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Abstract— Students’ academic performance is a key aspect of online learning success. Online learning applications known as Learning 

Management Systems (LMS) store various online learning activities. In this research, students’ academic performances in online course 

X are predicted such that teachers could identify students who are at risk much sooner. The prediction uses tree-based ensemble 

methods such as Random Forest, XGBoost (Extreme Gradient Boosting), and LightGBM (Light Gradient Boosting Machine). Random 

Forest is a bagging method, whereas XGBoost and LightGBM are boosting methods. The data recorded in LMS UI, or EMAS (e-

Learning Management Systems) is collected. The data consists of activity data for 232 students (219 passed, 13 failed) in course X. This 

data is divided into three proportions (80:20, 70:30, and 60:40) and three periods (the first, first two, and first three months of the study 

period). Data is pre-processed using the SMOTE method to handle imbalanced data and implemented in all categories, with and without 

feature selection. The prediction results are compared to determine the best time for predicting students’ academic performance and 

how well each model can predict the number of unsuccessful students. The implementation results show that students’ academic 

performance can be predicted at the end of the second month, with best prediction rates of 86.8%, 80%, and 75% for the LightGBM, 

Random Forest, and XGBoost models, respectively, with feature selection. Therefore, with this prediction, students who could fail still 

have time to improve their academic performance. 
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I. INTRODUCTION

Currently, the Learning Management System (LMS) 
application as the online learning medium is increasingly 
popular in universities. LMS is an online learning medium 
providing various teaching and learning facilities such as 
modules, online discussion forums, online quizzes, 
assignment collection media, and student recordings [1]. 
Using LMS, the teacher could give students feedback and 
create appropriate learning. In addition, the student activities 
in the LMS are recorded and saved by the system so that 
student activity data can be analyzed by institutions, 
administrators, and teachers to obtain information about 
student behavior during online learning [1]. Hence the teacher 
can determine the factors that affect the student’s academic 
performance [2]. The performance of academics results from 
acquisition based on the evaluation of a particular final period. 
The evaluation in question is the scores obtained by students 

from assignments, mid-term exams, and final exams [3]. The 
result of academic performance can be represented in the form 
of exam results, GPA, and statements of if a student has 
passed a course or not [4]. In this research, academic 
performance depends on if a student has passed a course or 
not. 

Prediction of student academic performance is an essential 
topic in the university environment. Prediction of student 
performance is intended to identify early student academic 
performance and to determine indicators that affect student 
learning success [5]. Students’ academic performance can be 
predicted by using Machine Learning [2]. According to the 
research that Jayaprakash, Krishnan, and Jaiganesh [6] and 
Akçapınar, Altun, and Aşkar [2] have done, students’ 
academic performance can be predicted based on the student 
activities in LMS by using various Machine Learning 
methods.  
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Research by Oliveira et al. [7] identifying students at risk 
of dropping out is based on learning activity data on LMS 
using several forms of machine learning such as k-Nearest 
Neighbors, C-Support Vector Classification, Logistics 
Regression, Random Forest, Adaptive Boosting, Gradient 
Boosting, and Extremely Randomized Trees. In addition, 
Helal et al. [8] used Naive Bayes (NB), Support Vector 
Machine (SVM), and Decision Tree (DT) to predict students 
who are at risk of not graduating in a course based on data on 
online learning activities and social factors. However, 
according to Zhao et al. [9], some tree-based ensemble 
methods were proven to produce better and more accurate 
prediction performance than some other models. Therefore, 
this research uses the tree-based ensemble method to predict 
students’ academic performance based on their activities in 
course X at Universitas Indonesia LMS. 

The tree-based ensemble methods used are Random Forest, 
XGBoost, and LightGBM. The Random Forest method uses 
the principle of bagging, which is a method that is based on 
resampling that is accompanied by duplication to build a 
decision tree [10]. While XGBoost and LightGBM use the 
boosting principle, combining multiple decision tree models 
[11]. Before we developed prediction models, we 
oversampled the imbalanced datasets on training data using 
SMOTE as a pre-processing step. It then continues with 
feature selection. From this, we can determine activities on 
LMS that influence students’ academic performance. We also 
compared the obtained results with models without feature 
selection.  

