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Abstract— Land-use change has an impact on growing physical flood vulnerability. Geographic Information System (GIS) and Analytic 

Hierarchy Process (AHP) approaches are increasingly being used for flood vulnerability assessments. However, none has used time-

series land cover data for evaluation and rainfall over various return periods for prediction simultaneously, especially in Indonesia. 

Therefore, this study aims to evaluate and predict physical flood vulnerability using time-series land cover data and rainfall data over 

various return periods. Eight criteria were considered in the assessment: elevation, topographic wetness index, slope, distance to the 

river, distance downstream, soil type, rainfall, and land cover. The criteria weights were determined using the AHP method based on 

expert judgment. The multi-criteria model was built and validated using flood inundation data. Based on the validated model, the effect 

of land cover changes on flood vulnerability was evaluated. The flood vulnerability changes were also predicted based on rainfall over 

various return periods. The evaluation and prediction models have shown reliable findings. The criterion elevation and distance to the 

river significantly influenced the physical flood vulnerability by 41% and 20%. The evaluation model showed a strong correlation 

between the built-up area and the area with high flood vulnerability (r2 = 0.96). Furthermore, the model predicted an inundation area 

expansion for rainfall over various return periods. Further research using spatial data with higher resolution and more advanced 

validation techniques is needed to improve the model accuracy.  
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I. INTRODUCTION

Due to urbanization, land use transition negatively affects 
local ecological systems [1], [2]. As a result, the ecological 
function of green space to achieve a livable city decreases 
linearly with the green space reduction [3]. If this 
phenomenon occurs rapidly, the pressure on green space and 
water resources will cause negative impacts on the 
environment [4]. The changes in green space and land to 
accommodate flood discharge into the built-up area increases 
the maximum discharge and the damage in a flood-affected 
area [5]. Land-use change and climate change impacts also 
increase watershed vulnerability to flooding, so local 
authorities need to evaluate the flood vulnerability [6]. This 
condition is experienced by Tangerang City in Indonesia, a 
fast-growing city with a tropical climate adjacent to Jakarta, 
the capital city of Indonesia. 

Tangerang City has experienced land-use changes due to 
the regional physical development policy [7]. The built-up 
area has increased rapidly in the last decades, whereas the 
vegetated land area has decreased. As a result, floods occur 
with greater frequency and greater strength. The local 
authorities have prepared a Drainage System Master Plan to 
overcome the flood problem, including developing flood 
control infrastructure [8]; nevertheless, in 2020, the city has 
suffered significant losses due to flooding. Based on this 
condition, the local authorities need to evaluate the flood 
vulnerability due to land-use changes as an impact of the 
physical development in the area. They also need flood 
vulnerability prediction models in several rainfall scenarios 
with a return period of up to 100 years. However, the local 
authorities often face a dearth of data on flood discharge, as 
required by hydrological and hydraulic models for validation 
purposes [9]. This condition causes difficulty in implementing 
hydrological and hydraulic models because the model's 
accuracy cannot be proven. Instead, scholars implement the 
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watershed physical vulnerability theory by accommodating 
the physical factors that influence physical flood vulnerability 
[10]. 

A large body of literature has discussed the GIS and multi-
criteria decision-making (MCDM) approach for mapping and 
measuring physical flood vulnerability. Over the last three 
decades, remote sensing and GIS approaches have been 
successfully applied to various flood vulnerability 
assessments [11], [12], [21], [13]–[20]. The free availability 
of medium-resolution remote sensing data also supported the 
increased use of geospatial in flood vulnerability analysis. 
Some authors used the free available remote sensing data, 
such as Landsat  [15], [17], [20] and Sentinel [13] imagery 
data, Digital Elevation Model (DEM) Shuttle Radar Terrain 
Mission (SRTM) [13], [19], and The Terra Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) imagery data [17], [18], as primary data for 
constructing several physical vulnerability factors. 

Studies have applied a combination of geospatial and 
MCDM approaches [11]–[13], [16], [20]; other studies 
combined the GIS approach with the random forest method 
[22], [23], and the fuzzy approach [24]–[26]. However, to the 
best of the author’s knowledge, none has used historical land 
cover data for evaluation and rainfall data over various return 
periods to predict flood vulnerability simultaneously. In most 
studies, the different roles of each physical criterion on flood 
vulnerability were considered by applying criteria weights in 
the analysis process. In most studies, a single data package 
was analyzed so that the resulting flood vulnerability map was 
suitable for one particular condition [11]–[13]. Feloni et al. 
[12] used one dataset with variations in the weighting of the 
criteria in the multi-criteria decision-making method to find 
the best method of weighting the criteria. Deepak et al. [10] 
and Hussain et al. [13] also used one dataset to find the effect 
of flood vulnerability criteria on physical flood vulnerability. 
Using one dataset, the assessment results should only 
represent one physical condition in the study area. Therefore 
these results could not meet the need of local authorities to 

support flood adaptive spatial planning [27] and educate the 
community regarding the potential flood [28], [29]. This study 
fills this research gap by evaluating flood vulnerability based 
on time-series land cover data and predicting flood 
vulnerability using rainfall over various return periods.  

Using the Kali Ledug Watershed in Tangerang city, 
Indonesia, as a study area, this research aims to evaluate and 
predict physical flood vulnerability using time-series land 
cover data and rainfall data over various return periods. The 
evaluation and prediction results would support the local 
authorities and other stakeholders as a reference in flood 
adaptive city spatial planning and as a communication tool for 
public education regarding flood risk management.  

II. MATERIALS AND METHOD 

A. Study Area 

This study was conducted at Kali Ledug Watershed, 
located in Tangerang City, Indonesia, with geographical 
boundaries between 106° 33' 45" and 106° 36' 1" Eastern 
longitude and between -6° 9' 7" and -6° 13' 19" Southern 
latitude (Fig. 1). With an area of 14.43 km2, the Kali Ledug 
Watershed falls in the Jatiuwung District (upstream) and 
Periuk District (downstream). Kali Ledug Watershed is a 
lowland area with an elevation range of 5 m downstream to 
34.84 m upstream. This watershed is a flat area with an 
average slope of 3.23%. The main river in Kali Ledug 
Watershed is Kali Ledug, which flows from South to North. 

