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Abstract—Recently, connected objects have been the subject of cyber-attacks at an alarming rate. These devices connected to a vast 

volume data stream have insufficient resources and are not manually configured. Typically, attacks target the usability and exploitation 

of these vulnerabilities. These attacks make the mission of traditional intrusion detection (IDS) systems more challenging to limit 

intrusion threats. Machine learning (ML) can solve this problem, mainly since the Internet of Things (IoT) can collect and transfer 

massive amounts of data. This data is the essence of ML, enabling it to build security and privacy models which can predict or classify 

malicious nodes and network traffic in the IoT. This article looks at the more common forms of cyberattacks, which could lead to an 

IoT system failure, as well as a countermeasure capable of limiting their damage. First, we present a general review of IDS and these 

evaluation measures as a solution to limit these attacks. After reviewing the ML domain and these often-used algorithms, on which the 

IDS can be based to accomplish its mission, we examine the different datasets researchers use to form their IDS. Finally, we look at a 

practical example of using Python to evaluate ML methods on a current dataset (TON IoT). The research is based on previous research 

on the topic. The results enable us to choose the appropriate algorithms for the IDS to achieve the best binary and multi-classification 

based on the evaluation parameters.  
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I. INTRODUCTION

IoT systems can now be found in businesses worldwide, as 

well as in a variety of other aspects of our daily life. IoT 

devices will continue to grow exponentially in response to 

global market demand. It is defined as a collection of objects 

with electronic components, software, sensors, and actuators 

linked over the Internet to assemble and transfer data using 
various communication protocols, resulting in a network of 

intelligent machines [1]. 

IoT devices can be found in a variety of settings, including 

smart cities, smart homes, medical equipment, and smart cars. 

IoT technologies generate massive amounts of data. This 

information is crucial to artificial intelligence systems, and it 

can assist everyone with a variety of tasks. However, the 

growth of IoT applications has brought in a slew of issues. 

IoT security is one of them that cannot be neglected. Thus, 

each layer of the IoT architecture can represent several 

vulnerabilities that can be exploited to launch a vast panoply 

of attacks. For example, an attacker can collect data that is 

classified as confidential from any important organization [2]. 

Since the devices are put in different locations, there are 

environmental risks such as wind, snow, rain, or accidental 

damage. In addition, saved data can be hijacked through a 

physical attack, unauthorized access (identity theft, ...), 

connectivity (poor quality of service, ...), and data exchange 

(shut-down due to network flooding, ...). Because of the 

scarcity of resources, communications are easy to trace and 

intercept (ciphertext attack, Man In The Middle (MITM)). 

Protocol attacks target resource consumption and network 

topology using malicious nodes. Furthermore, the application 
layer is prone to bugs, particularly insecure login 

identifications. Viruses, worms, Trojans, and cloud 

applications may be infected [3].  

ML is a powerful tool for prospecting records to discover 

connected objects' usual and distinctive behaviors when 

communicating with each other or the outside. Indeed, the 

assembled data of each IoT object can be processed to identify 

the normal pattern of these interactions and the unusual 

behavior of these smart devices at an early stage. 

Furthermore, ML processes can predict future attacks by 
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training from existing examples, as these are, in most cases, 

evolutions of preceding attacks [4]. The success of ML 

practices in fraud detection, text sorting, and image 

understanding, where ML algorithms can be used to predict 

or classify the subjects under study, has prompted security 

academics to use these procedures for IDSs to develop IoT 

security [5]. These algorithms are provided data from training 

datasets with benign and malicious instances. By picking a 

recent and specialized IoT dataset to perform multi-

dimensional classification tests, our goal in this research is to 
conduct a theoretical and practical study of ML-based IDS to 

adopt the best ML algorithms to recognize attacks on IoT 

networks. 

The remainder of this work is outlined. We start with a 

detailed examination of the most common IoT attacks. Then 

we move on to a general examination of IDS and their 

evaluation metrics before moving on to the ML domain, 

which includes the most commonly used algorithms and the 

various datasets used in the literature. Finally, a practical 

example of IDS based on ML is presented. 

A. Attacks and Threats in IoT Systems 

IoT and Industrial IoT (IIoT) security threats can be studied 

in several ways [6], [7]. Surface attack: Classifies attacks 

according to IoT architecture layers: Physical layer, networks 

layer, Internet layer, transport layer, and application layer. 

Effects of the attack: The effects of the attack concern the 

security and confidentiality of the data; they are classified as 

identification, authorization, accessibility, confidentiality, 

and integrity. 

