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Abstract— Time headway data generated from different rain conditions were fitted to probability distributions to see which ones best 
described the trends in headway behaviour in wet weather.   Data was generated from the J5, a principal road in Johor Bahru for two 
months and the headways in no-rain condition were analysed and compared to the rain generated headway data. The results showed 
a decrease in headways between no-rain and the rain conditions. Further decreases were observed with increase in rainfall intensity.  
Thus between no-rain to light rain condition there was 15.66% reduction in the mean headways. Also the mean headway reduction 
between no-rain and medium rain condition is 19.97% while the reduction between no-rain and heavy rain condition is 25.65%. This 
trend is already acknowledged in the literature. The Burr probability distribution ranked first amongst five others in describing the 
trends in headway behaviour during rainfall. It passed the goodness of fit tests for the K-S, A2 and C-S at 95% and 99 % respectively. 
The scale parameter of the Burr model and the P-value increased as the rain intensity increased. This suggests more vehicular cluster 
during rainfall with the probability of this occurring increasing with more rain intensity. The coefficient of variation and Skewness 
also pointed towards increase in vehicle cluster. The Burr Probability Distribution therefore can be applied to model headways in 
rain and no-rain weather conditions among others. 
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I. INTRODUCTION 

Time headways are fundamental parameters of traffic 
flow. They describe the arrival patterns of vehicles at a 
designated point on the highway and constitute an important 
measure of the quantity and quality of traffic flow. They are 
defined as the time difference between the front bumpers of 
two consecutive vehicle arrivals at a point. Quantitatively, 
they are inversely linked to traffic volume and highway 
capacity. They have considerable usage in microscopic 
traffic simulations, traffic safety analysis and merge-diverge 
decisions of drivers at intersections.  They can further be 
used in traffic signal plans for corridor coordination. Speed 
is another microscopic traffic flow parameter that is widely 
used as a qualitative service indicator. Whereas drivers have 
a choice of speed on free flow facilities and are highly 
constrained in their choice of speed on other facilities, the 
speed of travel at any time is random. Thus both speed and 
time headways are random variables on any highway facility 
and their prediction and description can be handled using 
probabilistic models. 

 Evidence is growing on the influence of rainfall on traffic 
flow parameters. In particular, rainfall has been proved to 
negatively impact microscopic traffic flow parameters [1]. 
The influence of rain on time headways and speed suggests 
that drivers modify their behaviour under rain conditions. It 
can be argued that the value of time headways and speeds 
derived under rainfall conditions should be different from 
non-rain conditions to justify the change in behaviour.  In 
view of this, the need arises to find the causal link between 
microscopic traffic parameters and rainfall. Whereas, these 
parameters have been modeled under normal weather 
conditions, it is much less so in rainy conditions.  

The aim of this paper is to explore and fit time headway 
data to single probability models under both normal and rain 
conditions and to see which models best describe the data 
and whether model parameters change under rainfall and 
with rain intensity. This will be achieved by calibrating the 
frequencies of the microscopic data and establishing the 
probability density functions and cumulative distribution 
functions of real data generated from a highway site.  The 
rest of the paper is organised as follows; this section is 
followed by the Literature review on the subject. The data 
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collection is presented in section III, while the probability 
distributions fitted to the data are presented in section IV. 
The results comes in section V and the conclusions in 
section VI 

II. LITERATURE REVIEW  

Much research has been devoted to the concept that traffic 
stream behaviour can be analysed at the microscopic level.  
At this level the behaviour of individual vehicles drivers 
must be examined and modelled.  Microscopic models use 
car following laws to describe the behaviour of each driver-
vehicle system in the traffic stream as well as their 
interaction.  Microscopic parameters of headway and speed 
have been modelled by numerous authors, all of which have 
been based on probability theory. Adams,[2] used the 
Poisson process to model headways for free flowing traffic. 
Miller [3] used a queuing model to explain the behaviour of 
slow moving vehicles in the traffic stream. The shifted 
exponential model and the modified semi-Poisson process 
were both employed by Ashton [4] and Schuhl [5] to model 
headways of vehicles.  Modifications of the Poisson model 
resulted in the use of the Erlang [6] and the gamma 
distributions [7] in the modelling of headways.  Another 
popular model which has stood the test of time is the Log-
normal model proposed by Greenberg [8]. These models are 
called single models because they employ a single model at 
a time.  