As part of a city adjacent to Jakarta, the capital city of 
Indonesia, the Kali Ledug Watershed has experienced rapid 
regional growth. In the City Spatial Planning in 2012–2032, 
the Jatiuwung District is planned as an industrial area. Periuk 
District is projected to transform into an area conducive to 
trade and services, medium to high-density housing integrated 
industries with an environmental perspective [7]. Housing, 
industries, and other socio-economic facilities have rapidly 
developed and resulted in a land-use change over the last 
decades.  

 

 
Fig. 1  The geographic location of the study area in Tangerang City, Indonesia 

 

2157



B. Conceptual Framework 

Local authorities require information about the flood 
vulnerability of the watershed under their authority. This 
includes comprehensive information regarding the temporal 
change of watershed flood vulnerabilities and predictions of 
flood vulnerability growth due to future scenarios, one of 
which is based on rainfall scenarios with various return 
periods. For this reason, local authorities need information on 
the main contributing factors to the flood events in the 
watershed in order to evaluate the temporal change of flood 
vulnerability resulting from the built-up area increasing in the 
watershed and predict scenarios for flood vulnerability due to 
future rainfall over various return periods. This information 
would be helpful as input data for flood mitigation planning, 
a flood risk communicating tool to the public, and 
considerations in flood-based spatial planning. 

Multi-criteria spatial analysis with criteria weighting could 
be used to determine the main factors causing flood 
vulnerability of a watershed [11], [12], [16], [17], [30]. Based 
on the valid model, the evaluation of flood vulnerability 
changes as a result of the growth of built-up areas due to 
human activities and public policies [31], [32], and the 
prediction of flood vulnerability changes due to rainfall with 
various return periods (10, 50, 100 years) could be conducted 
to obtain information that underlies the flood risk 
management policy in the watershed. 

C. Method of Physical Flood Vulnerability Evaluation and 

Prediction 

In this study, evaluating and predicting watershed flood 
vulnerability was carried out in four stages: stage one spatial 
data preparation, stage two criteria weighting using the AHP 
method, stage three multi-criteria analysis, and stage four, 
creating an evaluation model using land cover time-series data 
and prediction model using rainfall data with various return 
periods (Fig. 2). In stage one, the physical criteria used in the 
evaluation include elevation, slope, topographic wetness 
index (TWI), land cover, distance to the river, soil type, 
distance downstream, and rainfall. The physical criteria used 
in this study are the results of a literature study [11], [12], [16], 
adapted to the research area's physical conditions.  

In the second stage, this study used AHP as a multi-criteria 
weighting method because studies have found that each 
criterion had a varied contribution to the flood vulnerability. 
The AHP method has been used by many studies to assign 
weighting criteria based on expert judgements. In the third 
stage, multi-criteria spatial analysis was conducted and 
validated using an accuracy assessment model based on flood 
inundation data in February 2020. The result of this stage was 
a valid model that described the condition of watershed flood 
vulnerability and the valid criteria weights during the flood 
event.  

Many studies have used geospatial techniques and multi-
criteria weighting methods to measure flood vulnerability, as 
described in stages one to three (Fig. 2). This study 
participated in the debate of scientific literature by adding 
stage four, the flood vulnerability evaluation and prediction 
modelling, conducted based on the valid model. The input 
data used in the flood vulnerability evaluation were time-
series land-cover data from 2001 to 2020 with 5-year 
intervals. The model was run for each land cover from 2001 

to 2020 to obtain time-series physical flood vulnerability. A 
correlation test was conducted between the built-up area and 
the area with high and very high flood vulnerability, and a 
regression equation was developed to represent such 
correlation.  

 

 
Fig. 2  Flowchart of the flood vulnerability evaluation and prediction 

 

Rainfall data with various return periods ranging from 5 to 
100-years were also used to determine the physical flood 
vulnerability based on the valid model. These prediction 
models produced flood vulnerability maps for various rainfall, 
proving useful in flood defense infrastructure planning. The 
local authorities could use the regression equation and the 
rainfall-based prediction to predict the increase in areas with 
high flood vulnerability levels due to the growth of the built-
up area and the rainfall return period. 

D. Spatial Data Preparation 

The data used in this study was obtained from various 
sources. Data on watershed boundaries, elevation, slope, and 
TWI was obtained from the Indonesian National DEM 
(DEMNAS) image processing, which is DEM data with 0.27-
arcsecond (8.3 m) resolution produced by the Indonesian 
Geospatial Information Agency (Badan Informasi 
Geospasial/BIG). Time-series land cover data were obtained 
from the Indonesian National Research and Innovation 
Agency (BRIN) based on Landsat 7 ETM images and Landsat 
8 OLI images. As maximum daily rainfall data, soil type data 
was obtained from the local authorities, river spatial data from 
BIG, and rainfall data from the Indonesian Agency for 
Meteorological, Climatological, and Geophysics. 
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1)   Elevation:  Elevation is a significant factor in the 
physical flood vulnerability analysis. In most GIS-based flood 
vulnerability studies, this factor is used because of its 
significant influence on the formation of flood vulnerability 
[12], [13], [15], [33], [34]. In this study, the elevation data was 
obtained from DEMNAS data by clipping on the study area, 
ranging from 0–53.47 m (Fig. 3a). 

2)   Slope:  Slope also plays a significant role in the 
physical flood vulnerability analysis, which is used in most 
GIS-based studies [12], [13], [15], [33]. Slope affects the 
speed of the water flow through drainage channels and 
watersheds. In the surface runoff formation, slope acts as the 
main factor so that, on flat surfaces (small slopes), water flows 
slower than on surfaces with large slopes [33], [34]. This 
study generated the slope from the DEMNAS data, ranging 
from 0.01 to 43.66% (Fig. 3b).  

