��during the execution time of the task ti that was mapped on

373

this CR. Moreover, no preemption is allowed, i.e., a CRp will

be busy for the whole task being executed on it.

Fig. 1 Example workflow

TABLE I
EXPECTED EXECUTION TIME OF EACH WORKFLOW'S TASK

ID CR1 CR2 CR3

1 30 12 16

2 27 21 72

3 4 36 6

4 21 6 20

5 20 16 81

6 28 6 48

7 35 14 7

8 5 48 30

9 48 2 64

TABLE II
EXAMPLE OF 3 CR'S CPU FREQUENCY PARAMETER SETTINGS

CR fmax fmin fsep

1 3000 1000 100

2 2800 1400 200

3 2700 1800 300

B. Application Model

Commonly, scientific workflow applications can be

modeled as a Directed Acyclic Graph (DAG) as illustrated in

Fig. 1, W=(T,D), where T depicts a set of workflow's

interdependent tasks T={t1,t2,t3,…,tn} and D depicts a set of

intermediate data between each two dependent tasks D=d(i,j)

where ti is the predecessor (pred) of tj which is the immediate

successor (succ) of tj. Additionally, pred(ti) represent a set of
all predecessor's task of tj, and succ(tj)represent a set of all

successors task of ti. A task without predecessor is known as

entry task tentry, while the task without successors is known as

an exit task texit.

A simple representation of scientific workflow with 9 tasks

is shown in Fig. 1. The example DAG have one tentry=1 and one

texit=9. The node represents the task, the number in the node

represents the task's id, while the data on the edges represent

the data to be transferred between the two dependent tasks

t(i,2). A successor task tj cannot start its execution before its

predecessor ti finishes its execution.

We assume the deterministic model of execution time and

communication model. The tasks' expected execution time of

sample DAG shown in Fig. 1 on three computing resources
with maximum CPU frequency settings shown in Table II are

presented in Table I.

The execution time of a task ti on CPU frequency, which is

not maximum, can be calculated as follows:

 �,� = � × (����
��,����

) (1)

where E(t,fmax) is the expected execution time of task ti at

maximum CPU frequency fmax of computing resource crp as

given in Table I: Expectation execution time of workflow
shown in Fig. 1.

The parameter β indicate the impact of the CPU frequency on

the execution time of the task. β is in range of 0 and 1. By

default it is set to 0.4 (β=0.4).

We considered three pricing models: linear, super linear,

and sublinear as in [2], [16], which were previously presented

in [10]. Let suppose that C(cr,f) denotes the price charged per

time unit's use of computing resource cr operating at CPU

frequency fcr C(cr,fmin) denotes the price of cr at minimum

frequency fmin, and �� denotes the coefficient used for each cr

to tune the changing rate of price according to frequency.
Then C(cr,f) for linear pricing model is calculated as follows:

 �(��,�) = �� ������� !
�� ! "(��,�� !

 (2)

and for super linear pricing model, C(cr,f) is calculated as

follows:

 # = $%& ������� !
�� ! " (3)

 �(��,�) = �� '�1 + ������ !
�� ! × #")

(��,�� !
 (4)

while for sublinear pricing model, C(cr,f) can be calculated as

follows:

 �(��,�) = �� $%& �1 + ������ !
�� ! "(��,�� !

 (5)

Let also TC(cr,f) be the cost of executing task ti to a computing

resource cr operating at CPU frequency f and is calculated as

follows:

 *�(��,�) = �(��,�) × �(,�) (6)

C. The Proposed Algorithm

The first stage of our proposed algorithm is described in the

figure below.

374

Fig. 2 Algorithm 1 of MCD and MCED

In case there is still an unscheduled task in the list,

algorithm 1 will call algorithm 2 within Table III below, from

point A.

TABLE III
ALGORITHM 2: SECOND STAGE OF MCD AND MCED

Step 1 : Create �+,-. = /and *�+,-. = /

 Calculate �(,��,�) and *�(,��,�)using

Equation 1 and 6 respectively. �+,-. ← �(,��,�),*�+,-. ← *�(,��,�)
 Using EList and TCList Calculate the

average AvE and AvTC.

 Switch Variants
Step 2 : Case (MCD)
 Find the proper CR cr and its selected

frequency f using Equation 8.
 Break.
Step 3 : Case (MCED)
 Find the proper CR cr and its selected

frequency f using Equation 13.