Combined probability distributions have also been used to 
model headways of traffic with high flow rates. Traffic is 
then divided into two. One group relating to traffic moving 
in a free flow fashion and another group in a constrained 
flow. A threshold is then established between the two 
conditions resulting in a distribution which is a linear 
combination of two components. This is stated as: 

 

( ) ( ) ( ) ( )1f t g t k tθ θ= + −        (1) 

( ) ( ) ( ) ( )1F t G t K tθ θ= + −       (2) 

Where f, g, k and F, G, K are the PDF and CDF of the 
variables H, U, and V respectively. The probability that a 
vehicle is a follower is given by the parameter θ.  The 
function k representing the free flow regime is widely taken 
to be the exponential distribution but a variety of 
distributions could be used for the constrained portion. 
These include , the Cowan M3, DDNED and the Hyperlang 
distributions HA et al. [9]. 

Also used to describe headways of vehicles are the so-
called mixed models. These emanated from [10] and [11]. 
Buckley proposed the Semi-Poisson Model which in its 
essence identifies a headway which is greater than a 
threshold value U and follows the exponential distribution. 
Branston [11] and [12] working separately used a queuing 
model to explain the headways of following vehicles.  The 
model proposed by them also has a component of following 
headways and an exponential component. The pdf of the two 
models are: 
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Since both the combined and the mixed models contain 
portions of free flow and constrained flow, it is essential to 
distinguish between the two.  This is done by setting the 
parameter θ to zero. The combined case degenerates to an 
exponential distribution but the mixed model does not. 
 

A. Goodness of fit and Parameter Estimation of 
Distributions  

Goodness of fit is the method used to verify and ascertain 
the appropriateness of a probability distribution to modeling 
a particular phenomenon. The methods employed include 
Kolmogorov-Smirnov test (K-S test), Anderson Darling Test 
(A2) and the Chi-Square test (C-S). Parameter estimation 
methods commonly employed include moment estimator 
(ME), maximum likelihood Estimator (MLE) and the 
Bayesian method (BM).  Variants of the maximum 
likelihood methods such as local maximum likelihood 
estimators (LMLE) and the modified maximum likelihood 
method (MMLM) have been used by Cohen and Whitten 
[12].  

Parameter estimation for the combined and mixed models 
calls on a combination of the common estimation methods or 
variants of them to achieve the desired results. Branston [11] 
combined the ME and the method of maximizing the chi-
squared statistics to estimate the parameters of the general 
queuing model (GQM). Hoogendoorn and Botma, [13] have 
used the mean integrated squared error (MISE) distance in 
the frequency domain to estimate parameters of the GQM. 

III.   DATA COLLECTION  

Data for this study was collected on the J5 Highway in the 
Southern Malaysian State of Johor Bahru.  A basic section 
devoid of the influence of intersections and other 
disturbances was selected and has an average traffic volume 
of 12000 vehicles per day with 79% of the traffic being cars. 
The section is a two-way two-lane facility and has a posted 
limit of 60km/hr. The pavement has uniform section and is 
well marked.  

Data was collected for two months starting from 
November 2010 to December 2010 and was filtered to 
remove overtaking maneuvers. The data was collected using 
pneumatic tube detectors which recorded each individual 
vehicle detail such as arrival times, instantaneous speed, 
headway, gap, wheel base etc.  Also the traffic data were 
separated into daylight data and night data. The periods of 
the daylight traffic data that coincided with rainfall events 
were identified and filtered. Other traffic data which did not 
relate with rainfall were also filtered. The rainfall traffic data 
were further classified according to rainfall intensity.  The 
rainfall event times were used to select the corresponding 
dry weather traffic data and the headways for both rain and 
non-rain periods were extracted for analysis.  For instance, if 
rain event occurred during the morning peak hour, the 
corresponding morning peak no-rain data was used for 
analysis. Rainfall data was obtained from a nearby rain 
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gauge station located 750m away from the data collection 
site.  

 

IV.   METHOD  

Computer software was used to explore available 
probability distributions and candidate distributions were 
identified for goodness of fit tests. Six distributions that 
fitted the frequency distribution were ranked in order of best 
fit. For the headways data, the following distributions 
provided the best fit.  

A. Burr Distribution 

The Burr Type XII Distribution is a continuous 
probability distribution for a non-negative random variable 
sometimes also called the generalized log-logistic 
distribution. It is commonly used to model household 
income. It has continuous shape parameters (k > 0; α > 0) 
continuous scale parameter (β > 0) and continuous location 
parameter (γ > 0) with a pdf and CDF given by:   
Probability Density Function (PDF): 
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Cumulative Distribution Function (CDF): 
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B.  Frechet or Maximum Extreme Value Type II 
Distribution 

This distribution is used in hydrology to model annual 
maximum one-day rainfalls and river discharges. It has 
continuous shape parameter (α >0), continuous scale 
parameter (β >0) and continuous location parameter (γ >0) 
but reduces to the 2-parameter function when γ = 0.  It has 
PDF and CDF as follows: 
Probability Density Function: 
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Cumulative Distribution Function: 
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C. Generalized Extreme Value Distribution. 