3)   Topographic Wetness Index (TWI):  Topographic 
Wetness Index represents the influence of the topographical 
conditions in each watershed raster cell during the formation 
of surface runoff [35], [36]. This criterion indicates whether a 
raster cell can topographically produce surface runoff or not. 
In general, TWI includes two things: the hydrographic 
position of the cell in the watershed and the presence or 
absence of a low slope. With SCA as a Specific Catchment 
Area and α as the slope angle, assuming uniform soil 
properties [35], TWI is calculated through Formula (1). 

 ��� =  ln �	


�� �
  (1) 

Technically, TWI is generated based on DEMNAS data and 
ranged from 2.98 to 21.04 (Fig. 3c). 

4)   Distance to the river:  Floods in the study area occur 
along with the river flow, so the distance to the river becomes 
an essential factor [11]. The area closest to the river is most 
vulnerable to flooding; therefore, the watershed area is 
divided into five classes based on the river criterion's distance. 
This study used a 100 m distance classification starting from 
the river channel. Euclidean Distance, a spatial analysis tool 

provided by ArcGIS, is used to obtain spatial data on the 
distance to the river.  

5)   Distance to downstream:  Naturally, water flows to a 
place with a lower elevation so that if there is a flow barrier 
in the downstream area, there will be a build-up of flow 
discharge. This condition relates to the relationship between 
upstream and downstream areas in a watershed, which is 
complex and requires comprehensive research for better 
understanding [37]. The flood defense infrastructure program 
in the upstream area might increase flood discharge in the 
downstream area [38]. In this study, the area closest to the 
downstream was assumed to be most vulnerable to flooding. 
To obtain spatial data distance to the downstream, the spatial 
analysis method used was Euclidean Distance. The 
classification used a distance of every 1,000 m, starting from 
the estuary.  

6)   Soil type:  The effect of soil type in a watershed on the 
formation of surface runoff is highly dependent on soil 
characteristics such as layer thickness, permeability, 
infiltration rate, and the level of soil moisture contained [34]. 
Technically, the infiltration rate of a location can be 
determined based on the soil type. In the study area, the soil 
type in all watershed areas was the associated of red latosol 
and reddish-brown latosol. 

7)   Land cover:  Land cover is a significant factor in the 
analysis of physical flood vulnerability [12], [13], [15], [33], 
[34]. This study used land cover data from 2001 to 2020. The 
land cover data for 2001, 2006, and 2011 were produced 
based on Landsat 7 ETM imagery and for 2016 and 2020 
based on Landsat 8 OLI imagery. The analytical method for 
determining land cover classification was supervised using 
the Random Forest (RF) algorithm. Land cover was classified 
into six classes: built-up area, barren land, dense vegetation, 
less dense vegetation, sparse vegetation, and water body (Fig. 
3d). The analytical method identified land cover changes in 
the watershed; the built-up area increased significantly from 
25.3% (2001) to 64.09% (2020), while other land cover areas 
decreased. 

 
Fig. 3  Data preparation for the flood vulnerability evaluation and prediction model: a) elevation, b) slope, c) TWI, d) land cover (2020) 
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TABLE I 
CRITERIA RECLASSIFICATION 

Nr. Criteria Reclassification Score Level 

1 Elevation 0-7 m 5 Very high 
 (EL) 7-14 m 4 High 
  14-21 m 3 Moderate 
  21-28 m 2 Low 
  28-35 m 1 Very low 

2 Slope >45% 5 Very high 
 (SL) 25-45% 4 High 
  15-25% 3 Moderate 
  8-15% 2 Low 
  0-8% 1 Very low 

3 TWI 0-5 5 Very high 
 (TW) 5-10 4 High 
  10-15 3 Moderate 
  15-20 2 Low 
  20-25 1 Very low 

4 Land cover Built-up area 5 Very high 
 (LC) barren land 4 High 
  sparse vegetation 3 Moderate 
  less dense vegetation 2 Low 
  dense vegetation 1 Very low 

5 Distance to 0-100 m 5 Very high 
 River (DR) 100-200 m 4 High 
  200-300 m 3 Moderate 
  300-400 m 2 Low 
  >400 m 1 Very low 

6 Soil type Regosol 5 Very high 
 (ST) Alluvial, andosol 4 High 
  Latosol, Litosol 3 Moderate 
  Mediteran 2 Low 
  Grumusol 1 Very low 

7 Distance to 0-1,000 m 5 Very high 
 downstream 1,000-2,000 m 4 High 
 (DD) 2,000-3,000 m 3 Moderate 
  3,000-4,000 m 2 Low 
  > 4,000 m 1 Very low 

8 Rainfall 200-230 mm 5 Very high 
 (RA) 170-200 mm 4 High 
  140-170 mm 3 Moderate 
  110-140 mm 2 Low 
  77-110 mm 1 Very low 

8)   Rainfall: The maximum daily rainfall data were 
processed into regional rainfall for return periods of 2, 5, 10, 
25, 50, and 100-years. As there are no rainfall stations within 
the Kali Ledug Watershed, it is necessary to perform spatial 
interpolation of data from several rainfall stations around the 
Kali Ledug watershed. The spatial interpolation method used 
was inverse distance weighting (IDW). The IDW method is 
considered one of the standard methods for obtaining 
interpolated data [39]–[41]. This method assumes that the 
value of the point located closer to the measurement location 
will be affected more by the value of the measurement point. 
This assumption assigns a smaller distance value a more 
significant weight value. In this study, the rainfall values 
ranged from 118.74 to 124.31 mm/d (5-year return period), 
while for the 100-year return period, the rainfall values ranged 
from 223.90 to 225.53 mm/d. 