Types of attacks: Physical attacks, in which the attacker has 
physical access to the device to manage or even disrupt the 

IoT service, and cyber-attacks, in which the attacker seeks to 

affect the exchange of information between connected 

objects, are split into passive and active attacks: Passive 

attacks are characterized by spying in the correspondence 

flows or the system, in other words, the authenticity and 

confidentiality of communications are compromised, the 

attacker can capture data from the instrument, and owners 

track and locate connected objects—for example, Traffic 

sniffing and Port scanning. While in Active threats, the attack 

is not limited to listening to communications, but it also has 
the power of modifying and even cutting through several 

techniques of disturbance and alteration, like DOS or DDOS 

attacks if they come from multiple resources. Masquerade 

attacks, Message replay [8]. 

The following section presents the most common cyber-

attacks in the IoT: 

1) DOS and DDoS attacks: DoS (Denial of Service) 

attacks are used to prohibit legal users from retrieving 

the service. It makes use of vulnerabilities in IoT systems 

with limited resources (bandwidth, CPU, energy, etc.) to flood 

them with a huge range of possible destructive data streams. 
This attack requires an Internet link and a solitary system to 

attack the object [9]. DDoS (Distributed DoS) attacks are 

similar to DoS attacks, with the exception that they are carried 

out by botnets comprising many systems in different places. 

These are networks of devices connected to the Internet and 

controlled by the attacker [10]. Due to the vast number of 

connected objects dispersed geographically, and their low 

levels of security, DDoS attacks are the most common in the 

IoT [11]. They can be carried out in several ways [3][10]: 

● HTTP flood, TCP SYN, and UDP or ICMP flood 

attacks: are based on a huge packet flooding the 
connection that the victim does not support to 

compromise its bandwidth and prevent legitimate users 

from accessing the servers [4][12]. 

● Teardrop Attack: This attack exploits the fragmentation 

principle of the IP protocol. The victim does not 

reassemble packets using the incompatible packet 

offset values they contain. This attack causes the 

systems to be planted [13]. 

● Ping of death: This type of attack pings the victim with 

IP packets whose size is greater than the maximum 

allowed by IP packets so that the victim cannot 
reassemble them [14]. 

● Smurf Attack: This attack is based on the use of 

broadcast servers to paralyze a network. The concept is 

to send a maximum flow of ICMP ECHO (ping) 

packets to the broadcast addresses. Each ping contains 

the victim's spoofed address [15]. 

2) Keylogging: are recorders of activities performed by a 

user. The goal is to not only track current work but also to 

retrieve sensitive credentials. The operating mode of the 

keyloggers is as follows: They are installed remotely via a 

Trojan horse in the connected object, then information theft 

malware allows the missions to be completed. They are, 

therefore, useful in cases of eavesdropping [16]. 

3) Probing Attacks: Also called reconnaissance or 

Scanning attacks. This attack combines the operating system 

(OS) scans and port scanning services. The scanner allows an 

attacker to observe all of a machine's open ports as well as the 

operating system that has been utilized; the result of this 

attack gives important information about the attacked system, 

for example, is it a connected object or not? It makes it 

possible to test various known flaws on OS and these services, 

to find vulnerabilities linked to this system [17]. 

4) Attacks on IoT protocols: IoT systems use lightweight 

protocols to deal with their resource limitations. These protocols 

are subject to attacks that exploit their internal structures to 

impact the communication channel as well as the communicated 

data. They can be classified into three groups [18]. 

Communication protocol-based attacks [19]: they try to 

exploit changes that occur during transitory phases between 
nodes during a communication. They include: 

● Confidentiality attacks: This protocol is vulnerable to 

spoofing, eavesdropping, and MITM attacks due to the 

lack of data encryption. 
● Authentication attacks: any node, including the 

malicious ones, can join the network and gain 

legitimate access because this protocol does not have 

an authentication system.  

●      Replay attack: If an intruder retrieves the packets, he 

can retransmit them as regular traffic but with changed 

content, as if a valid sender sent them. 
● Sniffing: when an attacker manages to capture all the 

packets circulating in the network (user identity and 

their passwords….). 

● Flooding attacks and the pre-shared key. 
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Attacks related to network protocols: they can happen 

during the connection phase. We find attacks such as [20]: 

● Wormhole: An attacker can create a low latency private 

link between two malicious network nodes to pass 

sensitive information, thus causing degradation of 

traffic and network resources and a disorder of its 

topology. 

● Sinkhole: In this case, the attacker draws all traffic to 

the compromised node, posing as the shortest route. 

● Blackhole: Similar to a sinkhole, however, this time, 
the compromised network point quietly makes the 

traffic disappear without notifying the source. 

● Selective Forward: Similar to the previous two, except 

that the attacker drops some particular packets from 

network traffic and forward all the others. 

5) Data-related attacks [21]: affect the security of 

transmitted data, for example :  

● Data exposure: Occurs when it is possible to 

inadvertently expose sensitive data (different from a 

data breach), due to insufficient protection, lack of 

encryption, or software vulnerabilities. 

