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Abstract— Cloud computing possesses the merit of being a faster and cost-effective platform in terms of executing scientific workflow 

applications. Scientific workflow applications are found in different domains, such as security, astronomy, science, etc. They are 

represented by complex sizes, which makes them computationally intensive. The main key to the successful execution of scientific 

workflow applications lies in task resource mapping. However, task-resource mapping in a cloud environment is classified as NP-

complete. Finding a good schedule that satisfies users' quality of service requirements is still complicated. Even if different studies have 

been carried out to propose different algorithms that address this issue, there is still a big room for improvement. Some proposed 

algorithms focused on optimizing different objectives such as makespan, cost, and energy. Some of those studies fail to produce low-

time complexity and low-runtime scientific workflow scheduling algorithms. In this paper, we proposed a non-constrained, low-runtime, 

and low-time-complexity scientific workflow scheduling algorithm for cost minimization. Since the proposed algorithm is a list 

scheduling algorithm, its key success is properly selecting computing resources and its operating CPU frequency for each task using the 

maximum cost difference and minimum cost-execution difference from the mean. Our algorithm achieves almost the same cost 

reduction results as some of the current states of the arts while it is still low complex and uses less run-time.  
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I. INTRODUCTION

Cloud computing is a leading resource management system 

to run and manage high-performance applications from 

various natures. Such applications, including engineering, 

science, healthcare, finance, security, and business, require 

large amounts of data from diverse sources. It is 

straightforward that cloud applications require high-power 

computing resources, which are expensive to afford. Cloud 
computing services are provided by cloud providers and 

consumed by cloud clients [1].  

Many users, individuals, and companies, now prefer to use 

cloud services over running their resources locally, as they 

provide high technical support with fewer implications for the 

users. To provide cloud services, a few concepts are 

combined. Most importantly, CPUs have been priced 

accordingly [2] and per application. Organizing its budget is 

still an ongoing concern in the cloud computing community, 

and providing the same cloud services with lower costs raises 
the bar. However, choosing a cost-effective configuration 

becomes even more difficult for users. The frequency 

required for a cost-effective configuration can vary in 

different scenarios, depending on the provider's pricing model 

and the characteristics of the application [3].  

As a result, cloud computing utilizing virtualization 

technology has emerged as a new paradigm for large-scale 

distributed computing [4]. One of the basic challenges is to 

schedule a large set of heterogeneous tasks while maintaining 

load balancing between different heterogeneous systems to 

meet the requirement between the cloud users and providers 
[5]. Metrics to consider in this case include makespan and 

service fees which should be minimized and resources that 

should be highly used [6], [7]. 

Though cloud computing services have multiple 

advantages over traditional systems (i.e., hosting their own 

resources locally), some issues need to be addressed. One 
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question lies in the security of the used information being 

hosted by a third party. In other words, it is not easy to protect 

large amounts of data when it is stored in the cloud. Another 

issue is the recovery of lost data in contingency.  

The issue considered in this work is that the resources 

required to manage and maintain user data in the cloud can be 

expensive. There are two principal factors considered when 

pricing cloud services. First, cloud providers aim to maximize 

profits, and cloud users need services of high quality at low 

prices. Second, cloud services are very competitive due to the 

high number of cloud providers. Other things that are taken 
into account to price cloud services include the cost of 

maintenance, age of services, and rate of depreciation. 

This paper aims to balance cloud provider's profit against 

customer's satisfaction. A new approach is proposed to 

optimize the prices of services for both cloud providers and 

customers. There are still challenges in designing algorithms 

to meet user quality of service (QoS), minimize service costs, 

and reduce processing and response times. Cloud computing 

provides users with different computing resources and CPU 

configuration settings for each resource that they must choose 

to run workflow applications within their QoS requirements. 
Researchers in the cloud community use workflow, a 

Directed Acyclic Graph (DAG), to model cloud-related 

problems. For the problem considered in this paper, DAG 

contains nodes with the following characteristics: expected 

execution time and the amount of data to be transferred 

between each pair of dependent nodes. Here, nodes are tasks 

that need to be executed. 