 Break.
Step 4 : Assign task t to the CR cr with frequency f that

optimize *�(,��,�)

Then, the total monetary cost of the taskcr mapping can be

calculated as follows:

 *%.�1 = ∑ *�(��,�)∀(,��)∈5 (7)

where S is the schedule describing the mapping between tasks

and computing resources as well as the operating CPU

frequency of each computing resource for each task.

Based on the aforementioned models and assumptions, the

main objective of this research is to propose a workflow
scheduling algorithm that generates a schedule by

appropriately tuning the CPU frequency for each task on a

selected computing resource so that the total cost of executing

user's workflow is minimized.

However, in this paper, we proposed an algorithm with two

variants Minimum Cost Difference (MCD) and Maximum

Cost-Execution Time Difference (MCED). The proposed

algorithm uses Rank Upwards from HEFT and is calculated

using Equation 14.

In this section, we provide a detailed description of

proposed variants and discuss the results of the proposed

algorithm compared to two more algorithms [43]. The

proposed algorithm's pseudo-code is shown in the first
algorithm, and the main method concerning variants are

shown in the second algorithm.

1) Step by Step description: Normally, the proposed

algorithm gets two inputs: The first input is a workflow W

which consists of interdependent tasks with a deterministic

model of execution time as shown in Table I (at maximum

CPU frequency of the available CR) and communication time

as shown on the edges in Fig. 1. The second input is a set of

computing resources CR which also consists of several

computing resources and their CPU frequency configuration

settings as shown in Table II.

The output of the algorithm is a schedule S, specifying the

taskcr mapping with selected CPU frequency for each task

scheduled on a given CR, and the generated E and C for each

task. This algorithm consists of two main phases: Compute

Rank upwards (Ranku) in the algorithm 1, and find the

appropriate CR and its operating CPU frequency for each
task. After getting the required input, the algorithm goes on

with the computation of Rank upwards(Ranku) of all tasks by

traversing W upward (starting from the exit task), and sorting

the tasks in an ordered list based on their Ranku values.

After the calculation of the Ranku, each task in the list

order can be selected based on its position in the list for the

preparation of the execution (Step 1 of algorithm 2). We

create two empty lists: where EList is used to hold all possible

execution times of task ti, TCList used to hold all possible

execution monetary costs of task ti.

For each computation resource in the given set with all its
possible combinations of CPU frequency, we calculate E(t,cr,f)

using Equation 1 and TC(t,cr,f) using Equation 6 and store those

values in EList and TCList respectively. The next step is to

calculate average execution time AvE and average execution

cost AvTC.

 6�7(��,�) = 8,
(9:*� − *�+,-.<) (8)

 = = 8=>(9:*� − *�+,-.) (9)

 ?�7(��,�) = @ × � A�(BCDE�DEF<1)
A�G<H(BCDE�DEF<1)" (10)

 I = 8=>(9:� − �+,-.) (11)

 ?�7(��,�) = @ × �J�(BCK�KF<1)
J�G<H(KF<1) " (12)

 6��7(��,�) = 8=>L?�7(��,�) + ?�7(��,�)M (13)

where w is the parameter used to control the criteria

importance. In this paper, we assume that both execution time

and execution cost have equal importance, which makes

w=0.5.

375

Once the AvTC and AvE are found (Step 1 of algorithm 2),

the next step is to calculate the difference between the average

and each element in the list. If the variant is MCD (Step 2 of

algorithm 2), we use the Equation 8, and the cr and f will be

the ones used to get this minimum difference value from the

mean. If the variant is MCED (Step 3 of algorithm 2), we use

the Equation 13, and the proper cr and f will be the ones used

to get them the maximum difference value from the mean.

Before using Equation 13, execution values and cost values

are firstly normalized: Normalized execution cost difference

NCD(cr,f) using Equation 10 and normalized execution time
difference NED(cr,f) using Equation 12.