Furthermore, all spatial criteria must be reprojected, 
clipped and reclassified into the same scale to be 

mathematically operated. All criteria were reclassified for this 
flood vulnerability analysis into five classes ranging from 1 to 
5 (TABLE I). After spatial criteria were reclassified, a 
weighted overlay analysis was performed, and the criteria 
weights were determined using the AHP method. 

E. Criteria Weighting using AHP 

The AHP method was used to describe complex decision-
making problems using a hierarchical system [42]. In this 
study, criteria weighting analysis was performed to consider 
the effect of each variable on physical flood vulnerability. The 
AHP method was applied using three expert judgments, 
which assessed the pairwise comparison matrix between the 
criteria of the flood vulnerability. The score used in the 
pairwise comparison matrix ranged from 1 to 9 [42], where a 
value of 1 meant that an indicator had the same important 
value as its partner indicator, while a value of 9 meant that an 
indicator had an extremely important than its partner 
indicator. A value of 3 means moderate importance, a value 
of 5 means strongly importance, and a value of 7 means very 
strongly importance. For example, when comparing criteria A 
and B, the value 9, located on line B, meant that criterion B 
was more important than criterion A.  

The expert's judgment could be different for each criterion 
during pairwise comparison; thus, for criteria weight analysis, 
with n is the number of experts and x1, x2, …, xn are pairwise 
comparison values, the geometric mean (Gx) value was 
calculated using Formula (2) [42]. 

 �� =  ���. �� … ��
�   (2) 

The analysis in the AHP method was carried out in two 
stages: first, criteria weight analysis, and second, consistency 
assessment. Criteria weight analysis was performed by (i) 
calculating the normalisation value for each criterion and (ii) 
determining the normalised principal eigenvector or priority 
vector (also called relative weight). An iteration process was 
conducted to obtain the most accurate eigenvalues so that the 
difference in eigenvalues between the stages is close to zero. 
The normalised value in the matrix was the cell value divided 
by the column sum. This process produced a column sum 
value of 1 for each criterion. The relative weights were then 
calculated by averaging the rows of each matrix. 

The consistency assessment was performed because of the 
possibility of judgment inconsistencies in the pairwise 
comparison assessment. In the AHP method, this 
inconsistency can be tested using the consistency ratio (CR), 
which is the ratio between the consistency index (CI) and the 
random index (RI).  

 �� =  ������

���
  (3)  

 �� =  	 

! 
  (4) 

CI is a function of the maximum eigenvalue (λmax) of the 
pairwise comparison matrix and the number of indicators used 
(n). RI represents the consistency index of the random 
pairwise comparison matrix. Saaty (2004) has provided a 
table of RI values that depend on the number of criteria used 
[42]. A CR value lower than 0.10 indicates consistency in the 
pairwise comparison assessment, so the result of the criteria 
weight analysis can be used [42]. 
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III. RESULTS AND DISCUSSION  

A. Criteria Weighting 

Based on the three expert judgments on criteria pairwise 
comparisons, a matrix containing the geometric mean of the 
assessment was compiled (TABLE II). Furthermore, this 
matrix was normalised by dividing each cell value by its 
column sums. At the end of this process, the initial 
eigenvalues were obtained, then used as a value for 
comparison with the eigenvalues of the following iteration 
process. In the first iteration process, the difference in the 
eigenvalues derived was significant (0.01–0.03), 
necessitating the second iteration process. In the second 
iteration stage, the difference in eigenvalues was close to zero; 
thus, the eigenvalues obtained in the second iteration process 
were used as criteria weights. The weighting analysis of the 
criteria using the AHP method resulted in elevation (16.42%), 
slope (8.15%), soil type (6.39%), TWI (8.73%), distance to 
the river (15.34%), rainfall (21.31%), land cover (11.02%), 
and distance to downstream (12.64%), respectively.  

TABLE II 
GEOMETRIC MEAN OF EXPERT JUDGMENTS 

  EL SL ST TW DR RA LC DD 

EL 1.00 1.18 1.53 1.41 2.00 0.94 1.53 2.00 
SL 0.85 1.00 1.73 1.22 0.71 0.20 0.33 0.58 
ST 0.65 0.58 1.00 0.58 0.58 0.27 0.41 0.71 
TW 0.71 0.82 1.73 1.00 0.41 0.58 1.00 0.58 
DR 0.50 1.41 1.73 2.45 1.00 0.93 1.73 2.00 

RA 1.07 4.90 3.74 1.73 1.08 1.00 3.46 0.82 
LC 0.65 3.00 2.45 1.00 0.58 0.29 1.00 0.71 
DD 0.50 1.73 1.41 1.73 0.50 1.22 1.41 1.00 

The consistency ratio was calculated after the criteria 
weights were determined. In this study, the λmax value was 
8.5826. Based on Formula (3), with eight criteria and the λmax 
value, the CI value was calculated as 0.083. The random index  
(RI) value taken from the table given by Saaty [42] was 1.41 
for eight criteria [42]. Therefore, the consistency ratio (CR) 
was calculated based on Formula (4), producing a CR value 
of 5.9%. With a CR value of less than 10%, the weighting 
results using the AHP method could be considered suitable 
for further use [42]. 

B. Flood Vulnerability Model 

After determining the criteria weights, spatial analysis 
using a multi-criteria evaluation technique was performed by 
assigning the criteria weights to each criterion. The spatial 
analysis resulted in a flood vulnerability map in raster format 
showing the Kali Ledug Watershed with various flood 
vulnerability levels. Two parameters were used to interpret 
the modelling results, namely A1 and A2. A1 is where the 
model produced a high vulnerability value but the area was 
not flooded, while A2 is where the model produced a high 
vulnerability value and the area was flooded. A combination 
of criteria weights was sought in this accuracy assessment to 
produce a minimum A1 and a maximum A2. In the flood 
vulnerability model using the criteria weights from the AHP 
method, the A2 value was 29.98%, and the A1 value was 
0.56%. The optimal value for the valid model was obtained 
by changing the criteria weights, which combines the 
maximum A2 value and the minimum A1 value. The A2 value 

obtained for this model was 77.05%, and the A1 value was 
26.72%. The criteria weights in this valid model are elevation 
(41%), slope (10%), soil type (1%), TWI (6%), distance to the 
river (20%), rainfall (7%), land cover (7%), and distance to 
downstream (8%). In this valid model, the area with a high 
level of flood vulnerability is 1,639,065 m2 (Table III). 

