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Abstract—The geometric process is sometimes appropriate for reliability and scheduling problems. Some previous studies suggested a 

possible alternative process that is alpha-series as to the geometric process when it decreases with time, as the decreasing geometric 

process shows that the expected number of events at an arbitrary time does not exist. In contrast, the expected number of events of the 

alpha-series process (ASP) exists at an arbitrary time under some conditions. In this paper, we assumed that the first arrival followed 

the Rayleigh distribution (RD). The modified moment estimator was proposed to estimate the alpha-series process parameters in the 

Rayleigh distribution and compare it with the maximum likelihood estimators. A simulation was conducted to compare the two 

estimators. The real-data application of intervals between successive failures of the Mosul Dam power station in Nineveh governorate 

in Iraq is provided to illustrate the results. When the initial occurrence time distribution is indicated to be RD, an estimate of the 

occurrence rate of an ASP is investigated in this study. Estimators are generated using modified moment (MM), and maximum 

likelihood (ML) approaches. According to the simulation study's findings, the MM estimator outperforms the ML estimator. In all 

cases, ASP with RD provides better data than the renewal process (RP) in real data sets. A test statistic has been devised to determine 

if the data conforms to an ASP. 

Keywords—Alpha-series process; Rayleigh distribution; maximum likelihood estimator; modified moment estimator; Monte Carlo 

simulation. 
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I. INTRODUCTION

Derive the statistical inference of the geometric process 
(GP) when the first arrival time is assumed to be Rayleigh 
distribution (RD). Applying the counting process from a 
statistical point of view is a common method of analyzing a 
data set with successive events' time. If successive times have 
a monotonous trend, the monotonous intensity function for 
the non-homogeneous Poisson process can be considered a 
possible method [1]. A more direct approach to modeling this 
data is to use a monotonous counting process in the alpha-
series process  [2]. 

Definition 1. The simple definition of the Renewal Process 
(RP) indicates that many stochastic processes can be 
described as RP. If ������ defined to be a sequence of non-
negative i.i.d random variables representing the intervals 
between the occurrences of events observed from a counting 
process, RP is a possible approach for modeling this process. 
RP has two main parameters � and �	  [3]: �̂ � ��  (1) 

�
	 � ���� ∑ ��� � ���	���� (2) 

Definition 2. Alpha-Series Process (ASP) is one of the 
stochastic processes associated with the GP. It is one of the 
monotonous processes that its idea goes back to the researcher 
and its properties. Nevertheless, a regular linear connection 
may be discovered. Variables that lead to multicollinearity are 
the ones that must be explained and are tricky  [4]. 

Let the stochastic process �����, � � 0�  represent the 
counting process and that ���� represents times between event�� � 1� to event ���, so the counting process ������ is called 
ASP when there is αas a real number such as follows [5]. �� � ���� , � � 1,2, … (3) 

are i.i.d. random variables with the distribution function �. 
The cumulative function of ASP is [6]: ��� � � ����� �∀� � 1,2, … (4) 

By deriving the equation (4) with respect to the probability 
density function of the ASP is obtained: 
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"#$�%�"% � &�� � � ��&���� �� (5) 

Where ��� �� represents an RP, a sequence of non-negative 
random variables i.i.d [7].  
Some theoretical characteristics of the ASP [8]: 
If �( > 0�, then ASP is randomly decreasing that is, �� >*+ ��,�∀� � 1,2, … 

If �( < 0�, then ASP is randomly increasing that is, �� <*+ ��,�∀� � 1,2, … 

If �( � 0�, then ASP is an RP [9]. 
The expectation and variance ��are: 

 ./��0 � 1�2 , � � 1,2,3, … (6) 

 456���� � 78
�82 , � � 1,2,3, … (7) 

The parameters (, � and �	  are important parameters for 
the ASP, given that knowing these parameters leads to 
knowledge of both the process's mean and variance and the 
process's general trend and power [10]. The statistical 
inference results of ASP were recently presented with the 
assumption that the random variable ��  follows specific 
distributions [11], [12]. 

In this paper, estimating the occurrence rate of ASP, the 
first occurrence time to be Rayleigh is proposed. It can be as 
a possible alternative distribution. The Monte Carlo 
simulation's experimental results show the proposed 
distribution's favorable performance. The estimation methods 
used to estimate the time rate of occurrence of the ASP are the 
maximum likelihood and modified moment estimation 
methods [13]. The Mosul Dam power station analyzed the 
data set as part of applied research. 