To select the proper cr and f, task ti looks only on its

predecessors. Once the cr and its operating CPU frequency f

is found, the task ti will be scheduled for it, and the algorithm

continues to the next task (Step 4 of algorithm 2). Note that

after finding a proper cr with its associate CPU frequency f

for task ti, both EList and TCList are reset to prepare the next

task t(i+1). The algorithm will return the schedule S and

terminate when there is no remaining unscheduled task. S

consists of the summation of the execution time of the tasks

also known as makespan and total monetary.
From Fig. 1 , the rank upward is computed by traversing

the task graph upward [44], starting from the exit task. For the

exit task, the upward rank value is calculated by:

 �=
NO(
PQ<) = @PQ< (14)

Where @PQ< is the average computation cost of task ni and

Ranku is the length of the critical path from task ni to the exit

task, including the computation cost of task ni.

2) Time complexity: In this subsection, we analyze the time

complexity of the two proposed variants. We let n represent

the number of tasks made-up of a workflow, and m represent
the number of possible combinations of CPU frequencies and

computing resources that can exist according to the given

parameter settings.

The time complexity of HEFT is known to be O(n2 x m)

and the performance of CFMAX is O(n2 x (m + n)) shown in

[45]. Like HEFT, the proposed algorithm transforms the
computing resources and their frequencies into a single unity,

and then the search happens in a big size m than the one of

HEFT. So the complexity of MCD is O(n2 x m), while the one

of MCED is O((n2 x m) + m) where the second m comes from

the search of maximum difference value using both cost and

execution.

TABLE IV
CPU FREQUENCY PARAMETER SETTINGS

CR fmax fmin f step

1 4200 2100 300
2 2200 1200 200

3 3600 2400 300
4 3000 2000 200
5 4200 2100 300

TABLE V
WORKFLOWS SIZE

Workflow Small Medium Large

Montage 25 100 1000

Inspiral 30 100 1000

TABLE VI

PRICING MODELS CONFIGURATION PARAMETERS

Pricing Model Cmin ($) R ($)

Linear 9.24*10-8 3.30*10-8

SubLinear 2.78*10-8 1.2*10-8

SuperLinear 9.24*10-8 4.44*10-8

III. RESULTS AND DISCUSSION

This section describes in detail the environment used to

develop this algorithm, the parameter settings considered in

the algorithm, the type of workflow considered, the type of

experiments we carried out, and then discusses the results

found compared to other existing state-of-the-art algorithms.

A. Evaluation Settings.

The proposed algorithm was implemented and simulated

using JAVA. Each considered computing resource CR can
operate on different CPU frequencies between the maximum

fmax and minimum fmin, and the change rate is governed by

step frequency fset. Table IV demonstrates the considered CR

and CPU frequency settings.

We considered the three pricing models: linear, super

linear, and sublinear. More details about those pricing models

can be found in [43]. Despite many workflow types, in this

paper, we considered only two of them(MONTAGE and

INSPIRAL [46]). Different from some of the current state-of-

the-art, in this paper, we considered two workflows with

different sizes, as shown in Table V.
We downloaded the DAX file for each workflow and size

from the Pegasus workflow generator website [46]. Those

files are in our simulation as the inputs to the proposed

algorithm. DAX files contain the tasks' expected execution

time expressed in Table I. It also contains data to be

transmitted among every two dependent tasks. Besides, there

are two parameters Cmin and �used in Equations 2,4 and 5

whose values presented in Table VI, and were previously used

in [43]. Those values are selected to estimate the monthly

charges of ElasticHosts for the provisioning of CR.

B. Performance Impacted by the Workflow Size

To evaluate the performance of the proposed algorithm, we

considered several CR in the range between 5 and 35

inclusive. Although our algorithm is not constrained, we used

different deadline ratios dr to monitor the competing

algorithms' deadlines and to which extent of the deadline our

algorithm can be compared to those algorithms. We

considered dr=7.

1) Small sized workflow: The cost results of Montage are
substantially smaller than the cost results of Inspiral, based on

the findings of a small-sized workflow. In comparison to

HEFT, all of the algorithms had lower monetary costs. The

MCD obtains lower cost values than CFMAX and CCR when

the workflow is Montage. However, when the pricing model

is Superlinear and Sublinear, MCED cost results are lower

than CFMAX and CCR. Furthermore, when the pricing model

is super linear, there is no discernible difference between the

cost results given by the competing algorithms for all of the

CR tested for both workflows. In all scenarios and workflows,

it is also obvious that when the number of CR is 10, the

algorithm generates smaller cost values. There is no

376

discernible difference between the cost results produced by

our algorithms and those produced by CFMAX and CCR

when the workflow is Inspiral. In terms of makespan, one can

conclude that the makespan results of all the competing

algorithms are within the deadline. The makespan results of

HEFT are always lower than all other algorithms because this

is a baseline algorithm that focuses on makespan

optimization. When the pricing model is linear and workflows

are Montage and Inspiral, MCED generates fewer makespan

values than other algorithms. This case also appears in some

cases (CR= [20 to 35]) when the pricing model is sublinear
and workflow is Montage. Other results show that CFMAX

and CCR have lower makespan than those generated by MCD

and MCED.