While provisioned computational resources allow parallel 

execution of independent tasks and execution of 

computationally intensive scientific workflow applications, 

mapping workflow tasks to resources remains an NP-
complete problem [8].  

It even becomes more complex when other characteristics, 

such as resource configuration settings, have to be taken care 

of. Some service providers, such as ElasticHosts and cloud-

sigma [9], charge the user based on the CPU frequency 

selected for each computing resource. Choosing a high CPU 

frequency for each task and allocating task resources 

appropriately will reduce the execution time of the workflow 

application but will increase the overall cost charged to the 

user. On the other hand, choosing the lowest CPU frequency 

can reduce the overall financial cost and increase the 

execution time.  
However, the cost of minimum CPU frequency is not 

efficient because the total cost depends on the execution time. 

Therefore, choosing the minimum CPU frequency for each 

selected computing resource is not cost-effective [10], but it 

can be achieved by careful selection of the CPU frequency 

between minimum and maximum. 

HEFT [11]  is a well-known list-scheduling algorithm 

known for its low complexity. Despite the improvement and 

modification made for this algorithm, it is initial [12] purpose 

was to minimize the makespan of the workflow. Even if 

HEFT has been proposed over a few decades, it still carries 
the flag of low complexity.  

Over the last few years, the problem of total monetary 

optimization has become the most difficult issue, resulting 

from the number of configuration settings the user can choose 

when performing each task in the workflow. Various studies 

have been conducted, and various algorithms have been 

proposed to find a solution to this problem [13].  

These algorithms find the best schedule within the user's 

deadline, but response time and complexity are still high. In 

this article, we have proposed an unconstrained list 

scheduling-based workflow scheduling algorithm with low 

response time and complexity.  

The proposed algorithm allows users to choose 

computational resources and their operational CPU 

frequencies to optimize the total economic cost of running 

workflow applications in a cloud computing environment. 
Two different scientific workflows (Montage and Inspiral) of 

different sizes (small, medium, and large) were used to 

evaluate the proposed algorithm through simulation. 

Considering the user's deadline, the results show that the 

proposed algorithm works well in a small workflow and with 

a small number of computing resources because it is within 

the deadline used. Considering the main objective (cost 

minimization), our previous work [2] has proposed three 

scheduling heuristics named WS-HEFT, MD-HEFT, and ED-

HEFT, and evaluated them by simulation. In this new paper, 

the main contributions are listed as follows: 
 we proposed a list scheduling-based workflow with low 

complexity and less response time. 

 instead of overlapping mutations, the proposed 

algorithm selects computing resources and their 

operating CPU frequencies based on the difference 

between the average cost and execution time of each 

task. 

 while the proposed algorithm is non-constrained, the 

simulation results have shown that the proposed 

algorithm participates even in deadline acceptance for 

any small-sized workflow type and a small number of 
computing resources. 

 like all compared state-of-the-art algorithms, the 

proposed algorithm reduced the cost over HEFT. 

Additionally, in many cases, the proposed algorithm 

even reduced the cost over the compared state-of-the-

art algorithms. 

Workflow scheduling and resource provisioning are the 

hottest topics in cloud computing [14]. Different studies have 

been carried out, and workflow scheduling and resource 

provisioning algorithms have been proposed to address the 

mentioned problems and deal with different optimization 

objectives in workflow scheduling and resource provisioning. 
Some scheduling algorithms focused on the minimization 

of the execution time of the whole workflow [15], [12], others 

concentrated on the total monetary minimization [16], [17], 

[18], while others concentrated on the optimization of the 

energy used by the computation resources during workflow 

execution [4], [19], [20]. Some studies proposed 

metaheuristics such as evolutionary algorithms and particle 

swarm optimization [21], [22] to tackle workflow scheduling 

problems. 