● Data Exfiltration: These attacks usually infiltrate 

private networks and extract confidential data for 

sharing with unauthorized third parties or transfer them 

to unsecured systems. This kind of attack can lead to 

the loss of sensitive data like credit card authentication 

[16]. 
● Data Corruption occurs when an attacker manages to 

make the transmitted data unreadable, resulting in a 

DoS attack. 

● Data injection: The attacker can inject unwanted 

messages while communicating between two devices. 

B. Intrusion Detection System  

IDS are security mechanisms that aims to enhance the 

security of IoT systems. They are used to monitor nodes and 
network traffic in these systems. Intrusion is an undesirable or 

malevolent activity that is destructive to IoT systems. IDS can 

be in hardware or software form; it analyses the traffic and 

classifies the packets into legitimate users or intruders. It can 

detect known attacks, learned by their signatures, and 

unknown attacks by identifying abnormal network activities. 

The goal is to warn users of various attacks threatening their 

IoT networks, whether internal or external. Internal when the 

attacker is part of this network, while external when he is 

outside of it [22]. 

To build an IDS, it is necessary to develop three modules: 

the monitoring module, which monitors system resources and 
network traffic; the analysis and detection module, which 

corresponds to the core of the IDS and its role is to find attacks 

based on a; finally, the alarm module informs users of the 

presence of attacks [23]. The detection module is based on the 

following detection algorithms [22]: Anomaly, signature, 

specification, and hybrid approaches.  

1) Signature-based detection: IDS recognizes intruders 

based on attack signatures stored in the system database. This 

strategy is incredibly effective and rapid when it comes to 

identifying known attacks, but he finds it challenging to 

identify unusual attacks. 

2) Anomaly-based detection: This technique compares 

normal recorded behavior with abnormal network activities to 

this model. Here in this approach, the use of ML algorithms 

finds its place to allow the IDS to determine the consistent 

traffic activity pattern. Anomaly-based IDS successfully 

prevents unknown attacks, but it suffers from a precision issue 

as it often happens to place a legitimate data stream as 

malicious (false positive). 

3) Specification detection: this is similar to Anomaly 

detection, and therefore, in this case, the entered 

specifications are generated manually to assess typical 

behavior and deviations in an IoT system. This method 

reduces the high rate of false alarms. But it requires experts 

and rigorous work for each platform or environment. 

Inappropriate specifications result in a rate of true negatives 

and false positives and, therefore, a limited efficiency of the 

IDS in its mission. 

4) Hybrid detection: This form of IDS mixes signatures 

and anomalies techniques, resulting in increased accuracy; 
however, running the two modules in parallel needs additional 

computational resources. In reality, the hybrid model is the 

most frequent and practical because the attacks are discovered 

by the anomaly’s method, and then they are taken care of by 

the signature-based method. 

The anomalies method for IDS is most fit for ML 
algorithms because it is a classification problem between 

normal or abnormal states rather than multi-classification 

within different types of attacks. However, things are not as 

simple as they appear, as the ML algorithms can produce 

enough false positives, rendering IDS useless. It is, therefore, 

important to identify the models that produce the highest 

accuracy [24]. 

C. IDS for IoT systems-based ML  

ML is a powerful method of mining data collected from 

every part of the IoT system, which can be studied to 

determine normal patterns and early-stage malicious 

behaviors. Researchers have demonstrated the success of ML 

models for IDS, and they can cope with the ever-growing IoT 

network and numerous zero-day attacks. Moreover, ML 

methods could intelligently predict new unknown attacks 

from existing examples [25]. 

In this part, we'll go through the various ML techniques 

utilized in IDS for IoT and the many Datasets used in the 

IDS's learning phase. 

1) ML algorithms used in IDS: ML may be divided into 
two forms depending on the kinds of training data: supervised, 

where the input parameters have needed outputs, and 

unsupervised, where the data is unlabeled, with each category 

having many IDS models based on ML (Fig. 1). 

Naive Bayesian (NB), Decision Trees (DT), Support 
Vector Machines (SVM), k-Nearest Neighbor (KNN), 

Random Forest (RF), and Ensemble learning (EL) are 

examples of supervised techniques. 
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Fig. 1  Machine Learning Algorithms 

 

k-Means clustering, and Principal component analysis 

(PCA) are examples of unsupervised methods. The article 

[22] explains the intricacies of supervised algorithms and 

some recent work in this field. 

2) Datasets for IDS in IoT: Data is the most important 

component of machine learning, and a good Dataset is a basis 

for building a successful Machine Learning model. The data 
in this dataset should be large enough to reflect the problem 

we are looking to solve, as well as high-quality and clean of 

errors [26]. 