2) Medium-size workflow: Based on the evaluation
results of a medium-sized workflow, one can conclude that

the cost results of Montage are much smaller than the cost

results of Inspiral as in small-sized workflows. All the

algorithms achieved less monetary cost compared to HEFT.

When the workflow is Montage, the MCD achieves lower cost

values than CFMAX and CCR. However, MCED cost results

are lower than CFMAX and CCR only when the pricing
model is Superlinear and sublinear. The same as in small-

sized workflow, for both tested workflows, when the pricing

model is super linear, there is no visible difference between

the cost results generated by the competing algorithms for all

the number of CR tested. It is also visible that when the

number of CR=10, the algorithm generates fewer cost values

in all cases and workflows. When the workflow is Inspiral,

there is no visible difference between the cost results

produced by our algorithms and those produced by CFMAX

and CCR for the superlinear pricing model. In terms of

makespan, we can conclude that the makespan results of the
proposed algorithm start missing the deadline except when

CR=5. It is worth mentioning that Inspiral requires high

makespan than the one required by Montage.

3) Big-size workflow: Based on the evaluation results of
a big-sized workflow, one can conclude that cost results of

Montage are still much smaller than cost results of Inspiral as

in small-sized and medium-sized workflows. All the

algorithms achieved less monetary cost compared to HEFT as

it is designed for makespan optimization. It is also still visible

that when the number of CR=5, the algorithm generates fewer

cost values in all cases and workflows. When the workflow is

Montage, there is no visible difference between the cost
results produced by our algorithms and the one produced by

CFMAX and CCR for the super linear pricing model. The

same results appear for Inspiral when the pricing model is

sublinear for CR= [30 to 35], super linear for CR= [5 to 25].

In terms of makespan, one can conclude that the makespan

results of the proposed algorithm misses the deadline except

when CR= [5 to 10] for Montage, and when CR=5 for

Inspiral. The distance between the deadline and the makespan

is too big at this time because the workflow size is also big.

C. Run-time

We also studied the time overhead required by the

proposed algorithm. Using an Intel(R) Core (TM) i3-2350M

CPU @2.30GHz 2.30 GHz laptop and 4GB memory. We run

the algorithm 100 times and collect the average time as the

run-time result for both Montage and Inspiral. The run-time

result for both Montage and Inspiral are shown in Fig. 3 and

Fig. 4. It is easily visible that the run-time of the proposed

algorithm is always low compared to the one of CFMAX and

CCR.

Fig. 3 Montage run-time: 100 tasks

Fig. 4 Inspiral run-time: 100 tasks

Although our proposed algorithm is not constrained, all its

makespan results are within the deadline for small-sized

workflow applications. When the number of computing

resources is small (cr=5) the proposed algorithm also

performs well in terms of makespan and cost. The cost

reduction rate of the proposed algorithm is not too high

compared to the cost results of CFMAX and CCR, but with

its low complexity and low run-time, this reduction rate is

acceptable.

IV. CONCLUSION

In this paper, the problem of minimizing monetary cost for

the execution of non-constrained workflows is considered,

and an algorithm that selects a CR and tunes CPU frequency

for each task is proposed to reduce the overall user cost. The

evaluation results suggest that the proposed algorithm can

significantly perform well for small-sized workflow and a

small number of CR. Future works could consider the

377

inclusion of the deadline, energy and security will be some of

the crucial problems to be taken care of. Their optimization

may also be considered.

REFERENCES

[1] N. Mansouri, R. Ghafari, and B. M. H. Zade, "Cloud computing

simulators: A comprehensive review," Simul. Model. Pract. Theory,

vol. 104, p. 102144, 2020, doi: 10.1016/j.simpat.2020.102144.