II. MATERIALS AND METHODS 

A. Rayleigh Distribution (RD) 

The RD is a continuous probability distribution for 
nonnegative-valued random variables [14] introduced this 
distribution and discussed its characteristics. RD is applied in 
many fields, such as health, agriculture, biology, and other 
science. RD is a special case distribution of a Weibull with 
two parameters where the shape parameter equals two yields 
the following probability density function  [15]: 

 &� , 9� � : %;8 < = >�%8
	;8 ? ,  > 00, @�ℎ<6A�<B  (8) 

with mean given the following equations: 

 .��� � CDE	 (9) 

and variance: 

 456��� � F�E	 C	 (10) 

The cumulative distribution function is given by: 

 �� � � 1 � < = >�%8
	;8 ? (11) 

 

B. Maximum Likelihood Method 

Suppose that the set of data of ASP is ���, �	, … , ��� with 
parameter �(� . ��  is supposed to distribute as RD with 
parameter �C�. The likelihood function of ASP is as follows 
[16]: 

 G�(, C� � ∏ I�82%$JK$LM�;8�K <� ∑ ��2%$�8K$LM /	;8
 (12) 

The log-likelihood function is expressed as follows: OP G �(, C� � 2( ∑ OP ����� + ∑ OP  ����� � 2P OP C �∑ ��2%$�8K$LM	;8   (13) 

Hence, deriving equation (13) for the parameters ( and C. 
Then likelihood function will be as follows: 

 
" R� S��,;�"; � �	�; + 	 ∑ ��2%$�8K$LM	;T � 0     (14) 

 " R� S��,;�"� � 2 ∑ OP � ����� 	 ∑ ��2%$�8 R� �K$LM 	;8 � 0 (15) 

By solving equations (14), the parameter Cis found as: 

 C � D∑ ��2%$�8K$LM	�  (16) 

Substitution of C into equation (15) gives:  

 2 ∑ OP � ����� /∑ 2P��� ��	 OP ����� 0/∑ ��� ��	���� 0�� � 0 (17) 

Let α
UV and λWUV  referred to ML estimators of α  and λ 
respectively. It is clear that an explicit form of the solution of 
equation (17) does not exist. Hence the numerical methods 
must be used as a solution to equation (17). Newton Raphson 
formula is used to obtain  α
UVas follows [17, 18]: 

 (�,� � (� � X R��K�X′R��K� (18) 

Where f is the objective function which is the equation (17). 
By Substituting (
ZSin equation (16), the ML estimator of λ 
will be resulted such as: 

 C[ZS � D∑ I�2\]^%$J8K$LM 	�  (19) 

Theorem: The joint distribution of the ML estimator is an 
asymptotically normal distribution (AN) with mean vector �(, C�and var-covariance matrix FI-�, that is [19-21]: 

 b(
ZSC[ZS c ∼ e� f>(C ? , �g��h (20) 

Where FI-�represents the inverse of the Fisher information 
matrix given as: 

�g�� �
⎣⎢⎢
⎢⎡ P4/P ∑ �OP ��	 � �∑ OP ����� �	���� 0 C ∑ OP �����4/P ∑ �OP ��	 � �∑ OP ����� �	���� 0C ∑ OP �����4/P ∑ �OP ��	 � �∑ OP ����� �	���� 0 C	 ∑ �OP ��	����4/P ∑ �OP ��	 � �∑ OP ����� �	���� 0⎦⎥⎥

⎥⎤ 
To derive the inverse Fisher information matrix, the second 

derivatives are taken from the log-likelihood function, which 
is equation (13) for �(, C�, we get [22]: 

 
"8 R� S��,;�"�8 � �	 ∑ ��2%$�8�R� ��8K$LM ;8  (21) 

 
"8 R� S��,;�";8 � 	�;8 � p ∑ ��2%$�8K$LM;q  (22) 
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"8 R� S��,;�"� "; � 	 ∑ ��2%$�8 R� �K$LM ;T  (23) 

Since .������ � CDE	 and .������	 � 2C	 the expected 

values of the second derivatives are obtained as: 

 . >�"8 R� S��,;�"�8 ? � 4 ∑ �OP ��	����  (24) 

 . >�"8 R� S��,;�";8 ? � F�;8 (25) 

 . >�"8 R� S��,;�"� "; ? � �F ∑ R� �K$LM;  (26) 

These are the components of the�g matrix as follows: 

 �g � r4 ∑ �OP ��	���� �F ∑ R� �K$LM;�F ∑ R� �K$LM; F�;8
s (27) 

are its inverse are given by: 

 �g�� � tu�� u�	u�	 u		v (28) 

 �g�� � �|#x| 5yz��g� (29) 

After making some simplifications, the matrix determined 
is as follows [23]: 

 |�g| � �{;8 /P ∑ �OP ��	 � �∑ OP ����� �	���� 0 (30) 

The components of the inverse of �gmatrix as follows: 

 u�� � �Ft� ∑ �R� ��8�I∑ R� �K$LM J8K$LM v (31) 
 u�	 � u	� � ; ∑ R� �K$LMFt� ∑ �R� ��8�I∑ R� �K$LM J8K$LM v (32) 
 u		 � ;8 ∑ �R� ��8K$LMFt� ∑ �R� ��8�I∑ R� �K$LM J8K$LM v (33) 
Corollary: The marginal asymptotic distributions of the ML 
estimators of the parameters ( and C are:  