In this item, we will get diverse Datasets used in the 

literature to develop an IDS-based ML. KDD Cup99: is 
among the earliest datasets for IDS created in 1998 and then 

upgraded in 1999 by DARPA, which used a benchmarking 

environment for realistic and comprehensive IDS. This 

dataset has the advantage of initiating research in the field, but 

the attack records they contain are outdated and not specific 

to the IoT environment. It has 41 features and 411 033 372 

benign records in all plus the entirety of malicious records 

4,176,086, Bhati et al. [17] used this dataset. 

NSL-KDD: After removing redundant records from the 

KDD cup99 dataset in 2009, it was formed with 125,973 

records, 22 attacks for all training data and 22,544 

records, and 17 attacks for test data. This dataset includes 43 
features, and the attacks are organized in the 4th class but are 

not modern and specific to the IoT environment [27]. 

ISCX-2012: This dataset was created in 2012, according to 

the analysis of HTTP, IMAP, POP3, SMTP, FTP, and SSH 

protocols in real and labeled network traffic, contains various 

attack scenarios. The traffic recorded on the network lasted 

seven days. This dataset has five different kinds of threats, 

eight different features, 2,381,532 safe records, and 68,792 

bad records. This dataset fails to include modern network 

protocol traffic and is not special to IoT [28]. 

UNSWNB15: Created by Moustafa & Slay in 2015 [29], 
this dataset is a network intrusion packet capture (pcap), CSV 

file, pre-tagged as an attack or normal. It holds 2,540,044 

records in four CSV files: UNSW-NB151.csv, UNSW-

NB152.csv, UNSW-NB153.csv, and UNSW-NB154.csv. The 

training set contains 175,341 records, while the test set 

contains 82,332 records, separated into 2,218,761 normal 

records and 321,283 abnormal records. It covers 49 features 

and 9 attacks: DoS, Generic, Reconnaissance, Analysis, 

Fuzzers, Worms, Backdoors, Shellcode, and Exploits, but this 

dataset is not particular to IoT [30]. 

CICIDS2017: The NetFlowMeter network traffic flow 

analyzer recorded this dataset. The tool gathers 80 network 
traffic parameters using tagged streams based on HTTP, FTP, 

HTTPS, SSH, as well as email protocols. There are 2,273,097 

normal records and 557,646 abnormal records in PCAP 

format. The attacks implemented include, among others: 

DDoS, Portscan, XXS, SQL Injection…. It varies from 

previous datasets in that it contains large-scale modern attacks 

based on real users and complex functionality  [31], but this 

dataset includes missing and redundant data records, in 
addition to an imbalance issue that leads to low precision of 

the model, studied. Finally, it is not destined for IoT [32]. 

N-BaIoT: was produced to address the shortage of botnet 

datasets used for IoT. Traffic collection is done from 9 

authentically commercial IoT devices after injecting two 

types of attacks into these devices: Mirai and bashlite. It was 

created in 2018 and included 115 features, 17,936 benign and 

831,298 malicious records. This dataset is asymmetrical with 

malicious records, sufficiently larger than benign ones, and 

therefore requires pre-processing. It also lacks data logs from 

operating systems and telemetry data from IoT sensors, both 
of which are essential in determining the capacity of the IoT 

security systems under investigation to do their task [33]. 

Bot-IoT: was created by the UNSW Canberra Cyber Attack 

Center in 2019 in an environment that incorporates different 

types of botnet attacks and normal virtual IoT traffic. It 

provides full packet capture of data with appropriate labels in 

original file formats (.pcap) extension and (CSV) files. The 

dataset includes 45 features, 9,543 benign records, 73,360,900 

malicious records, and kinds of attacks like DoS, DDoS, 

Keylogging, data exfiltration, Service Scan, and OS scan [34]. 

This dataset has the advantage of integrating different IoT 
systems with various data characteristics and several botnet 

and malware attacks, but it does not have the Audit files of the 

operating systems or the hacking vectors against the IoT 

systems [5]. 

IoT-23: It is indeed a dataset of IoT device network traffic. 

Stratosphere Laboratory recently produced it for the 

advantage of Avast Software Prague. It is a large, real, and 

labeled dataset offered to researchers, combining benign IoT 

traffic and data from IoT malware infections. The following 

is a breakdown of the data collected between 2018 and 2019: 

3 recordings of realistic connected object network traffic and 

20 recordings of malware running on IoT nodes (pcap files). 
Data gathering is based on HTTP, IRC, Telnet, DHCP, DNS, 

and SSL protocols; despite that, we notice the lack of some 

current protocols like HTTPS. This dataset is organized as 

follows: 23 characteristics, 11 attack types captured, 

30,858,735 benign records, and 294,449,255 malicious 

records [35]. 