However, those meta-heuristics do not converge so 

quickly. Recent studies are using deep learning techniques 
[23], [24], [25] for task scheduling and resource provisioning. 

In terms of resource provisioning,  the most focused objective 

is the maximization of resource utilization [24], [25]. To 

minimize the makespan, HEFT [26] was proposed. In its 

nature, HEFT is a list-scheduling algorithm with low 

372



complexity. Given workflow tasks and computing resources, 

HEFT arranges tasks in a list according to their upwards rank 

values and then schedules one after another to the computing 

resource capable of minimizing task's execution time while 

considering the communication time of dependent tasks.  

This algorithm has been extended in various [12] ways to 

address different scheduling problems. Since HEFT manages 

to generate a fair schedule with low complexity, it has been 

widely employed in many other meta-heuristic algorithms 

[27], and in scheduling algorithms [10], [28], [29] to generate 

the initial schedule. Workflow scheduling can be based either 
on a single objective or a multi-objective. Most of the existing 

work has considered single objective programming, such as 

minimization of total monetary cost under different 

constraints like the deadline [30], [31]. However, real-world 

workflow scheduling sometimes requires more than one 

objective to satisfy the user's QoS requirement.  

Taking cost as one of those objectives [32] has developed 

multi-objective models to deal with workflow scheduling 

problems in the cloud environment. Most works done on 

workflow scheduling have considered time used as the only 

feature to use, charging the monetary cost [33]. However, 
ElasticHosts and cloud sigma [9] have proven that it is 

possible to charge the user based on the CPU frequency used 

to execute each task on a given computing resource.  

With this new schema, the problem that arises is the proper 

selection of computing resources and tuning its operating 

CPU frequency for each task so that the total monetary cost is 

minimized under a given constraint.  

To provide the solution to the problem of selecting a cost-

efficient CPU frequency configuration, Faragardi et al. [10] 

have assumed that the users are charged based on the CPU 

frequency allocated to each resource during the execution 
time of scientific workflow. Their works have considered the 

new pricing feature (CPU frequency). They have used a set of 

pricing models (linear, sublinear, and superlinear), which can 

be used to reduce costs. Their models and feature of 

consideration are reasonable for scientific workflow 

application processing. 

In conjunction with CSFS-Max and CSFS-Min [34], HEFT 

has been used to help the user to choose the best CPU 

frequency configuration setting for each. Saeedizade et al. 

[35], employed HEFT to perform optimization of makespan 

while satisfying the user's QoS requirement(budget 

constraints). HEFT has also been employed [36] as the 
makespan-aware scheduler. 

Note that the main objective of the algorithm proposed in 

this study [37] was to help users split a sum of frequency onto 

a fixed number of resources by giving each resource an 

identical frequency configuration so that the makespan can be 

reduced. CFMAX, CFMIN, and CCR  aim to minimize the 

total monetary cost the user must pay when scheduling his/her 

workflow application in a cloud computing environment [16]. 

All of those algorithms employed HEFT to generate their 

initial schedule.  

They remap the task to another computing resource and 
change the CPU frequency based on the initial schedule 

generated using HEFT. The algorithm [27] proposed 

employed HEFT for two reasons: task ranking technique and 

managing the deadline based on makespan. Considering this 

fact, the complexity of those algorithms increases because 

they have to wait for the schedule generated by HEFT before 

they start to produce their schedules. Moreover, this will also 

increase the run-time of those algorithms.  

Contrarily to those algorithms, the algorithm proposed in 

this paper employs only from HEFT task ranking technique 

and does task resources mapping based on the maximum and 

minimum cost-execution difference values from the mean 

value. As the proposed algorithm is not constrained, it is 

straightforward; no task remapping is needed, which reduces 

run-time. Most of the existing works have concentrated on the 

optimization of different constraints related to workflow 
scheduling by considering both at the same time or one of 

them [38], [39], [40], [41].   