Each method is implemented on three different proportions 
of training to testing data: 80:20, 70:30, and 60:40. In each of 
these proportions. The implementation is also based on three 
data sets. These are data from the first, second, and third 
months of the study period in course X. The output of this 
research is that we can determine the best time to predict 
students’ academic performance, including information on 
each model’s prediction results, i.e., how well they can predict 
unsuccessful students and which model is most suitable for 
this research. With this prediction, teachers can identify 
students who have the potential to fail in course X earlier to 
take preventive action to enable students who can fail to 
improve their academic performance. 

II. MATERIALS AND METHOD 

A. Data 

The data used in this research is student activity data in the 
form of activity features on LMS UI in online course X, which 
happened on Sept. 14, 2020 - Jan. 6, 2021. The data is divided 
into three periods: from the beginning of the semester to the 
end of the first month, from the beginning to the end of the 
second month, and from the beginning to the end of the third 
month. The data consists of activity data of 232 students (219 
successful students, 13 unsuccessful students), where 
successful students were the majority class, and unsuccessful 
students were the minority class. Table I shows features used 
in predicting student academic performance. 

 
 
 

TABLE I 
LIST OF FEATURES AND THEIR DESCRIPTIONS 

No Feature Description 

1 A submission has 
been submitted 

The number of submitted document 
files 

2 Course activity 
completion 
updated 

The number of activities that have 
been ticked 

3 File viewed The total number of visits for the 
document file page 

4 URL viewed The total number of visits for the 
URL page 

5 Course viewed The total number of visits for the 
course page 

6 Discussion 
viewed 

The total number of visits for the 
discussion page 

7 Some content has 
been posted. 

The total number of posts for the 
discussion page 

8 The status of the 
submission has 
been viewed 

The total number of visits for viewing 
the status of the quiz and assignment 

A. Methods 

A decision tree is one of the most well-known classification 
methods. This method produces a model as a branched tree 
structure consisting of a root node, an internal node, and a leaf 
node. The root node is the top node in the tree, an internal 
node is a branch of a node with more branches from it, and 
the leaf node is the end of the tree [12]. The decision tree 
method, namely the tree-based ensemble method, is a 
machine learning technique that combines multiple decision 
tree models to produce a more optimal predictive model. In 
the next sub-chapter, three tree-based ensemble methods are 
discussed, which are the Random Forest, Extreme Gradient 
Boosting (XGBoost), and Light Gradient Boosting Machine 
(LightGBM) models 

1)  Random Forest Method:  Random Forest is a model for 
classification, resulting from the development of the CART 
(Classification and Regression Tree) method [13]. Random 
Forest consists of a collection of decision trees [14]. The 
Random Forest method uses bootstrap on the data sample to 
randomly draw B datasets with resampling replacements from 
the original data. Each dataset has the same size as the original 
data [15]. The random forest classification method uses the 
Gini index for splitting D nodes [16]. The basic idea of 
splitting nodes is to make each sub-node as homogeneous as 
possible after splitting. Given data �  and ��  feature � =1,2, … , 
. A binary split on �� feature divides � into �� and �, with the Gini index value of ��  feature can be calculated 
as follows [12]. 

 ��
������ = |��||�| ������ + |��||�| ����� (1) 

where |�| is the number of data or frequency in data �, |��| 
is the number of data or frequency in sub-data ��,  � = 1,2, 
and 

 ������ = 1 − ∑ � � �∈�� , " = 1,2 (2) 

where � �  is the proportion of values of ��  features. The 
feature that has the smallest Gini index value will be the root 
node in the decision tree. Obtaining the Random Forest model 
requires the majority vote or mode from the predicted results 
of each decision tree [15]. Random Forest utilizes a random 
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selection feature in forming trees [13]. Algorithm 1 illustrates 
a Random Forest algorithm [17]. 

2)  XGBoost Method: XGBoost is a scalable machine-
learning model for tree boosting [18]. The XGBoost model 
consists of a collection of trees. This collection uses the 
cumulative sum of the predicted values of a sample in each 
tree as the prediction of the sample. In the XGBoost model, 
regularization terms directly use the first and second 
derivative values of the loss function to prevent overfitting 
[19]. The XGBoost model will optimize the following 
objective function: 

 #$�%� = ∑ & '(� , ()��%*�� + +%�,��- + Ω�/0�1�2�  (3) 

Algorithm 1: Random Forest algorithm 
Input: Dataset (�), number of trees (3) 
for 4 = 5, 6, … , 7 do 

1. Make a bootstrap dataset �8 of size 
 from � 
2. While 9 < � 

i. Select 9  features at random from �  available 
features.  

ii. Find the best binary split of 9  features using 
equations (1) and (2) 

iii. Split the node into two descendant nodes using the 
result from step ii.  