TON_IoT: It's a modern dataset developed from 

heterogeneous data sources of seven distinct IoT devices, 
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including a refrigerator, a weather sensor, a Modbus, a 

thermostat, a GPS, a garage door, and a motion light at 

UNSW Canberra. Its objective is to assist researchers with a 

set of data that may be used to verify the efficacy of 

cybersecurity systems that use machine learning, such as 

intrusion detection systems and privacy applications. The data 

comes from IoT and Industrial IoT (IIoT) service Telemetry 

and their characteristics, as well as logs from Operating 

systems (Windows 7 & 10, Ubuntu 14 & 18 TLS) plus 

Network IoT logs; (thus the name TON). That was created 
from a realistic model of a medium-sized network. This data 

was also labeled as regular or attack, and a category feature 

(marking attack subclasses for multi-classification problems). 

The records in this dataset are stored in seven different CSV 

file formats. It has 46 features and nine different types of 

cyberattacks: DoS, DDoS, ransomware, backdoor, XSS: 

Cross-site Scripting, password cracking, scanning, injection, 

and MITM. [33]. 

D. Performance Evaluation Metrics 

Machine learning for IDS requires a set of measures to 

evaluate the system's performance. An extensive set of 

measurements has been employed in several investigations. 

This study makes use of the accuracy, precision, recall, F1 

score, and ROC-AUC Score [36]:  

Accuracy: Although it is inefficient in some cases, accuracy 

is the most commonly employed of these measurements. It's 

the ratio of real intrusion detections to the overall number of 

predicted intrusions. It has the following formula: 

 Accuracy=
TP
FP

TN
FP
FN
TP
 (1) 

TN: True-negative.  FP: False-positive 

 

Precision is defined as the capacity to distinguish between 

intrusions and regular behavior. It's the proportion of 

intrusions that are successfully categorized to the overall 

number of entries. That is, how many of the findings projected 

as positive by an IDS are truly positive? It's computed by this 

equation [37]: 

 

Precision=
TP

TP+FP
 (2) 

Recall: it represents the number of correctly classified 

predictions produced from all positive instances in the dataset. 

This formula is used to figure it out: 

 �� � ��� =
TP

TP+FN
 (3) 

F1-score: To calculate the performance of an IDS, the F1 

score achieves a compromise between accuracy and recall. It 

gives the entire number of positive class predictions produced 

from the dataset's positive instances. It may be calculated 

using the following formula: 

 �1 − ����� = 2 ×
 ! "#$%$&'×(" #)**

 ! "#$%$&'
(" #)**
  (4) 

ROC-AUC Score: It reflects the efficiency function of the 

receptor, and it depicts the ratio between the rate of true 

positives (sensitivity) and the rate of false positives 

(specificity), and the anti-specificity (1 minus specificity). It 

is a measure of the performance of a binary classifier, and it 

illustrates how efficiently a model distinguishes negative and 

positive target classes [38]. 

E. Related Works  

To prepare for this work, we reviewed the papers presented 

in Table 1 according to their references, datasets, algorithms, 

and evaluation metrics. The goal is to take advantage of the 

different techniques used in our study subject and to compare 

our results with those of the works of literature. 

II. MATERIALS AND METHODS 

After presenting the theoretical part of our IDS based ML, 

we will move on to its implementation. For de materials, the 
suggested system performance analysis was built in Python 

3.7, and the tests were run on a PC with an Intel Core i5-5300 

CPU and 8 GB of RAM. For the methodology (Fig 2), we first 

select the dataset, then perform its pre-processing, split the 

data into 80% for training and the other for testing, and finally, 

use the ML algorithms for binary and multi-classification. 

TABLE I 

ARTICLES USED IN THE LITERATURE REVIEW 

Article Dataset Algorithms Evaluation metrics  

A. Alsaedi et al. 
[39] 

Network _Ton_IoT 
RF, NB, SVM, LR, KNN, LDA, 
CART, LSTM. 

Accuracy, Recall, Precision, F-measure. 

A. Churcher et 
al. [40] 

BoT_IoT 
ANN, Logistic _Regression, RF, 
SVM, DT, NB, KNN. 

Accuracy, F1- Score, Recall, Log Loss, ROC, AUC, 
Precision. 

A. Khraisa et al. 
[41] 

BoT_IoT 
C4.5, NB, RF, MLP, SVM, 
CART, KNN. 

Accuracy 

A. Alhowaide et 

al. [38] 

NSL-KDD, 

UNSWNB15, BoT_IoT, 
El 

Accuracy, ROC-AUC F-Score, Variance Efficiency 

Score. 
P. Kumar et al. 
[42] 

Network Ton-IoT DT, NB, RF, El. 
Confusion matrix, precision, F1-score, Accuracy. 
ROC curve, False alarm rate, Detection rate.  