Considering the budget constraint, proposed a bi-criteria 

priority particle swarm optimization (BPSO) algorithm to 

schedule workflow applications to cloud computing resources 

in a manner that optimizes both the monetary cost execution 

time related to scheduling user's workflow in a cloud 

environment. One-phase algorithm IC-PCP and two-phase 

PCP algorithm [42] employed a partial critical path algorithm 

and proposed polynomial time complexity suitable for large 

workflows. The objective of this work was to minimize the 
cost and execution of a workflow while still meeting the user's 

deadline.  

Like this group of algorithms, our algorithm focused on 

minimizing cost. Contrarily, they are constrained, while our 

algorithm is not constrained. Unlike all the research above, 

the algorithm presented in this paper assumes the presence of 

different cloud computing resources with different CPU 

frequency configuration settings. The selected computing 

resources and their operating CPU frequencies determine the 

monetary cost the user has to pay.  

This paper proposes a workflow scheduling algorithm that 
is less complex and has no run-time constraints. To achieve 

this, the algorithm uses the minimum and maximum cost and 

execution values generated by each CPU frequency 

configuration setting. 

II. MATERIALS AND METHOD 

This paper considered the problem of selecting a proper 

computing resource and tuning its CPU frequency so 

executing a task requires less monetary cost. Note that even if 
we considered an unconstrained system, the user's long 

execution time of the whole schedule is not acceptable. This 

section describes the considered application model, the 

parameter settings of the considered environment, and the 

cost model. 

A. Computing Resources Model 

In this paper, we described the cloud computing 

environment using a set of computing resources �� =��1, ��2, . . . , �
. Each of the �� configured with CPU 

frequency parameter settings in between maximum fmax and 

minimum fmin with a step CPU frequency fstep that is used to 

change the frequency from maximum to minimum frequency, 

as shown in Table II.  

Each computing resource is provisioned for the whole 

execution time of the user's application. However, the user is 

only charged based on the CPU frequency allocated to each ��during the execution time of the task ti that was mapped on 
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this CR. Moreover, no preemption is allowed, i.e., a CRp will 

be busy for the whole task being executed on it. 

 
Fig. 1  Example workflow 

TABLE I 
EXPECTED EXECUTION TIME OF EACH WORKFLOW'S TASK 

ID CR1 CR2 CR3 

1 30 12 16 

2 27 21 72 

3 4 36 6 

4 21 6 20 

5 20 16 81 

6 28 6 48 

7 35 14 7 

8 5 48 30 

9 48 2 64 

TABLE II 
EXAMPLE OF 3 CR'S CPU FREQUENCY PARAMETER SETTINGS 

CR fmax fmin fsep 

1 3000 1000 100 

2 2800 1400 200 

3 2700 1800 300 

B. Application Model 

Commonly, scientific workflow applications can be 

modeled as a Directed Acyclic Graph (DAG) as illustrated in 

Fig. 1, W=(T,D), where T depicts a set of workflow's 

interdependent tasks T={t1,t2,t3,…,tn} and D depicts a set of 

intermediate data between each two dependent tasks D=d(i,j) 

where ti is the predecessor (pred) of tj  which is the immediate 

successor (succ) of tj. Additionally, pred(ti) represent a set of 
all predecessor's task of tj, and succ(tj)represent a set of all 

successors task of ti.   A task without predecessor is known as 

entry task tentry, while the task without successors is known as 

an exit task texit.  

 

A simple representation of scientific workflow with 9 tasks 

is shown in Fig. 1. The example DAG have one tentry=1 and one 

texit=9. The node represents the task, the number in the node 

represents the task's id, while the data on the edges represent 

the data to be transferred between the two dependent tasks 

t(i,2). A successor task tj cannot start its execution before its 

predecessor ti finishes its execution. 

We assume the deterministic model of execution time and 

communication model. The tasks' expected execution time of 

sample DAG shown in Fig. 1 on three computing resources 
with maximum CPU frequency settings shown in Table II are 

presented in Table I.  