 (
ZS ∼ e� |(, �Ft� ∑ �R� ��8�I∑ R� �K$LM J8K$LM v} (34) 

 C[ZS ∼ e� |C, ;8 ∑ �R� ��8K$LMFt� ∑ �R� ��8�I∑ R� �K$LM J8K$LM v} (35) 
Moreover, ~�: ( � 0vs ~�: ( ≠ 0 can be tested by using: 

 � � �\]^
� K

q|K ∑ ��K $�8�>∑ �K $K$LM ?8K$LM }
 (36) 

Where (
ZS can be evaluated from equation (18). Under the 
null hypothesis~�, by Slutsky theorem from equation (34) 
i.e.,� ∼ e��0,1�. If ( � 0 then the dataset agrees with RP 
[24]. 

C. Modified Moment Method 

In this section, the MM estimator of the ASP parameters is 
obtained by using the nonparametric estimate of the 
parameter(, which is a commonly used method for ASP. The 

researchers derived a nonparametric estimator for the 
parameter (as the follows [25]: 

 (
�� � ∑ R� �$K$LM ∑ R� ��� ∑ R� �K$LM R� �$K$LM� ∑ �R� ��8�I∑ R� �K$LM J8K$LM  (37) 

By substituting equation (37) in equation (3) we obtain: 

 9
� � ��\���� , � � 1,2, … , P (38) 
Let ���, �	, … , ��� be a random sample from the ASP 

with parameter αand the first failure��follows the RD,X� ∼R�λ�. The parameter αis supposed to be the estimation of non-
parametric by equation (37), the first sample moment m� is 
calculated by [26-28]: 

 �� � �� ∑ 9
����� � �� ∑ ��\�� ������  (39) 

to calculate the first population moment for RD, we need to 
find the Ε�X� which is denoted by the ��can be easily written 
as [29, 30]: 

 �� � CDE	 (40) 

by equating the first sample moment with the first population 
moment, we obtain the parameter of the RD [31, 32]: 

 C[�� � D	E �� ∑ ��\��������  (41) 

III. RESULTS AND DISCUSSION 

This section introduces some Monte Carlo simulation 
studies for comparing the efficiency of ML and MM 
estimators for the parameters ( and  C. In the simulation study, 
different sample sizes were chosen  n � 30,50. For each case, 
the RD parameter is taken λ � 0.5,1, and the exponent of the 
process is α � 0.5,0.8, -0.5 . The experiment was repeated 
1000 times for each case. The mean square error MSE is used 
to measure the performance of the ML and MM estimators. 
According to the results presented in Tables 1-2, when the 
sample sizes increase, the MSE values decrease for estimators 
of(and C. Also, the MM estimators of (and Coutperform the 
corresponding ML estimator depending on the MSE value for 
all cases. 

TABLE I 
THE SIMULATED MSE OF THE ESTIMATOR ( AND, WHENΛ � 0.5 

MSE( ̂ ) MSE(̂ ) Method n    

0.0770 0.0406 ML 
30 

0.5 
0.0376 0.0359 MM 
0.0619 0.0117 ML 

50 
0.0073 0.0033 MM 
0.1069 0.0302 ML 

30 
0.8 

0.0277 0.0210 MM 
0.0320 0.0138 ML 

50 
0.0081 0.0015 MM 
0.1364 0.0317 ML 

30 
-0.5 

0.0233 0.0257 MM 
0.0646 0.0101 ML 

50 
0.0128 0.0063 MM 
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TABLE II 
THE SIMULATED MSE OF THE ESTIMATOR (AND  , WHENΛ � 1 

MSE( ̂ ) MSE(̂ ) Method n    

1.0157 0.0311 ML 
30 

0.5 
0.0510 0.0188 MM 
0.4129 0.0190 ML 

50 
0.0489 0.0169 MM 
1.9255 0.0675 ML 

30 
0.8 

0.1694 0.0496 MM 
0.4446 0.0154 ML 

50 
0.0219 0.0037 MM 
0.1448 0.0385 ML 

30 
-0.5 

0.0589 0.0196 MM 
0.1343 0.0245 ML 

50 
0.0168 0.0125 MM 

A. Application to a Real Data Set 

In order to verify the rate of the occurrence of the ASP in 
an RD proposed in this paper in a real-life context, a real 
Mosul Dam dataset was used to demonstrate data analysis and 
estimation procedures. This data set consists of two units, the 
first unit has 58 observations, and the second unit has 62 
observations. These two data sets show the intervals between 
successive failures of the Mosul Dam power station in 
Nineveh Governorate in Iraq. 