Tim M. Booij et 
al. [43] 

Network _Ton-IoT GBM, RF, MLP. 
Accuracy, Mean Square Error, Gini measures, F1 
score, AUC. 

Nour Moustafa 
[33] 

Network _Ton-IoT 
GBM, RF, NB, Deep Neural 
Network 

ROC_curve, Confusion matrix. 
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Fig. 2  Diagram of the proposed IDS 

 

A. Input Dataset 

After studying different datasets in section I.C.2, we chose 

Ton-IoT dataset because it is a specific dataset for IoT. 

Recently, it contains two features for Attack: 'label,' 

categorized as normal or attack, as well as 'type,' denoting 

subclasses of threats for multi-class classification tasks, and 

diverse attack scenarios; in addition, it holds Telemetry data 

of IoT and Distinct dataset one per IoT device. Because of the 

heterogeneity (OS logs, pcap files, sensor data, and Bro logs) 
and relevance of the different sorts of attacks attempted on 

more varied IoT devices, Tim M. Booij et al.[43] proved that 

the ToN_IoT dataset is the best available collection for IoT 

network IDSs. Further, they found a good balance in the 

distribution of the functionalities between the test and training 

sets which is important for the performance of ML 

applications.   

1) Dataset Description: We only used part of the four parts 

of the TON_IoT dataset, i.e., the Train_Test_IoT dataset. The 

Features Description is followed in [39]. For example, Table 

2 gives these the IoT Fridge:  

 

TABLE II 

IOT FRIDGE ACTIVITY 

ID Feature Description 

1 Date Date of recording data. 
2 Time Time of recording data. 

3 
fridge_ 
temperature 

Temperature measurement of the 
connected object. 

4 
temp_ 
condition 

Temperature settings of a connected 
refrigerator, expressed by low or high 
according to a given threshold. 

5 Label 
Attack or normal where 1 specifies 
attacks and 0 specifies normal. 

6 Type 
Attack classes, like DDoS, ransomware, 
injection, password backdoor, normal… 

 

The attacks used in this dataset are Dos and DDOS, 
Scanning attacks, Injection attacks, XSS, Ransomware 

attacks, Backdoor attacks, Password and MITM attacks 

distributed as shown in Fig. 3. The Train_Test IoT records 

dataset comprises 396,119 malicious and benign data records 

[39], with 62% being normal (as shown in Fig. 3) and the rest 

being for various attacks. 

 
Fig. 3  Training and testing record statistics in Train_Test IoT records. 
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B. Pre-Processing:  

In this part, we started with data cleaning, such as filling 

in the null values. Then comes the normalization step for 

numeric features and coding for categorical data because the 

types of features in the TON_IoT dataset are varied 

(categorical and numeric at a different scale), the 

normalization is performed by the min-max method given 
by equation 5: 

 Xnorm =
X-Xmin

Xmax-Xmin
∈ 00,11 (5) 

Categorical data are coded with the integer of their index 

to transform them into numerical values (1,2,3, …). The 

Garage Door dataset has states open/close in their records, 

and the Motion_Light dataset has on/off in their records. In 

addition, all datasets have the features Label for the 

normal/attack state and Type for the attack classes. 

C. ML Algorithms for the classification: 

The TON_IoT dataset offers two output variables: For 

binary classification, it uses "label," while for multi-class 

classification, it uses "type". To achieve this classification, 

we use in this study the following classical algorithms: 

SVM, NB, KNN, DT, RF; and then we will combine these 

methods to improve the results of machine learning in 

Ensemble Learning (EL). 

Several EL methods are most popular: 

 Booster comprises the most common algorithms: 

AdaBoost and Gradient Boosting. 

 Vote consists of creating autonomous algorithms 

from the training data set. Then a voting classifier 
encapsulates the model by combining the predictions 

of these already-created models. 

 Stacking: after training each classifier based on the 

full training set, the classifiers are combined via a 

meta-classifier. The latter is adjusted according to the 

outputs of the meta-characteristics of the individual 

models. 

The EL model improves performance a little more. To 

find it we tested Gradient Boosting, Voting Classifier, 

Bagging Classifier, and Stacking Classifier; based on the 

score of the first three algorithms studied and taking RF as a 
meta-classifier afterward, we took the best result from these 

models. 

III. RESULT AND DISCUSSION 

A. Binary Attack Classification 

Table 3 summarizes the results of the binary attack 

classification of attacks based on the metrics: Accuracy, 

Precision, Recall, and F1-score. The AUC_ROC Curve 

metric is presented below: 

All the models used for IoT Fridge (Fig. 4), Garage_Door, 
Motion_Light, and Thermostat datasets do not exceed the 

baseline, and the other metrics (Accuracy, recall, 

precision…) are low. This results in the inability of these 

models to perform binary classification tasks, and this may 

be due to a weak correlation between the input and output 

features or to a lack of features to predict the output in these 

datasets. 