TABLE III 
FLOOD VULNERABILITY OF KALI LEDUG WATERSHED 

Level Vulnerability Level Area in m2 Area in % 

1 Very low vulnerable 57,021 0.40 
2 Low vulnerable 6,551,755 45.40 
3 Moderately vulnerable 6,182,191 42.84 
4 Highly vulnerable 1,639,065 11.36 

C. Land Cover based Flood Vulnerability Evaluation 

Once the valid flood vulnerability model validation is 
performed, it can be used to evaluate physical flood 
vulnerability. The flood vulnerability evaluation in this study 
used land cover data from 2001 to 2020, with an interval of 
five years. The areas with a high and very high flood 
vulnerability experienced a quasi-linear growth from 2001 to 
2020. In 2001 the area with high and very high vulnerability 
was 1,233,334 ha; in 2006, it was 1,369,894 ha, and in 2020 
it was 1,639,065 ha. Considering the social-economic growth 
in the study area, the land-use change in the built-up areas 
would continue. For this purpose, a regression analysis was 
performed to determine the relationship between the built-up 
area and the area with a high level of flood vulnerability.  

The regression analysis produced a linear regression 
equation with a coefficient of determination r2 of 0.96. With 
x as the built-up area, the resulting equation was as follows: 

 " = 0.0616 � + 1,034,446.7 (5)  

Since the r2 value is close to one, it can be concluded that 
the regression model is highly accurate in predicting results. 

D. Flood Vulnerability Prediction Model 

The Prediction model of the area's growth with a high level 
of flood vulnerability was performed using rainfall data over 
various return periods. The model produced a flood 
vulnerability map with various levels of vulnerability in the 
entire Kali Ledug Watershed (Fig. 4a-c). Areas with high 
flood vulnerability in the Kali Ledug Watershed showed an 
increase compared to the flood inundation data of Feb 2020. 
For the rainfall with a 10-year return period, it is predicted 
that there will be areas with a high vulnerability of 1,906,018 
hectares, the rainfall with a 50-year return period of 2,282,718 
hectares and the rainfall with a 100-year return period of 
2,565,191 hectares. 

E. Discussion 

This study demonstrated that the criteria elevation and 
distance to the river, with criteria weights of 41% and 20%, 
were the dominant factors in the physical flood vulnerability 
analysis. Other criteria such as slope, distance to downstream, 
rainfall, land cover, TWI, and soil type played a minor role, 
with criterion weights of 10%, 8%, 7%, 7%, 6%, and 1%, 
respectively. This model result followed the field conditions 
where flooding occurs in the downstream area with the lowest 
elevation in the watershed.  
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Fig. 4  Prediction of the area with high and very high flood vulnerability at various rainfall return periods: a) 10-year, b) 50-year, c) 100-year 

 
Floods also occurred due to the overflow of Kali Ledug; 

thus, the distance to the river became significant. The criteria 
used in this study were relevant to those used in the literature, 
including land cover, elevation, slope, distance to the river, 
rainfall, drainage network, soil type, TWI, Stream Power 
Index (SPI), and Normalized Difference Vegetation Index 
(NDVI) [11]–[13], [15], [16], [18], [34]. While there is no 
definite agreement on which parameters should be applied for 
physical vulnerability analysis, there are some similarities in 
some of these studies. As in this study, the elevation factor 
and distance to the river were found to be the dominant factors 
in flood vulnerability by several studies [11], [13], [16]. In a 
study over a large study area (1,586 km2) in Pakistan, Hussain 
et al. [13] found that the distance to the river played a 
dominant role (41%), followed by elevation (29%). In a study 
in Ethiopia covering an area of 1107 km2, Desalegn & Mulu 
[16] found that the dominant variables were slope (37%) and 
elevation (25%). Desalegn & Mulu did not use the distance to 
the river as input data. In a study in India on a 6.46 km2 
watershed, Deepak et al. [11] found that the dominant 
variables influencing flood vulnerability are distance to the 
river (40%) and elevation (27%). 

Several GIS-based flood vulnerability studies using AHP 
in criteria weighting did not critically assess the quality of 
criteria weights produced by the AHP method. Dandapat and 
Panda [19] used the weights generated by the AHP method to 
calculate the physical vulnerability index (PVI) and used the 
resulting PVI without validation. Ogato et al. [15] also used 
the AHP method for criteria weighting in calculating flood 
hazards. Using weights from the AHP method, the modelling 
results were also accepted without weight validation. In recent 
studies, several scholars also used the AHP method for 
variable weighting in calculating the flood vulnerability index 
but did not validate the criteria weights generated by the AHP 
method [11]–[13], [16]. We agree with Gigović et al. [33], 
who used three versions of the AHP method to weight the 
flood hazard criteria and validate the modelling results using 
inundation maps. The validation process recommended the 
AHP method with rough interval numbers as the weighting 

method with the highest accuracy. With almost the same 
method, Feloni et al. [12] used three variants of AHP and 
found that fuzzy-based AHP produced a model with a better 
accuracy level. However, neither Gigović et al. [33] nor 
Feloni et al. [12] did not modify the criteria weighting 
resulting from the AHP method. 