The execution time of a task ti on CPU frequency, which is 

not maximum, can be calculated as follows: 

 �,� = � × ( ����
��,����

) (1) 

where E(t,fmax) is the expected execution time of task ti at 

maximum CPU frequency fmax of computing resource crp as 

given in Table I: Expectation execution time of workflow 
shown in Fig. 1. 

The parameter β indicate the impact of the CPU frequency on 

the execution time of the task. β is in range of 0 and 1. By 

default it is set to 0.4 (β=0.4).  

We considered three pricing models: linear, super linear, 

and sublinear as in [2], [16], which were previously presented 

in [10]. Let suppose that C(cr,f) denotes the price charged per 

time unit's use of computing resource cr operating at CPU 

frequency fcr C(cr,fmin) denotes the price of cr at minimum 

frequency fmin, and �� denotes the coefficient used for each cr 

to tune the changing rate of price according to frequency. 
Then C(cr,f)  for linear pricing model is calculated as follows:  

 �(��,�) = �� ������� !
�� ! "(��,�� !

 (2) 

and for super linear pricing model, C(cr,f) is calculated as 

follows: 

 # = $%& ������� !
�� ! "  (3) 

 �(��,�) = �� '�1 + ������ !
�� ! × #")

(��,�� !
 (4) 

while for sublinear pricing model, C(cr,f)   can be calculated as 

follows: 

 �(��,�) = �� $%& �1 + ������ !
�� ! "(��,�� !

 (5) 

Let also TC(cr,f) be the cost of executing task ti to a computing 

resource cr operating at CPU frequency f and is calculated as 

follows: 

 *�(��,�) = �(��,�) × �(,�) (6) 

C. The Proposed Algorithm 

The first stage of our proposed algorithm is described in the 

figure below. 
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Fig. 2  Algorithm 1 of MCD and MCED 

In case there is still an unscheduled task in the list, 

algorithm 1 will call algorithm 2 within Table III below, from 

point A. 

TABLE III 
ALGORITHM 2: SECOND STAGE OF MCD AND MCED 

Step 1 : Create �+,-. = /and *�+,-. = / 

   Calculate �(,��,�) and *�(,��,�)using 

Equation 1 and 6 respectively. �+,-. ← �(,��,�),*�+,-. ← *�(,��,�) 
   Using EList and TCList Calculate the 

average AvE and AvTC. 

   Switch Variants 
Step 2 : Case (MCD) 
   Find the proper CR cr and its selected 

frequency f using Equation 8. 
   Break. 
Step 3 : Case (MCED) 
   Find the proper CR cr and its selected 

frequency f using Equation 13. 

   Break. 
Step 4  : Assign task t to the CR cr with frequency f that   

optimize *�(,��,�) 
 

Then, the total monetary cost of the taskcr mapping can be 

calculated as follows:  

 *%.�1 = ∑ *�(��,�)∀(,��)∈5  (7) 

where S is the schedule describing the mapping between tasks 

and computing resources as well as the operating CPU 

frequency of each computing resource for each task. 

Based on the aforementioned models and assumptions, the 

main objective of this research is to propose a workflow 
scheduling algorithm that generates a schedule by 

appropriately tuning the CPU frequency for each task on a 

selected computing resource so that the total cost of executing 

user's workflow is minimized. 

However, in this paper, we proposed an algorithm with two 

variants Minimum Cost Difference (MCD) and Maximum 

Cost-Execution Time Difference (MCED). The proposed 

algorithm uses Rank Upwards from HEFT and is calculated 

using Equation 14.  

In this section, we provide a detailed description of 

proposed variants and discuss the results of the proposed 

algorithm compared to two more algorithms [43]. The 

proposed algorithm's pseudo-code is shown in the first 
algorithm, and the main method concerning variants are 

shown in the second algorithm. 