3. Combine the prediction results from all decision trees 
based on the majority vote as the final prediction result 

end 

Output: Classification results from predictions 

where ; stands for the ;-th tree, & '(� , ()��%*�� + +%�,��- is a 

differentiable loss function that measures the difference 
between the prediction value ()� and the target value (�, and Ω�/0�  is a regularization function to control the model 
complexity and prevent overfitting [18]. Use the objective 
function to find the optimal tree structure [20].  

Use the greedy algorithm to find the splitting node of each 
feature as a parent node. For each split node, calculate the gain. 

 �<�
 = � ='∑ >��∈?@ -�
∑ A��∈?@ BC + '∑ >��∈?D -�

∑ A��∈?D BC − �∑ >��∈? ��∑ A��∈? BCE − F (4) 

where G� and ℎ� denote the first and second derivatives of the 
loss function, respectively, �I  and �J  denote the set of the 
observation on the left and right branches of a tree, 
respectively, K is the leaf weight penalty regularization term, 
and F is the leaf tree penalty regularization term. Splitting the 
tree becomes possible when the value of the gain is larger than 
zero. Algorithm 2 illustrates an XGBoost algorithm. 

3)  LightGBM Method: Light Gradient Boosting Machine 
(LightGBM) is a tree-based ensemble method, launched by 
Microsoft in 2017 [17]. LightGBM uses histogram-based 
algorithms and a leaf-wise growth strategy to increase the 
training speed and reduce memory consumption [21]. 
LightGBM also uses Exclusive Feature Bundling (EFB), and 
Gradient-based One-Side Sampling (GOSS). EFB can reduce 
the feature dimension further. It bundles mutually exclusive 
features into a single feature [22].  

 
 

Algorithm 2: XGBoost algorithm 
Input: Dataset, the number of trees (K), the learning rate (η), the 
number of terminal nodes (T)   

Initialize ()��L� 
for ; = 1,2, … , M do 

       Calculate G��%� = NO)��0P�� & '(� , ()��%*��- 

       Calculate ℎ��%� = NO)��0P�� & '(� , ()��%*��-  

       Determine the structure QRS�%T�2�U
 by choosing split node with 

       maximized �<�
 in equation (4) 

       Determine the leaf weights QV�%T�2�U ,  V�% = − ∑ >��0��∈?W∑ A��0��∈?W BC 

       Determine the decision tree +%�,�� = X ∑ V��[, ∈ RS�%]U�2�  

       Add trees ()��%� = ()��%*�� + +%�,�� 
end 

Output: Prediction value ()� =  ()��[� = ∑ +%�,��[%2�  

 
GOSS is used to split the optimal node by calculating 

variance gain. Firstly, rank the dataset to their gradient 
absolute values in descending order. Second, the top < × 100%  data with larger gradients are selected. This is 
referred to as set � . Then, subset 3  with size _ × |�`|  is 
randomly selected from set  �`  consisting of �1 − <� ×100%. Finally, split the dataset using the variance gain a� �b� 
as follows [23]: 

a��b� = 1
 c'∑ G� + 1 − <_d�e�f ∑ G�d�egf -

h��b�

+ '∑ G� + 1 − <_d�e�i ∑ G�d�egi -

j��b� k 

(5) 

where b is the split point, ,�� is the �lA observation of the "lA 
feature, �h = Q,� ∈ �: ,�� ≤ bT, �j = Q,� ∈ �: ,�� > bT, 3h = Q,� ∈ 3: ,�� ≤ bT, 3j = Q,� ∈ �: ,�� > bT,  G�  is the 

Algorithm 3: LightGBM algorithm 
Input: Dataset (D), the number of trees (M), big gradient data sampling 
ratio (α) ,  slight gradient data sampling ratio (b) the number of 
observations (N), the learning rate (λ), the model parameter (γ) 

Initialize pL�,�� = <qG 9�
F  ∑ &�(� , F�r�2�  

for 9 = 1,2, … , s do 

Calculate gradient values  q�t = − =N&�(� , p�,���Np�,�� Eu�d��2uvP��d�� , � = 1, … , w 

Resample dataset using GOSS process: xy�w = < × &z
���; q<
bw = _ × &z
��� |yqxzb = �zx}yqxzb�
b�~z|�<_|�q�t�� � = |yqxzb[1 ∶ xy�w] 3 = R<
by9��~;�|yqxzb[xy�w ∶ &z
���], q<
bw� 
Determine the structure {R%,t}%2�[  by calculate the maximum 
variance gain with equation (5) 
Determine the leaf weights   F%,t = arg 9�
F � &�(� , pt*��,�� + F�d�∈J0,v