This study validated the model with an inundation map by 
modifying the criteria weights produced using the AHP 
method. This weight modification was done to get the model 
results that fitted the validation data (inundation map). By 
changing some criteria weights, the model produced a higher 
level of accuracy. The AHP weighting method-based model 
produced a low accuracy level between the modelling results 
and the validation data in flooded areas (29.98%); in non-
flooded areas, the model also produced small areas with a 
high vulnerability level (0.56%). Otherwise, the model with 
modified variable weights produced a high accuracy level 
between the modelling results and validation data in flooded 
areas (77.05%), and in non-flooded areas, this model 
produced moderate areas with a high level of vulnerability 
(26.72%). 

Of the eight physical criteria used in the flood vulnerability 
analysis, only one criterion was directly affected by human 
activities: land cover. The built-up area played the highest role 
in increasing physical flood vulnerability among the land 
cover components, in line with the finding from Deepak et al. 
[11]. This information becomes the basis for answering 
questions about the effect of changes in built-up areas on 
flood hazard that has been occurring so far and how future 
physical development plans will affect flood susceptibility in 
the study area. Equation 5, y = 0.0616 x + 1,034,446.7 can be 
used as a reference in analysing the impact of the physical 
development planning in the Kali Ledug Watershed. The 
increase of areas with high flood vulnerability (variable y) can 
be calculated based on the increase of the built-up area 
(variable x). The increase in areas with high vulnerability can 
be used as input for the local authority to plan relevant flood 
defence infrastructure to reduce the impact of flooding caused 
by growth in a built-up area.  
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Furthermore, the local authority can reduce the built-up 
area to reduce the area with high vulnerability. Practical 
solutions are appropriate land-use planning practices in flood-
prone areas [16] and converting impermeable surfaces into 
vegetated land. In addition, predictions of areas with high 
vulnerability can also be used to communicate to the public 
about the flooding potential. Consequently, well-informed 
local authorities, communities, and other stakeholders can 
take mitigation actions and prepare themselves and the people 
for flooding [15]. Flood adaptive land-use planning supported 
by adequate infrastructure is expected to reduce the flood risk 
that hampers community activities [15], [27], [34] and 
ultimately reduce losses due to flooding [43]. 

As an implication at the operational level, the results of this 
study would support Grounds et al. [28], who found that 
people in flood-prone areas expect information about the 
potential for flooding. Flood vulnerability maps for several 
rainfall designs up to a return period of 100-years are critical 
as public communication tools regarding potential floods. In 
line with Grounds et al. [28], Intrieri et al. [29] found that 
information about potential floods is crucial for people living 
in areas with high flood vulnerability. The availability of 
flood vulnerability maps in those areas can increase public 
awareness in preparing for floods. 

In this study, flood vulnerability prediction analysis and 
evaluation were demonstrated as a tool to generate flood 
vulnerability information needed by local authorities in 
managing watershed areas. We consider that the proposed 
method has worked well and could meet the expected goals. 
This study has provided insight to bridge research results to 
users at the operational level.  

IV. CONCLUSION 

This study evaluated and predicted the physical flood 
vulnerability of the Kali Ledug Watershed, Tangerang City, 
Indonesia, using GIS and AHP approaches by considering 
time-series land cover data and rainfall data over various 
return periods. It was found that the most significant factors 
in physical flood vulnerability are elevation (41%) and 
distance to the river (20%). The other criteria are slope (10%), 
distance to the estuary (8%), LULC (7%), rainfall (7%), TWI 
(6%), and soil type (1%), which played a minor role in the 
physical flood vulnerability. The evaluation model also 
recommended a formula (linear regression, r2 = 0.96) to 
calculate the area with high flood vulnerability related to the 
built-up area to predict the impact of physical watershed 
development; therefore, the study result is essential for city 
planning. The vulnerability model was also used to predict the 
flood vulnerability level for several rainfall scenarios over 
various return periods up to 100-years, which are essential 
public communication tools for creating awareness regarding 
potential floods. 

Another finding of this study was that using the AHP 
method for criteria weighting resulted in less-than-optimal 
model output than the validation data. Therefore, it was 
necessary to assess the model accuracy by modifying the 
criteria weights iteratively until the suitability of the model 
results and validation data reached the maximum. This study 
was conducted in a relatively small watershed (14.43 km2). 
Therefore, studies in a broader study area and more 
heterogeneous flood events are necessary to increase 

generalizability. Moreover, since accuracy is a vital aspect of 
any model, we suggest further research using spatial data with 
higher resolution and more advanced validation techniques to 
improve the model accuracy.  

NOMENCLATURE 
Gx geometric mean  
m number of experts person 
n number of criteria  
xn pairwise comparison value expert n  
CI consistency index  
RI random index  
 
Greek letters 
λ eigenvalue  
α slope angle rad 

ACKNOWLEDGMENT 

This research and the article's publication were funded by 
the Grant PUTI Doktor 2020 from the Directorate of Research 
and Community Service, the University of Indonesia [grant 
number: NKB-746/UN2.RST/HKP.05.00/2020]. This 
research program was also supported by the Saintek-
Scholarship program, The National Research and Innovation 
Agency (BRIN). 

REFERENCES 

[1] Y. Lang and W. Song, “Quantifying and mapping the responses of 
selected ecosystem services to projected land use changes,” Ecol. 

Indic., vol. 102, no. July 2019, pp. 186–198, 2019, doi: 
10.1016/j.ecolind.2019.02.019. 

[2] C. Deng et al., “How trade-offs between ecological construction and 
urbanization expansion affect ecosystem services,” Ecol. Indic., vol. 
122, p. 107253, 2021, doi: 10.1016/j.ecolind.2020.107253. 

[3] B. H. Santosa and R. H. Koestoer, “Public Green Space Planning and 
Management towards Livable City,” in 2020 IEEE Asia-Pacific 

Conference on Geoscience, Electronics and Remote Sensing 

Technology (AGERS), 2020, 2020, pp. 102–106. doi: 
10.1109/AGERS51788.2020.945276. 

[4] P. Riad, S. Graefe, H. Hussein, and A. Buerkert, “Landscape 
transformation processes in two large and two small cities in Egypt 
and Jordan over the last five decades using remote sensing data,” 
Landsc. Urban Plan., vol. 197, no. December 2019, p. 103766, 2020, 
doi: 10.1016/j.landurbplan.2020.103766. 