This is a family of continuous probability distributions 
developed from extreme value theory. Thus, it is used as a 

limit distribution of properly normalized maxima of a 
sequence of independent and identically distributed random 
variables. It is therefore used as an approximation to model 
the maxima of long (finite) sequences of random variables.  
The distribution has continuous shape parameter (k > 0), 
continuous scale parameter (α > 0). The pdf and CDF of this 
distribution is stated as follows: 
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Cumulative Distribution Function: 
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D. Generalized Pareto Distribution 

The Generalized Pareto distribution has continuous shape 
parameter (k>0), continuous scale parameter (σ > 0) with 
probability and cumulative distribution functions as follows: 
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Cumulative Distribution function.   
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E. Log-Normal Distribution 

The Lognormal three parameter distribution has 
continuous shape parameter (σ > 0), continuous scale 
parameter (µ > 0) and continuous location parameter (γ > 0). 
This reduces to the two parameter distribution when γ = 0. 
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The probability density and cumulative distribution 
functions are given by:  

Probability Density Function; 
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F. Pearson Type 6 Distribution 

Pearson type 6 distribution is a 4-parameter distribution 
with a continuous shape parameter (α1 > 0), continuous 
shape parameter (α2 > 0), continuous scale parameter (β

and continuous location parameter (γ > 0). This transforms 
to the 3-parameter distribution when γ
distribution functions are stated as:  

Probability Density Function: 
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V. RESULTS  

Six probability distributions presented as above were used 
to fit the headway data. The fit of each distribution can be 
seen from the probability density and p-
weather condition shown from fig. 1 to 4.  Visually, all the 
distributions provided a good fit.   However. the Burr 
distribution provided the best fit for all weather conditions. It 
passed both the 95% and 99% goodness of fit test for 
Kolmogorov-Smirnov (K-S),but failed the  Anderson 
Darling (AD) and Chi-squared (C-S) tests. All the other 
distributions failed the goodness of fit tests at 95% and 99% 
for all the three tests.  The Log-normal model, The Gamma 
model , The Rayleigh model, displaced negative exponential 
model all performed poorly given the direction pointed by 
the litereature about their appropriateness in modelling 
headway data [14].   

The probability density and cumulative distribution 
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to fit the headway data. The fit of each distribution can be 
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distribution provided the best fit for all weather conditions. It 
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Fig1: Probability Density and P

From table 1, the Burr Distribution is the overall best fit 
for headway data both under rain and non
The Frechet Model follows closely as the second best model 
to describe headway data. The Pearson 6 surpassed the res
under no-rain, light rain and medium rain conditions as the 
third best model . However, the Generalised Pareto (GP) was 
a better fit under heavy rain using the K
is no consistent performance by a particular model under 
heavy rain conditions, for Generalised Extreme Value was 
rated third best using the K-S 
GEV was second best using Anderson Darling and third best 
again under the Chi-Squared test. 

The Generalised Pareto (GP) model has a better fit to the 
headway data than the Lognormal and Generalised Extreme 
Value (GEV) models under no
conditions. The lognormal model was the least good fit 
under all rain conditions for all the good
carried out. Ironically, it has been the model most applied to 
time headway distribution of vehicles. Whereas HA et al. 
(2010) has confirmed that the LNM model provided the best 
fit among single distribution models; nevertheless it did no
satisfy the goodness of fit for
on R118. 

 

 
: Probability Density and P-P Plots for No-rain Condition 

From table 1, the Burr Distribution is the overall best fit 
for headway data both under rain and non-rain conditions. 
The Frechet Model follows closely as the second best model 
to describe headway data. The Pearson 6 surpassed the rest 

rain, light rain and medium rain conditions as the 
third best model . However, the Generalised Pareto (GP) was 
a better fit under heavy rain using the K-S test criteria. There 
is no consistent performance by a particular model under 

onditions, for Generalised Extreme Value was 
 test while at the same time the 

was second best using Anderson Darling and third best 
Squared test.  
Pareto (GP) model has a better fit to the 

headway data than the Lognormal and Generalised Extreme 
Value (GEV) models under no-rain, light rain and heavy rain 
conditions. The lognormal model was the least good fit 
under all rain conditions for all the goodness of fit tests 
carried out. Ironically, it has been the model most applied to 
time headway distribution of vehicles. Whereas HA et al. 
(2010) has confirmed that the LNM model provided the best 
fit among single distribution models; nevertheless it did not 
satisfy the goodness of fit for some traffic in the slow lane 
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Fig.2: Probability Density and P-P Plots for Light Rain Condition