1) Step by Step description: Normally, the proposed 

algorithm gets two inputs: The first input is a workflow W 

which consists of interdependent tasks with a deterministic 

model of execution time as shown in Table I (at maximum 

CPU frequency of the available CR) and communication time 

as shown on the edges in Fig. 1. The second input is a set of 

computing resources CR which also consists of several 

computing resources and their CPU frequency configuration 

settings as shown in Table II.  

The output of the algorithm is a schedule S, specifying the 

taskcr mapping with selected CPU frequency for each task 

scheduled on a given CR, and the generated E and C for each 

task. This algorithm consists of two main phases: Compute 

Rank upwards (Ranku) in the algorithm 1, and find the 

appropriate CR and its operating CPU frequency for each 
task. After getting the required input, the algorithm goes on 

with the computation of Rank upwards(Ranku) of all tasks by 

traversing W upward (starting from the exit task), and sorting 

the tasks in an ordered list based on their Ranku values. 

After the calculation of the Ranku, each task in the list 

order can be selected based on its position in the list for the 

preparation of the execution (Step 1 of algorithm 2). We 

create two empty lists: where EList is used to hold all possible 

execution times of task ti, TCList used to hold all possible 

execution monetary costs of task ti.  

For each computation resource in the given set with all its 
possible combinations of CPU frequency, we calculate E(t,cr,f) 

using Equation 1  and TC(t,cr,f) using Equation 6 and store those 

values in EList and TCList respectively. The next step is to 

calculate average execution time AvE and average execution 

cost AvTC.  

 6�7(��,�) = 8,
( 9:*� − *�+,-.<) (8) 

 = = 8=>(9:*� − *�+,-.) (9) 

 ?�7(��,�) = @ × � A�(BCDE�DEF<1 )
A�G<H(BCDE�DEF<1)" (10) 

 I = 8=>(9:� − �+,-.) (11) 

 ?�7(��,�) = @ × �J�(BCK�KF<1 )
J�G<H(KF<1) " (12) 

 6��7(��,�) = 8=>L?�7(��,�) + ?�7(��,�)M (13) 

where w is the parameter used to control the criteria 

importance. In this paper, we assume that both execution time 

and execution cost have equal importance, which makes 

w=0.5. 
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Once the AvTC and AvE are found (Step 1 of algorithm 2), 

the next step is to calculate the difference between the average 

and each element in the list. If the variant is MCD (Step 2 of 

algorithm 2), we use the Equation 8, and the cr and f will be 

the ones used to get this minimum difference value from the 

mean. If the variant is MCED (Step 3 of algorithm 2), we use 

the Equation 13, and the proper cr and f will be the ones used 

to get them the maximum difference value from the mean. 

Before using Equation 13, execution values and cost values 

are firstly normalized: Normalized execution cost difference 

NCD(cr,f) using Equation 10  and normalized execution time 
difference NED(cr,f) using Equation 12.  

To select the proper cr and f, task ti looks only on its 

predecessors. Once the cr and its operating CPU frequency f 

is found, the task ti will be scheduled for it, and the algorithm 

continues to the next task (Step 4 of algorithm 2). Note that 

after finding a proper cr with its associate CPU frequency f 

for task ti, both EList and TCList are reset to prepare the next 

task t(i+1). The algorithm will return the schedule S and 

terminate when there is no remaining unscheduled task. S 

consists of the summation of the execution time of the tasks 

also known as makespan and total monetary. 
From  Fig. 1 , the rank upward  is computed by traversing 

the task graph upward [44], starting from the exit task. For the 

exit task, the upward rank value is calculated by: 

 �=
NO(
PQ<) = @PQ< (14) 

Where @PQ< is the average computation cost of task ni and 

Ranku is the length of the critical path from task ni to the exit 

task, including the computation cost of task ni. 

2) Time complexity: In this subsection, we analyze the time 

complexity of the two proposed variants. We let n represent 

the number of tasks made-up of a workflow, and m represent 
the number of possible combinations of CPU frequencies and 

computing resources that can exist according to the given 

parameter settings.  