[5] J. Hounkpè, B. Diekkrüger, A. A. Afouda, and L. O. C. Sintondji, 
“Land use change increases flood hazard: a multi-modelling approach 
to assess change in flood characteristics driven by socio-economic 
land use change scenarios,” Nat. Hazards, vol. 98, no. 3, pp. 1021–
1050, 2019, doi: 10.1007/s11069-018-3557-8. 

[6] S. Vemula, K. Srinivasa Raju, and S. Sai Veena, “Modelling impact of 
future climate and land use land cover on flood vulnerability for policy 
support – Hyderabad, India,” Water Policy, vol. 22, no. 5, pp. 733–
747, 2020, doi: 10.2166/wp.2020.106. 

[7] Tangerang City Government, “Tangerang City Regional Regulation 
Number 6 of 2019 concerning Amendments to Tangerang City 
Regional Regulation Number 6 of 2012 concerning the Tangerang 
City Regional Spatial Plan for 2012-2032,” Tangerang City, 2019. 

[8] Public Works and Public Housing Services, “Master Plan for Flood 
Control and Drainage System, Tangerang City,” Tangerang City, 
2017. 

[9] J. Jian, D. Ryu, J. F. Costelloe, and C. H. Su, “Towards hydrological 
model calibration using river level measurements,” J. Hydrol. Reg. 

Stud., vol. 10, pp. 95–109, 2017, doi: 10.1016/j.ejrh.2016.12.085. 
[10] N. Guo, X. Tang, Y. Ren, K. Ma, and J. Fang, “Place vulnerability 

assessment based on the HOP model in the middle and lower reaches 
of the Yangtze River,” GeoJournal, vol. 86, no. 2, pp. 689–710, 2021, 
doi: 10.1007/s10708-019-10092-4. 

2163



[11] S. Deepak, G. Rajan, and P. G. Jairaj, “Geospatial approach for
assessment of vulnerability to flood in local self governments,”
Geoenvironmental Disasters, vol. 7, no. 1, 2020, doi: 10.1186/s40677-
020-00172-w.

[12] E. Feloni, I. Mousadis, and E. Baltas, “Flood vulnerability assessment
using a GIS-based multi-criteria approach—The case of Attica
region,” J. Flood Risk Manag., vol. 13, no. S1, pp. 1–15, 2020, doi:
10.1111/jfr3.12563. 

[13] M. Hussain et al., “Gis‐based multi‐criteria approach for flood
vulnerability assessment and mapping in district Shangla: Khyber
Pakhtunkhwa, Pakistan,” Sustain., vol. 13, no. 6, pp. 1–29, 2021, doi:
10.3390/su13063126. 

[14] M. Nazeer and H. R. Bork, “A local scale flood vulnerability
assessment in the flood-prone area of Khyber Pakhtunkhwa,
Pakistan,” Nat. Hazards, vol. 105, no. 1, pp. 755–781, 2021, doi:
10.1007/s11069-020-04336-7. 

[15] G. S. Ogato, A. Bantider, K. Abebe, and D. Geneletti, “Geographic
information system (GIS)-Based multicriteria analysis of flooding
hazard and risk in Ambo Town and its watershed, West shoa zone,
oromia regional State, Ethiopia,” J. Hydrol. Reg. Stud., vol. 27, no.
March 2019, p. 100659, 2020, doi: 10.1016/j.ejrh.2019.100659. 

[16] H. Desalegn and A. Mulu, “Flood vulnerability assessment using GIS
at Fetam watershed, upper Abbay basin, Ethiopia,” Heliyon, vol. 7, no.
1, p. e05865, 2021, doi: 10.1016/j.heliyon.2020.e05865. 

[17] K. S. Vignesh, I. Anandakumar, R. Ranjan, and D. Borah, “Flood
vulnerability assessment using an integrated approach of multi-criteria
decision-making model and geospatial techniques,” Model. Earth Syst.

Environ., vol. 7, no. 2, pp. 767–781, 2021, doi: 10.1007/s40808-020-
00997-2. 

[18] J. S. Cabrera and H. S. Lee, “Flood-prone area assessment using GIS-
based multi-criteria analysis: A case study in Davao Oriental,
Philippines,” Water (Switzerland), vol. 11, no. 11, 2019, doi:
10.3390/w11112203. 

[19] K. Dandapat and G. K. Panda, “Flood vulnerability analysis and risk
assessment using analytical hierarchy process,” Model. Earth Syst.

Environ., vol. 3, no. 4, pp. 1627–1646, 2017, doi: 10.1007/s40808-
017-0388-7. 

[20] S. Chakraborty and S. Mukhopadhyay, “Assessing flood risk using
analytical hierarchy process (AHP) and geographical information
system (GIS): application in Coochbehar district of West Bengal,
India,” Nat. Hazards, vol. 99, no. 1, pp. 247–274, 2019, doi:
10.1007/s11069-019-03737-7. 

[21] P. Ramkar and S. M. Yadav, “Flood risk index in data-scarce river
basins using the AHP and GIS approach,” Nat. Hazards, vol. 109, no.
1, pp. 1119–1140, 2021, doi: 10.1007/s11069-021-04871-x.

[22] M. Cerri, M. Steinhausen, H. Kreibich, and K. Schröter, “Are
OpenStreetMap building data useful for flood vulnerability
modelling?,” Nat. Hazards Earth Syst. Sci., vol. 21, no. 2, pp. 643–
662, 2021, doi: 10.5194/nhess-21-643-2021. 

[23] Y. Li, S. Gong, Z. Zhang, M. Liu, C. Sun, and Y. Zhao, “Vulnerability
evaluation of rainstorm disaster based on ESA conceptual framework:
A case study of Liaoning province, China,” Sustain. Cities Soc., vol.
64, no. February 2020, p. 102540, 2021, doi:
10.1016/j.scs.2020.102540. 