Fig.3: Probability Density and P-P Plots for Medium Rain Condition

 
P Plots for Light Rain Condition 

 
P Plots for Medium Rain Condition 

Fig.4: Probability Density and P-

 

A. Headway Characteristics 

The headway characteristics for both rain and non
conditions are summarised in table 
decreases between no-rain and rain conditions and decreases 
further with increase in rainfall i
the standard deviation also behave in a similar fashion.  The 
trend in the coefficient of variation suggests that there is a 
cluster of headways on the facility and this increase with rain 
and rain intensity.  Even though the coe
under heavy rain is the lowest of the three categories it is 
higher than the no rain condition.  The skewness and 
kurtosis of the time headway variable are all positive 
indicating that the bulk of the headway distribution is to the 
left of the mean value which presupposes smaller headways 
or localised clusters on the facility. Thus up
vehicles were travelling with time headways less than 
2.20secs under no-rain condition, 2.00secs under light and 
medium rain, and again 2.20secs under heavy rain conditions.

B. Probability Distribution Parameters

The distributions fitted to the time headways have varied 
parameters. Of these, only the Frechet and the Lognormal 
have two parameters. The rest have three parameters each. 
These parameters are the shape, scale and the location 
parameters. For the Burr model, the shape parameter (k and 
α) and the scale parameter β increases with rain and with 
increase in rain intensity. The P
rain and rain intensity.  Thus if tw
same headways are considered, there will be contractions in 
the headways skewed further to the 

 
 

 
-P Plots for Heavy Rain Condition 

 

characteristics for both rain and non-rain 
conditions are summarised in table 2.  The mean headway 

rain and rain conditions and decreases 
further with increase in rainfall intensity. The variance and 
the standard deviation also behave in a similar fashion.  The 
trend in the coefficient of variation suggests that there is a 
cluster of headways on the facility and this increase with rain 
and rain intensity.  Even though the coefficient of variation 
under heavy rain is the lowest of the three categories it is 
higher than the no rain condition.  The skewness and 
kurtosis of the time headway variable are all positive 
indicating that the bulk of the headway distribution is to the 

ft of the mean value which presupposes smaller headways 
or localised clusters on the facility. Thus up to 50% of the 
vehicles were travelling with time headways less than 

rain condition, 2.00secs under light and 
0secs under heavy rain conditions. 

Probability Distribution Parameters 

fitted to the time headways have varied 
parameters. Of these, only the Frechet and the Lognormal 
have two parameters. The rest have three parameters each. 

ters are the shape, scale and the location 
parameters. For the Burr model, the shape parameter (k and 
α) and the scale parameter β increases with rain and with 
increase in rain intensity. The P-Value increases duly with 
rain and rain intensity.  Thus if two rain conditions with the 
same headways are considered, there will be contractions in 
the headways skewed further to the  
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TABLE 1 
PERFORMANCE OF THE PROBABILITY MODELS 

 
left of the mean. Further increase in the scale parameter will 
lead to cluster of vehicles with smaller headways.  This aptly 
describes the situation under rainfall conditions on the 
facility. The parameters of the fitted distributions are shown 
in table 3. With the Frechet model, the shape parameter 
increases with rainfall intensity while the scale parameter 
decreases. The heavy rain model parameters show an 
increase in the two parameters well above the other rain and 
non-rain conditions.  

 
TABLE 2 

HEADWAY CHARACTERISTICS 
 

Statistic Weather Condition 
No 
Rain 

Light 
Rain 

Medium 
Rain 

Heavy 
Rain 

Sample size 4975 4905 3189 2508 
Range 77.70 90.80 109.40 62.00 
Mean 5.81 4.90 4.65 4.32 
Median 2.20 2.00 2.00 2.20 
Variance 69.14 56.55 59.03 41.65 
Std. Dev. 8.31 7.52 7.68 6.45 
Coefficient of 
Variance 

1.43 1.53 1.65 1.50 

Std. Error 0.12 0.11 0.14 0.13 
Skewness 2.86 3.50 4.99 4.11 
Excess Kurtosis 10.46 16.31 38.59 20.32 

 
 
The Generalised Extreme Value and the Generalised 

Pareto have decreases in the shape parameter for increase 
rain intensity and decrease in the scale parameter with 
decreasing rain intensity. There are no consistent trends 
observed in the Pearson 6 model parameters.  The 
Lognormal parameters of shape and scale both have a 
consistent trend. Decrease in shape parameters values with 
rainfall and further decreases with higher rain intensities.  