We exclude the SVM and NB models for the IoT_ 

Modbus dataset (Fig. 5), which seem useless for binary 

classification tasks (AUC = 0.5). All other models are far 

from the baseline. The models' outcomes are excellent in 

light of the testing methods used. The Ensemble algorithm, 

which has an AUC=0.95, is the best, followed by RF and 

DT.  

 
Fig. 4  AUC_ROC Curve of IoT_Fridge dataset 

 

 

Fig. 5  AUC_ROC Curve of IoT_ Modbus dataset 

 

All models are far from the baseline for the 

IoT_GPS_Tracker dataset (Fig. 6). In regard to the 

assessment measures used; the models' outcomes are 

excellent. The EL and KNN algorithms are the best, with an 

AUC score of 0.93, followed by RF and DT while SVM and 

NB have a low score.  

Except for SVM (Fig. 7), which appears to be useless for 

binary classification tasks (AUC = 0.5), all models are 
distant from the baseline for the IoT_weather dataset. In 

terms of the evaluations employed, the models' 

performances are great. With an AUC value of 0.94, the EL 

algorithm is the best, followed by KNN and RF. 

B. Multi-class attacks classification 

The results of the multi-class attack classification are 

presented in Table 4. From this table, it can be seen that in 

most cases, according to the different metrics used, the EL 

algorithm outperforms other ML algorithms, followed by 
RF, DT, and KNN, which also achieve good performance 

results. However, in the case of the fridge, garage door, and 

motion lights datasets, the results are not sufficient for all 

inspected ML algorithms. 
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Fig. 6  ROC Curve of IoT_ GPS_Tracker dataset 

 
Fig. 7  ROC Curve of IoT_weather dataset 

 

TABLE III 

EVALUATION METRICS RESULTS OF THE TRADITIONAL ML ALGORITHMS IN BINARY-CLASS ATTACK CLASSIFICATION. 

Datasets Evaluation metrics SVM NB KNN DT RF EL 

IoT Fridge activity 

Accuracy 0,52 0.51 0,54 0.50 0.50 0.58 

Precision 0.51 0.51 0.51 0.51 0.51 0.52 

Recall 0.52 0.51 0.54 0.50 0.50 0.59 

F1-score 0.51 0.51 0.51 0.50 0.50 0.46 

IoT 

GPS Tracker 

activity 

Accuracy 0.72 0.65 0.93 0.90 0.93 0.93 

Precision 0.72 0.64 0.93 0.90 0.93 0.93 

Recall 0.72 0.65 0.93 0.90 0.93 0.93 

F1-score 0.72 0.62 0.93 0.90 0.93 0.93 

IoT MotionLight 

activity 

Accuracy 0.48 0.48 0.59 0.48 0.48 0.48 

Precision 0.52 0.52 0.76 0.52 0.52 0.52 

Recall 0.48 0.48 0.59 0.48 0.48 0.48 

F1-score 0.48 0.48 0.44 0.48 0.48 0.48 

IoT 

Garage Door 

activity 

Accuracy 0.59 0.59 0.43 0.59 0.59 0.59 

Precision 0.34 0.34 0.50 0.34 0.34 0.34 

Recall 0.59 0.59 0.43 0.59 0.59 0.59 

F1-score 0.43 0.43 0.33 0.43 0.43 0.43 

IoT   Modbus 

activity 

Accuracy 0.51 0.50 0.82 0.82 0.93 0.97 

Precision 0.58 0.58 0.83 0.82 0.93 0.97 

Recall 0.51 0.50 0.82 0.82 0.93 0.97 

F1-score 0.52 0.51 0.82 0.82 0.92 0.97 

IoT Thermo-stat 

activity 

Accuracy 0.66 0.66 0.60 0.56 0.58 0.60 

Precision 0.44 0.44 0.55 0.56 0.56 0.55 

Recall 0.66 0.66 0.60 0.56 0.58 0.60 

F1-score 0.53 0.53 0.57 0.56 0.57 0.57 

IoT Weather Activity 

Accuracy 0.59 0.71 0.93 0.89 0.94 0.94 

Precision 0.39 0.73 0.93 0.89 0.94 0.94 

Recall 0.59 0.71 0.93 0.89 0.93 0.94 

F1-score 0.44 0.68 0.93 0.89 0.94 0.94 
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TABLE IV 

OUTCOMES OF CLASSICAL ML ALGORITHMS IN MULTI-CLASS ATTACKS CLASSIFICATION. 