[24] Ö. Ekmekcioğlu, K. Koc, and M. Özger, “District based flood risk
assessment in Istanbul using fuzzy analytical hierarchy process,”
Stoch. Environ. Res. Risk Assess., vol. 35, no. 3, pp. 617–637, 2021, 
doi: 10.1007/s00477-020-01924-8. 

[25] H. Nasiri, M. J. M. Yusof, T. A. M. Ali, and M. K. B. Hussein,
“District flood vulnerability index: urban decision-making tool,” Int.

J. Environ. Sci. Technol., vol. 16, no. 5, pp. 2249–2258, 2019, doi:
10.1007/s13762-018-1797-5. 

[26] S. Rashetnia and H. Jahanbani, “Flood vulnerability assessment using
a fuzzy rule-based index in Melbourne, Australia,” Sustain. Water

Resour. Manag., vol. 7, no. 2, pp. 1–13, 2021, doi: 10.1007/s40899-
021-00489-w. 

[27] A. Sahu, T. Bose, and D. R. Samal, “Urban Flood Risk Assessment
and Development of Urban Flood Resilient Spatial Plan for
Bhubaneswar,” Environ. Urban. ASIA, vol. 12, no. 2, pp. 269–291, 
2021, doi: 10.1177/09754253211042489. 

[28] M. A. Grounds, J. E. Leclerc, and S. Joslyn, “Expressing flood
likelihood: Return period versus probability,” Weather. Clim. Soc.,
vol. 10, no. 1, pp. 5–17, 2018, doi: 10.1175/WCAS-D-16-0107.1. 

[29] E. Intrieri et al., “Operational framework for flood risk
communication,” Int. J. Disaster Risk Reduct., vol. 46, p. 101510, 
2020, doi: 10.1016/j.ijdrr.2020.101510. 

[30] M. Rahman et al., “Flooding and its relationship with land cover
change, population growth, and road density,” Geosci. Front., vol. 12,
no. 6, p. 101224, 2021, doi: 10.1016/j.gsf.2021.101224. 

[31] D. O. Onyango, C. O. Ikporukpo, J. O. Taiwo, and S. B. Opiyo, “Land
use and land cover change as an indicator of watershed urban
development in the Kenyan Lake Victoria basin,” Int. J. Sustain. Dev.

Plan., vol. 16, no. 2, pp. 335–345, 2021, doi: 10.18280/IJSDP.160213. 
[32] O. M. Ayenikafo and Y. F. Wang, “Land use/land cover changes

analysis in sudano guinean region of benin,” Appl. Ecol. Environ. Res.,
vol. 19, no. 1, pp. 715–726, 2021, doi: 10.15666/aeer/1901_715726. 

[33] L. Gigović, D. Pamučar, Z. Bajić, and S. Drobnjak, “Application of 
GIS-interval rough AHP methodology for flood hazard mapping in
Urban areas,” Water (Switzerland), vol. 9, no. 6, pp. 1–26, 2017, doi:
10.3390/w9060360. 

[34] X. Ren, N. Hong, L. Li, J. Kang, and J. Li, “Effect of infiltration rate
changes in urban soils on stormwater runoff process,” Geoderma, vol.
363, no. August 2019, 2020, doi: 10.1016/j.geoderma.2019.114158. 

[35] P. Mattivi, F. Franci, A. Lambertini, and G. Bitelli, “TWI computation:
a comparison of different open source GISs,” Open Geospatial Data, 

Softw. Stand., vol. 4, no. 1, 2019, doi: 10.1186/s40965-019-0066-y.
[36] R. Loritz et al., “A topographic index explaining hydrological

similarity by accounting for the joint controls of runoff formation,”
Hydrol. Earth Syst. Sci., vol. 23, no. 9, pp. 3807–3821, 2019, doi:
10.5194/hess-23-3807-2019. 

[37] S. Nepal, W.-A. Fluegel, and A. B. Shresta, “Upstream-downstream
linkages of hydrological processes in the Himalayan region,” Ecol.

Process., vol. 3, no. 19, pp. 1–16, 2014, doi: 10.1186/s13717-014-
0019-4. 

[38] D. T. Thu Ha, S. H. Kim, and D. H. Bae, “Impacts of upstream
structures on downstream discharge in the transboundary imjin river
basin, Korean Peninsula,” Appl. Sci., vol. 10, no. 9, 2020, doi:
10.3390/app10093333. 

[39] Z. Li, “An enhanced dual IDW method for high-quality geospatial
interpolation,” Sci. Rep., vol. 11, no. 1, pp. 1–18, 2021, doi:
10.1038/s41598-021-89172-w.

[40] Z. N. Liu, X. Y. Yu, L. F. Jia, Y. S. Wang, Y. C. Song, and H. D.
Meng, “The influence of distance weight on the inverse distance
weighted method for ore-grade estimation,” Sci. Rep., vol. 11, no. 1,
pp. 1–8, 2021, doi: 10.1038/s41598-021-82227-y.

[41] W. yue Zou, S. qing Yin, and W. ting Wang, “Spatial interpolation of 
the extreme hourly precipitation at different return levels in the Haihe
River basin,” J. Hydrol., vol. 598, p. 126273, 2021, doi:
10.1016/j.jhydrol.2021.126273. 

[42] T. L. Saaty, “Decision making with the Analytic Hierarchy Process,”
Int. J. Serv. Sci., vol. 1, no. 1, pp. 83–98, 2008, doi:
10.1504/IJSSCI.2008.017590. 

[43] Z. Afifi, H. J. Chu, Y. L. Kuo, Y. C. Hsu, H. K. Wong, and M. Z. Ali,
“Residential flood loss assessment and risk mapping from high-
resolution simulation,” Water (Switzerland), vol. 11, no. 4, pp. 1–15, 
2019, doi: 10.3390/w11040751. 

2164