VI.  CONCLUSIONS  

 
This study explored continuous probability distributions 

that best describes vehicle time headways under rainfall 
conditions. Six models were initially selected from 
numerous others and were further tested for goodness of fit.  
The Burr model, the Frechet model and the Pearson type 6  

 

 
 

TABLE 3 
PROBABILITY DISTRIBUTION PARAMETERS 

 

 
 
were rated as the best models to apply to headway data 
under rainfall conditions. The Burr model was rated first by 
all the goodness of fit tests and for all conditions; rain and 
non-rain. The Frechet model performed second under all 
tests except the heavy rain condition where the Generalised 
Extreme Value (GEV) model performed better under the 
Anderson Darling (A2) test. The Pearson type 6 model was 
consistently the third best model under the A2 and C-S tests 
for no-rain, light rain and medium rain respectively. Under 
the K-S test it out performed the others in no-rain and light 
rain conditions. There was a mixture of performance for the 
remaining three models under the prevailing conditions. 

Weather Condition Kolmogorov Smirnov Anderson Darling Chi Squared 
 1ST 2ND 3RD 1ST 2ND 3RD 1ST 2ND 3RD 
No-Rain Burr Frechet PT6 Burr Frechet PT 6 Burr Frechet PT6 
Light Rain Burr Frechet PT6 Burr Frechet PT 6 Burr Frechet PT6 
Medium Rain Burr Frechet GP Burr Frechet PT6 Burr Frechet PT6 
Heavy rain Burr Frechet GEV Burr GEV Frechet Burr Frechet GEV  
          
 4TH 5TH 6TH 4TH 5TH 6TH 4TH 5TH 6TH 
No-Rain GP LNM GEV LNM GEV GP LNM GEV N.A. 
Light Rain GP GEV LNM GEV LNM GP GEV LNM N.A. 
Medium Rain PT6 GEV LNM GEV LNM GP GEV LNM N.A. 
Heavy rain GP PT6 LNM PT6 GP LNM PT6 LNM N.A. 

Prob. 
Distrib. 

Weather 
 
Condition 

Shape 
Parameter 

Scale 
 Parameter 

Location 
Parameter 

Burr NR 0.172 4.872 0.942 - 
LR 0.211 4.746 1.037 - 
MR 0.214 5.008 1.076 - 
HR 0.270 4.737 1.331 - 

Frechet NR 1.138 - 1.772 - 
LR 1.263 - 1.667 - 
MR 1.324 - 1.656 - 
HR 1.515 - 1.848 - 

GEV NR 0.523 - 2.220 2.092 
LR 0.583 - 1.607 1.803 
MR 0.604 - 1.412 1.745 
HR 0.593 - 1.232 1.868 

GP NR 0.425  3.186 0.266 
LR 0.506  2.149 0.549 
MR 0.534  1.858 0.654 
HR 0.512  1.636 0.911 

Pearson 
6 

NR 138.30 1.249 0.017 - 
LR 146.79 1.504 0.019 - 
MR 229.46 1.654 0.013 - 
HR 127.76 2.015 0.033 - 

Lognor
mal 

NR 1.094 - 1.086 - 
LR 0.996 - 0.971 - 
MR 0.952 - 0.945 - 
HR 0.841 - 0.988 - 
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However, the highly rated lognormal model performed 
poorly among the remaining models.  

The Headway characteristics showed decreased headways 
values with increase in rain intensity. Thus between no-rain 
to light rain condition there was 15.66% reduction in the 
mean headways. Also the headway reduction between no-
rain and medium rain condition is 19.97% while the 
reduction between no-rain and heavy rain condition is 
25.65%. About 50% of the headways were less than the 
mean values, an indication of the Skewness of the headways 
to the left of the mean. This trend increased with increase in 
rain intensity. The Skewness and coefficient of variation 
showed that clusters of vehicles headways increased as the 
rain intensified.  

The model scale parameters could be related to the rain 
and no-rain conditions as well as the various rainfall 
intensity regimes explored. Threshold values would need to 
be established for each rain condition and this will require 
more time headway rain-conditioned analysis for confidence 
to be built into them.  
The Burr model lends itself to model headway data under 
rainfall conditions. 
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