Datasets  Evaluation metrics SVM NB KNN DT RF EL 

IoT Fridge activity 

Accuracy 0.58 0.58 0.49 0.58 0.58 0.58 

Precision 0.43 0.43 0.37 0.43 0.43 0.34 

Recall 0.58 0.58 0.49 0.58 0.58 0.58 

F1-score, 0.34 0.34 0.42 0.34 0.34 0.43 

Roc_auc score 0.50 0.49 0.49 0.50 0.50 0.50 

IoT     

GPS_ Tracker 

activity 

Accuracy 0.64 0.61 0.89 0.85 0.87 0.89 

Precision 0.50 0.57 0.89 0.85 0.87 0.89 
Recall 0.64 0.61 0.89 0.85 0.87 0.89 
F1-score, 0.53 0.58 0.89 0.85 0.87 0.89 

Roc_auc score 0.75 0.82 0.95 0.84 0.93 0.96 

IoT Motion Light 

activity 

Accuracy 0.59 0.59 0.59 0.59 0.59 0.59 

Precision 0.35 0.35 0.35 0.35 0.35 0.35 

Recall 0.59 0.59 0.59 0.59 0.59 0.59 

F1-score, 0.44 0.44 0.44 0.44 0.44 0.44 

Roc_auc score 0.50 0.5 0.50 0.50 0.50 0.50 

IoT 

Garage Door 

activity 

Accuracy 0.59 0.59 0.59 0.59 0.59 0.59 

Precision 0.34 0.34 0.35 0.34 0.34 0.35 

Recall 0.59 0.59 0.59 0.59 0.59 0.59 

F1-score, 0.44 0.44 0.44 0.44 0.44 0.44 

Roc_auc score 0.50 0.50 0.50 0.50 0.50 0.50 

IoT   Modbus 

activity 

Accuracy 0.68 0.68 0.72 0.81 0.93 0.96 

Precision 0.78 0.78 0.69 0.82 0.93 0.96 

Recall 0.68 0.68 0.72 0.81 0.93 0.96 
F1-score, 0.56 0.56 0.70 0.82 0.93 0.95 

Roc_auc_score 0.50 0.51 0.88 0.80 0.94 0.96 

IoT Thermo-stat 

activity 

Accuracy 0.66 0.66 0.60 0.48 0.48 0.66 

Precision 0.44 0.44 0.47 0.47 0.47 0.44 

Recall 0.66 0.66 0.60 0.48 0.48 0.66 

F1-score, 0.53 0.53 0.52 0.48 0.48 0.53 

 Roc_auc_score 0.50 0.51 0.50 0.50 0.50 0.50 

IoT Weather 

Activity 

Accuracy 0.62 0.61 0.91 0.83 0.90 0.91 

Precision 0.64 0.52 0.91 0.83 0.90 0.91 

Recall 0.62 0.61 0.91 0.83 0.90 0.91 

F1-score, 0.51 0.53 0.91 0.83 0.90 0.91 

Roc_auc score 0.76 0.82 0.97 0.87 0.98 0.99 

 

To summarize these results, we evaluate proposed models 

for two classification types using precision, recall, F1-score, 

precision, and Auc-Roc curves. IDS is expected to score 

higher on all of these metrics. In our case and according to 

tables 3 and 4, for the IoT Fridge, Garage_Door, 
Motion_Light, and Thermostat subsets of this dataset, the 

results of the metrics turned around 0.5 and the Auc_Roc 

curve shows that the models have trouble predicting the 

meaning of the classification. Therefore, these models need to 

be improved. For the IoT GPS_ Tracker, Modbus, and 

Weather subsets, the results found are high when testing on 

these datasets. The algorithms used in the suggested system 

are classified in order of performance in most of the cases as 

follows: EL, RF, KNN, DT, then SVM, and NB, which are 

also found in the literature. 

IV. CONCLUSION 

This work, which tries to be detailed and exhaustive, 

presents a theoretical and practical study of IDS-based ML in 

the IoT domain and proposes an evaluation of ML algorithms 

that may be used in the core of an IDS to deal with various 

cyberattacks in the IoT. Based on Accuracy, Precision, F1-

Score, Recall, and AUC-Roc curve metrics, the performance  

of the models based on SVM, NB, KNN, DT, RF, and EL 
algorithms were compared on the TON_IoT dataset. The 

results suggest that EL, RF, and KNN algorithms perform 

much better, while NB and SVM are often the least 

appropriate. These results can guide researchers in selecting 

ML algorithms enhancing IDS' capabilities. In the future, we 

plan to continue studying IDS using deep learning techniques. 

NOMENCLATURE 

CART: Classification and Regression Trees. 

LDA:   Linear Discriminant Analysis. 

MLP:  Multi-layer perception. 

LSTM:  Long _Short-Term Memory. 

C4.5:  Chi-square automatic interaction detection 

GBM:  Gradient Boosting Machine 
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