[2] C. Tshimanga, K. Emmanuel, S. Ntumba, B. Eugène, and M. Mukendi,

"A multi ‑ criteria decision making heuristic for workflow scheduling

in cloud computing environment," J. Supercomput., no. 0123456789,

2022, doi: 10.1007/s11227-022-04677-z.

[3] Y. Liu, A. Soroka, L. Han, J. Jian, and M. Tang, "Cloud-based big data

analytics for customer insight-driven design innovation in SMEs," Int.

J. Inf. Manage., vol. 51, no. November, pp. 0–1, 2020, doi:

10.1016/j.ijinfomgt.2019.11.002.

[4] Y. Gu and C. Budati, "Energy-aware workflow scheduling and

optimization in clouds using bat algorithm," Futur. Gener. Comput.

Syst., vol. 113, pp. 106–112, 2020, doi: 10.1016/j.future.2020.06.031.

[5] S. Azizi, M. Zandsalimi, and D. Li, "An energy-efficient algorithm for

virtual machine placement optimization in cloud data centers," Cluster

Comput., vol. 23, no. 4, pp. 3421–3434, 2020, doi: 10.1007/s10586-

020-03096-0.

[6] L. Kong, J. Pepe, B. Mapetu, and Z. Chen, "Heuristic Load Balancing

Based Zero Imbalance Mechanism in Cloud Computing," J. Grid

Comput., vol. 18, no 1, pp. 123–148, 2019, [Online]. Available:

doi.org/10.1007/s10723-019-09486-y

[7] A. Pujiyanta and L. Edi, "Job Scheduling Strategies in Grid

Computing," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 3, pp.

1293–1300, 2022.

[8] P. Paknejad, R. Khorsand, and M. Ramezanpour, "Chaotic improved

PICEA-g-based multi-objective optimization for workflow scheduling

in cloud environment," Futur. Gener. Comput. Syst., vol. 117, pp. 12–

28, 2021, doi: 10.1016/j.future.2020.11.002.

[9] "CloudSigma. Accessed on: , [Online]. Available:

https://www.cloudsigma.com/us/.".

[10] H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer,

and N. Rasouli, "GRP-HEFT: A Budget-Constrained Resource

Provisioning Scheme for Workflow Scheduling in IaaS Clouds," IEEE

Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1239–1254, 2020, doi:

10.1109/TPDS.2019.2961098.

[11] V. Kelefouras and K. Djemame, "Workflow simulation and multi-

threading aware task scheduling for heterogeneous computing," J.

Parallel Distrib. Comput., vol. 168, pp. 17–32, 2022, doi:

10.1016/j.jpdc.2022.05.011.

[12] S. Saeedi, R. Khorsand, S. Ghandi Bidgoli, and M. Ramezanpour,

"Improved many-objective particle swarm optimization algorithm for

scientific workflow scheduling in cloud computing," Comput. Ind.

Eng., vol. 147, p. 106649, 2020, doi: 10.1016/j.cie.2020.106649.

[13] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, "Cost and

makespan-aware workflow scheduling in hybrid clouds," J. Syst.

Archit., vol. 100, 2019, doi: 10.1016/j.sysarc.2019.08.004.

[14] F. Jauro, H. Chiroma, A. Y. Gital, M. Almutairi, S. M. Abdulhamid,

and J. H. Abawajy, "Deep learning architectures in emerging cloud

computing architectures: Recent development, challenges and next

research trend," Appl. Soft Comput. J., vol. 96, p. 106582, 2020, doi:

10.1016/j.asoc.2020.106582.

[15] B. Liang, X. Dong, Y. Wang, and X. Zhang, "A low-power task

scheduling algorithm for heterogeneous cloud computing," J.

Supercomput., vol. 76, no. 9, pp. 7290–7314, 2020, doi:

10.1007/s11227-020-03163-8.

[16] E. Bugingo, D. Zhang, Z. Chen, and W. Zheng, "Towards

decomposition based multi-objective workflow scheduling for big data

processing in clouds," Cluster Comput., vol. 24, no. 1, pp. 115–139,

2021, doi: 10.1007/s10586-020-03208-w.

[17] X. Guo, "Multi-objective task scheduling optimization in cloud

computing based on fuzzy self-defense algorithm," Alexandria Eng. J.,

vol. 60, no. 6, pp. 5603–5609, 2021, doi: 10.1016/j.aej.2021.04.051.