For a dataset ���, �	, … , ��� , the fitted values of 
observations are: 

 �W� � ��̂ZS���\]^ �95Pe��A��ℎ�G<B���5�@6B�̂ZZ���\]]�95Pe��A��ℎ��<B���5�@6B��� �956<PA5O=6@�<BB  (42) 

Let �� � ��, �	, �p, … �� , � � 1,2, … , P . Then a fitted 
value of ��is SW� � ∑ X ¡�¡�� . To evaluate the performance of 
ASP with the estimator's ML and MM, and RP for the dataset, 
the plot of ��and �[�against k, k � 1,2, … , n, and MSE can be 
used. 

 ��£ � �� ∑ I�� � �W�J	����  (43) 

To test whether or not the data conforms to an ASP, and to 
solve this problem we assume that we have a process �X¤, i � 1,2, … , n�, and we assume that: 

 9� � �� � , � � 1,2, … , P (44) 

By taking the logarithm for equation (44), we have: 

 OP 9� � ( OP � + OP  � , � � 1,2, … , P (45) 

Since 9� is an independent random variable, the simple 
linear regression model can be used as: 

 OP  � � ¦ � ( OP � + <� , � � 1,2, … , P (46) 

If the exponential residuals are distributed as RD, the 

dataset ���, �	, … , ���  can be modelled with RD. The 
residuals are obtained: 

 <̂� � OP  � � ¦
 + (
ZZ OP � (47) 

Where:¦
 � ∑ R� �K$LM ∑ R� � R� �$�∑ �R� ��8K$LM ∑ R� �$K$LMK$LMI∑ R� �K$LM J8�� ∑ �R� ��8K$LM  

The ordered exponential residuals exp�e
¤� against the 
quantiles of the RD are plotted in the Q-Q plot. Fig. 1 and 2 
show that the data points are not very different from the 
straight line. Thus, we can conclude that the underlying 

distribution of the first-unit and second-unit data of Mosul 
Dam corresponds to the Rayleigh distribution. 

 

Fig. 1  Q-Q plot for the first unit's data of Mosul Dam. 
 

 
Fig. 2  Q-Q plot for the second unit's data of Mosul Dam. 

 

From Fig.3, the times of failure for the first unit of Mosul 
Dam data and its fitted times against the number of failures 
are plotted by ASP with the estimator's ML, MM, and RP for 
the dataset, respectively. Note that ASP is a better fit for data 
than RP. This also supports � � �<B�in equation (36) where � � 6.9626and the relevant p-value � 1.6700 × 10-�	. This R-testdetects that the data follows the ASP. Table 3 shows an 
estimation of the ( and C parameters using MM and ML 
estimators, as well as includes the MSE values for the Mosul 
Dam. Moreover, it can be observed from table 3 that ASP with 
MM estimators is more reasonable than ASP with ML 
estimators. 

 

Fig. 3 Plotting the number of failures against ��and �[�for the first unit of 
Mosul Dam. 
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TABLE III 
ESTIMATION OF PARAMETERS AND MSE FOR THE FIRST UNIT'S DATA OF 

MOSUL DAM. 

Method (
 C[ MSE 

MM 0.2539 5.4714 18.3122 

ML 0.5131 81.5604 19.0716 
RP 0 3.3448 20.1570 

From Fig.4, the times of failure for the second unit of 
Mosul Dam data and its fitted times against the number of 
failures are plotted by ASP with the estimator's ML, MM, and 
RP for the dataset, respectively. Note that ASP is a better fit 
for data than RP. This also supports � � �<B�in equation (36) 
where R � 6.2570  and the relevant = � u5O´< � 1.9627 ×10��� . This R-test  detects that the data follows the ASP. 
Table 4 shows an estimation of the (and C parameters using 
MM and ML estimators, as well as includes the MSE values 
for the Mosul Dam. Moreover, it can be observed from table 
4 that ASP with MM estimators is more reasonable than ASP 
with ML estimators. 

TABLE IV 
ESTIMATION OF PARAMETERS AND MSE FOR THE SECOND UNIT'S DATA ON 

THE MOSUL DAM 

Method (
 C[ MSE 

MM 0.3564 8.4123 17.1684 
ML 0.4437 77.4313 17.2579 
RP 0 3.6613 19.9982 

 
Fig. 4  Plotting the number of failures against ��and �[� for the second unit of 
Mosul Dam. 

IV. CONCLUSION 

In this paper, an estimate of the occurrence rate of an ASP 
is studied when the first occurrence time distribution is 
suggested to be RD. Estimators (and Care obtained using 
MM and ML methods. The simulation study results showed 
that the MM estimator outperformed the ML estimator. In real 
data set applications, ASP with RD offers better data than RP 
in both applications. A test statistic has been developed to test 
whether the data conforms to an ASP. 
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