The time complexity of  HEFT is known to be O(n2 x m) 

and the performance of CFMAX is O(n2 x (m + n)) shown in 

[45]. Like HEFT, the proposed algorithm transforms the 
computing resources and their frequencies into a single unity, 

and then the search happens in a big size m than the one of 

HEFT. So the complexity of MCD is O(n2 x m), while the one 

of MCED is O((n2 x m) + m) where the second m comes from 

the search of maximum difference value using both cost and 

execution. 

TABLE IV 
CPU FREQUENCY PARAMETER SETTINGS 

CR fmax fmin f step 

1 4200 2100 300 
2 2200 1200 200 

3 3600 2400 300 
4 3000 2000 200 
5 4200 2100 300 

TABLE V 
WORKFLOWS SIZE 

Workflow Small Medium Large 

Montage 25 100 1000 

Inspiral 30 100 1000 

TABLE VI 

PRICING MODELS CONFIGURATION PARAMETERS 

Pricing Model Cmin ($) R ($) 

Linear 9.24*10-8 3.30*10-8 

SubLinear 2.78*10-8 1.2*10-8 

SuperLinear 9.24*10-8 4.44*10-8 

III. RESULTS AND DISCUSSION 

This section describes in detail the environment used to 

develop this algorithm, the parameter settings considered in 

the algorithm, the type of workflow considered, the type of 

experiments we carried out, and then discusses the results 

found compared to other existing state-of-the-art algorithms. 

A. Evaluation Settings. 

The proposed algorithm was implemented and simulated 

using JAVA. Each considered computing resource CR can 
operate on different CPU frequencies between the maximum 

fmax and minimum fmin, and the change rate is governed by 

step frequency fset. Table IV demonstrates the considered CR 

and CPU frequency settings.  

We considered the three pricing models: linear, super 

linear, and sublinear. More details about those pricing models 

can be found in [43]. Despite many workflow types, in this 

paper, we considered only two of them(MONTAGE and 

INSPIRAL [46]). Different from some of the current state-of-

the-art, in this paper, we considered two workflows with 

different sizes, as shown in Table V. 
We downloaded the DAX file for each workflow and size 

from the Pegasus workflow generator website [46]. Those 

files are in our simulation as the inputs to the proposed 

algorithm. DAX files contain the tasks' expected execution 

time expressed in Table I. It also contains data to be 

transmitted among every two dependent tasks. Besides, there 

are two parameters Cmin and �used in Equations 2,4 and 5 

whose values presented in Table VI, and were previously used 

in [43]. Those values are selected to estimate the monthly 

charges of ElasticHosts for the provisioning of CR. 

B. Performance Impacted by the Workflow Size 

To evaluate the performance of the proposed algorithm, we 

considered several CR in the range between 5 and 35 

inclusive. Although our algorithm is not constrained, we used 

different deadline ratios dr to monitor the competing 

algorithms' deadlines and to which extent of the deadline our 

algorithm can be compared to those algorithms. We 

considered dr=7. 

1) Small sized workflow: The cost results of Montage are 
substantially smaller than the cost results of Inspiral, based on 

the findings of a small-sized workflow. In comparison to 

HEFT, all of the algorithms had lower monetary costs. The 

MCD obtains lower cost values than CFMAX and CCR when 

the workflow is Montage. However, when the pricing model 

is Superlinear and Sublinear, MCED cost results are lower 

than CFMAX and CCR. Furthermore, when the pricing model 

is super linear, there is no discernible difference between the 

cost results given by the competing algorithms for all of the 

CR tested for both workflows. In all scenarios and workflows, 

it is also obvious that when the number of CR is 10, the 

algorithm generates smaller cost values. There is no 
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discernible difference between the cost results produced by 

our algorithms and those produced by CFMAX and CCR 

when the workflow is Inspiral. In terms of makespan, one can 

conclude that the makespan results of all the competing 

algorithms are within the deadline. The makespan results of 

HEFT are always lower than all other algorithms because this 

is a baseline algorithm that focuses on makespan 

optimization. When the pricing model is linear and workflows 

are Montage and Inspiral, MCED generates fewer makespan 

values than other algorithms. This case also appears in some 

cases (CR= [20 to 35]) when the pricing model is sublinear 
and workflow is Montage. Other results show that CFMAX 

and CCR have lower makespan than those generated by MCD 

and MCED. 