[18] J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni, "Cost-

time trade-off efficient workflow scheduling in cloud," Simul. Model.

Pract. Theory, vol. 103, no. October 2019, p. 102107, 2020, doi:

10.1016/j.simpat.2020.102107.

[19] Y. Hao, J. Cao, Q. Wang, and J. Du, "Energy-aware scheduling in edge

computing with a clustering method," Futur. Gener. Comput. Syst.,

vol. 117, pp. 259–272, 2021, doi: 10.1016/j.future.2020.11.029.

[20] A. Mohammadzadeh, M. Masdari, and F. S. Gharehchopogh, Energy

and Cost-Aware Workflow Scheduling in Cloud Computing Data

Centers Using a Multi-objective Optimization Algorithm, vol. 29, no.

3. Springer US, 2021. doi: 10.1007/s10922-021-09599-4.

[21] K. Mishra and S. K. Majhi, "A binary Bird Swarm Optimization based

load balancing algorithm for cloud computing environment," Open

Comput. Sci., vol. 11, no. 1, pp. 146–160, 2021, doi: 10.1515/comp-

2020-0215.

[22] M. Sardaraz and M. Tahir, "A parallel multi-objective genetic

algorithm for scheduling scientific workflows in cloud computing,"

Int. J. Distrib. Sens. Networks, vol. 16, no. 8, 2020, doi:

10.1177/1550147720949142.

[23] C. G. Ralha, A. H. D. Mendes, L. A. Laranjeira, A. P. F. Araújo, and

A. C. M. A. Melo, "Multiagent system for dynamic resource

provisioning in cloud computing platforms," Futur. Gener. Comput.

Syst., vol. 94, pp. 80–96, 2019, doi: 10.1016/j.future.2018.09.050.

[24] A. Asghari and M. K. Sohrabi, "Combined use of coral reefs

optimization and multi-agent deep Q-network for energy-aware

resource provisioning in cloud data centers using DVFS technique,"

Cluster Comput., vol. 25, no. 1, pp. 119–140, 2022, doi:

10.1007/s10586-021-03368-3.

[25] P. S. Rawat, P. Dimri, P. Gupta, and G. P. Saroha, "Resource

provisioning in scalable cloud using bio-inspired artificial neural

network model," Appl. Soft Comput., vol. 99, p. 106876, 2021, doi:

10.1016/j.asoc.2020.106876.

[26] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, "Minimizing

cost and makespan for workflow scheduling in cloud using fuzzy

dominance sort based HEFT," Futur. Gener. Comput. Syst., vol. 93,

pp. 278–289, 2019, doi: 10.1016/j.future.2018.10.046.

[27] T. A. L. Genez, I. Pietri, R. Sakellariou, L. F. Bittencourt, and E. R.

M. Madeira, "A Particle Swarm Optimization Approach for Workflow

Scheduling on Cloud Resources Priced by CPU Frequency," Proc. -

2015 IEEE/ACM 8th Int. Conf. Util. Cloud Comput. UCC 2015, pp.

237–241, 2015, doi: 10.1109/UCC.2015.40.

[28] W. Ahmad, B. Alam, S. Ahuja, and S. Malik, "A dynamic VM

provisioning and de-provisioning based cost-efficient deadline-aware

scheduling algorithm for Big Data workflow applications in a cloud

environment," Cluster Comput., vol. 24, no. 1, pp. 249–278, 2021, doi:

10.1007/s10586-020-03100-7.

[29] N. Rizvi and D. Ramesh, "Fair budget constrained workflow

scheduling approach for heterogeneous clouds," Cluster Comput., vol.

23, no. 4, pp. 3185–3201, 2020, doi: 10.1007/s10586-020-03079-1.

[30] T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, "Time-

discretization for speeding-up scheduling of deadline-constrained

workflows in clouds," Futur. Gener. Comput. Syst., vol. 107, pp.

1116–1129, 2020, doi: 10.1016/j.future.2017.07.061.

[31] N. Rizvi and D. Ramesh, "HBDCWS: heuristic-based budget and

deadline constrained workflow scheduling approach for

heterogeneous clouds," Soft Comput., vol. 24, no. 24, pp. 18971–

18990, 2020, doi: 10.1007/s00500-020-05127-9.