2) Medium-size workflow: Based on the evaluation 
results of a medium-sized workflow, one can conclude that 

the cost results of Montage are much smaller than the cost 

results of Inspiral as in small-sized workflows. All the 

algorithms achieved less monetary cost compared to HEFT. 

When the workflow is Montage, the MCD achieves lower cost 

values than CFMAX and CCR. However, MCED cost results 

are lower than CFMAX and CCR only when the pricing 
model is Superlinear and sublinear. The same as in small-

sized workflow, for both tested workflows, when the pricing 

model is super linear, there is no visible difference between 

the cost results generated by the competing algorithms for all 

the number of CR tested. It is also visible that when the 

number of CR=10, the algorithm generates fewer cost values 

in all cases and workflows. When the workflow is Inspiral, 

there is no visible difference between the cost results 

produced by our algorithms and those produced by CFMAX 

and CCR for the superlinear pricing model. In terms of 

makespan, we can conclude that the makespan results of the 
proposed algorithm start missing the deadline except when 

CR=5. It is worth mentioning that Inspiral requires high 

makespan than the one required by Montage. 

3) Big-size workflow: Based on the evaluation results of 
a big-sized workflow, one can conclude that cost results of 

Montage are still much smaller than cost results of Inspiral as 

in small-sized and medium-sized workflows. All the 

algorithms achieved less monetary cost compared to HEFT as 

it is designed for makespan optimization. It is also still visible 

that when the number of CR=5, the algorithm generates fewer 

cost values in all cases and workflows. When the workflow is 

Montage, there is no visible difference between the cost 
results produced by our algorithms and the one produced by 

CFMAX and CCR for the super linear pricing model. The 

same results appear for Inspiral when the pricing model is 

sublinear for CR= [30 to 35], super linear for CR= [5 to 25]. 

In terms of makespan, one can conclude that the makespan 

results of the proposed algorithm misses the deadline except 

when CR= [5 to 10] for Montage, and when CR=5 for 

Inspiral. The distance between the deadline and the makespan 

is too big at this time because the workflow size is also big. 

C. Run-time 

We also studied the time overhead required by the 

proposed algorithm. Using an Intel(R) Core (TM) i3-2350M 

CPU @2.30GHz 2.30 GHz laptop and 4GB memory. We run 

the algorithm 100 times and collect the average time as the 

run-time result for both Montage and Inspiral. The run-time 

result for both Montage and Inspiral are shown in Fig. 3 and 

Fig. 4. It is easily visible that the run-time of the proposed 

algorithm is always low compared to the one of CFMAX and 

CCR. 

 

 
Fig. 3  Montage run-time: 100 tasks 

 
Fig. 4  Inspiral run-time: 100 tasks 

Although our proposed algorithm is not constrained, all its 

makespan results are within the deadline for small-sized 

workflow applications. When the number of computing 

resources is small (cr=5) the proposed algorithm also 

performs well in terms of makespan and cost. The cost 

reduction rate of the proposed algorithm is not too high 

compared to the cost results of CFMAX and CCR, but with 

its low complexity and low run-time, this reduction rate is 

acceptable. 

IV. CONCLUSION 

In this paper, the problem of minimizing monetary cost for 

the execution of non-constrained workflows is considered, 

and an algorithm that selects a CR and tunes CPU frequency 

for each task is proposed to reduce the overall user cost. The 

evaluation results suggest that the proposed algorithm can 

significantly perform well for small-sized workflow and a 

small number of CR. Future works could consider the 
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inclusion of the deadline, energy and security will be some of 

the crucial problems to be taken care of. Their optimization 

may also be considered. 
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