[32] E. B. Edwin, P. Umamaheswari, and M. R. Thanka, "An efficient and

improved multi-objective optimized replication management with

dynamic and cost aware strategies in cloud computing data center,"

Cluster Comput., vol. 22, no. s5, pp. 11119–11128, 2019, doi:

10.1007/s10586-017-1313-6.

[33] K. Kalyan Chakravarthi, L. Shyamala, and V. Vaidehi, "Budget aware

scheduling algorithm for workflow applications in IaaS clouds,"

Cluster Comput., vol. 23, no. 4, pp. 3405–3419, 2020, doi:

10.1007/s10586-020-03095-1.

[34] I. Pietri and R. Sakellariou, "Cost-efficient CPU provisioning for

scientific workflows on clouds," Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.

9512, pp. 49–64, 2016, doi: 10.1007/978-3-319-43177-2_4.

[35] E. Saeedizade and M. Ashtiani, DDBWS: a dynamic deadline and

budget-aware workflow scheduling algorithm in workflow-as-a-

service environments, vol. 77, no. 12. Springer US, 2021. doi:

10.1007/s11227-021-03858-6.

[36] N. Zhou, W. Lin, W. Feng, F. Shi, and X. Pang, "Budget-deadline

constrained approach for scientific workflows scheduling in a cloud

environment," Cluster Comput., vol. 1, 2020, doi: 10.1007/s10586-

020-03176-1.

[37] Y. Wen, J. Liu, W. Dou, X. Xu, B. Cao, and J. Chen, "Scheduling

workflows with privacy protection constraints for big data applications

on cloud," Futur. Gener. Comput. Syst., vol. 108, pp. 1084–1091,

2020, doi: 10.1016/j.future.2018.03.028.

[38] S. Yassa, R. Chelouah, H. Kadima, and B. Granado, "Multi-objective

approach for energy-aware workflow scheduling in cloud computing

378

environments," Sci. World J., vol. 2013, 2013, doi:

10.1155/2013/350934.

[39] G. Khojasteh Toussi and M. Naghibzadeh, "A divide and conquer

approach to deadline constrained cost-optimization workflow

scheduling for the cloud," Cluster Comput., vol. 24, no. 3, pp. 1711–

1733, 2021, doi: 10.1007/s10586-020-03223-x.

[40] Y. Pan et al., "A Novel Approach to Scheduling Workflows Upon

Cloud Resources with Fluctuating Performance," Mob. Networks

Appl., vol. 25, no. 2, pp. 690–700, 2020, doi: 10.1007/s11036-019-

01450-0.

[41] R. Valarmathi and T. Sheela, "Ranging and tuning based particle

swarm optimization with bat algorithm for task scheduling in cloud

computing," Cluster Comput., vol. 22, no. s5, pp. 11975–11988, 2019,

doi: 10.1007/s10586-017-1534-8.

[42] P. Lu, G. Zhang, Z. Zhu, X. Zhou, J. Sun, and J. Zhou, "A review of

cost and makespan-Aware workflow scheduling in clouds," J. Circuits,

Syst. Comput., vol. 28, no. 6, 2019, doi:

10.1142/S021812661930006X.

[43] W. Zheng, Y. Qin, E. Bugingo, D. Zhang, and J. Chen, "Cost

optimization for deadline-aware scheduling of big-data processing

jobs on clouds," Futur. Gener. Comput. Syst., vol. 82, pp. 244–255,

2018, doi: 10.1016/j.future.2017.12.004.

[44] H. Topcuoglu, S. Hariri, and M. Y. Wu, "Performance-effective and

low-complexity task scheduling for heterogeneous computing," IEEE

Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002, doi:

10.1109/71.993206.

[45] B. Emmanuel, Y. Qin, J. Wang, D. Zhang, and W. Zheng, "Cost

optimization heuristics for deadline constrained workflow scheduling

on clouds and their comparative evaluation," Concurr. Comput. Pract.

Exp., vol. 30, no. 20, pp. 1–14, 2018, doi: 10.1002/cpe.4762.

[46] "Workflow Galler. Accessed on: April 20, 2021, [Online]. Available:

https://confluence.pegasus.isi.edu/display/pegasus/." .

379