 

Determine the decision tree  pt�,��� = K ∑ F%,t1J0,v�,��[%2�  with  1J0,v�,��  = �1   �+ ,� ∈ R%,t0   �+ ,� ∉ R%,t 

Add trees pt�,�� = pt*��,�� + pt�,��� 
end 
Output Prediction value p��,�� 
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gradient of loss function &�(� , p�,���, where (� is target value 
and  p�,��  is the prediction value, 
  is the number of 
observations, 
h��b� is the number of observations in sets �h 
and 3h , 
j��b�  is the number of observations in sets �j and 3j ,  and 

�* 8  is employed to normalize the sum of the gradients 

over 3 back to the size of �`  [23]. Algorithm 3 shows the 
LightGBM algorithm [24]. 

The initial stage of research is the preparation of data, in 
which student activity data in the form of activity features 
recorded on LMS UI in online course X is collected and 
serves as the input data. The next stage in data preparation is 
data pre-processing. This process involves splitting data into 
training and testing data. Since these data sets are imbalanced, 
the Synthetic Minority Oversampling Technique (SMOTE) is 
implemented on the training data, and the testing data will be 
used in the modeling process. The implementation stage 
consists of the feature selection and modeling processes. The 
feature selection process on Random Forest, XGBoost, and 

LightGBM models utilizes Gini index, Gain, and Variance 
Gain, respectively, and is implemented on the training data 
resulting from SMOTE. The features in question are student 
activities recorded in LMS, such as online discussion forums, 
quizzes, etc. The next stage is modeling all three algorithms 
using data resulting from feature selection and data without 
feature selection. Each algorithm is implemented on three 
proportions of training to testing data: 80:20, 70:30, and 60:40. 
In each of these proportions, the implementation is also 
divided into three periods. These are data from the first, 
second, and third months of the study period in course X.  
Later, the evaluation stage of these three algorithms is 
determined by the accuracy, precision minority, and recall 
minority values that can be calculated based on the 
corresponding confusion matrices. Based on the evaluation 
results, the interpretation will be configured. Finally, the 
output stage confirms the best time to predict students’ 
academic performance, including information on each 
model’s prediction results. This stage of research is described 
in Fig 1. 

 
Fig. 1  Stages of research 

 

SMOTE is an important approach by oversampling the 
minority class to generate a balanced data set [25]. It is a 
method that uses oversampling to deal with data imbalances 
by transforming a minority class becomes a class whose 
proportions in the sample are greater than those in the original 
data. SMOTE creates synthetic data from the minority class 
using the k-nearest neighbor approach. The k-nearest 
neighbors value is determined using the Euclidean distances 
between two minority data. A chosen minority data is the one 
with the smallest value of such Euclidean distance, which is 
calculated as follows [26]. 

 b��, "� = �∑ �,�,1 − ,�,1��12�  (6) 

where b��, "� is the distance between observations of � and ", ,�,1 is the �th observed value of the 
th variable, ,�,1 is the "th 
observed value of the nth variable, and � is the number of 
features. Synthetic data is created using the following 
equation: 

 ,�O1 = ,L + �,∗ − ,L�F (7) 

where ,�O1  is the synthetic data, ,L is the primary observation 
data on the minority class, ,∗  is the observation data 
randomly selected from k data observations closest to ,L, and F is a random number between 0 and 1. Table II shows data 
proportions before and after implementation of SMOTE. 

TABLE II 
DATA PROPORTIONS BEFORE AND AFTER IMPLEMENTATION OF SMOTE 

Train-test Proportion 
Training Data Testing Data 

Pass  Fail  Pass  Fail  

80:20 
Before 175 10 44 3 
After 175 175 44 3 

70:30 
Before 153 9 66 4 
After 153 153 66 4 

60:40 
Before 131 8 88 5 
After 131 131 88 5 

Table II shows imbalanced data in the training data in each 
proportion. Specifically, minority class data (representing 
unsuccessful students) is far less than the majority class data 
(representing successful students). For example, with a 60:40 
proportion, there is 131 majority class data and only 8 

Student’s 
Activity Data on Splitting Data 

Training 

Testing 

Sampling using 
SMOTE 

Feature Importance: 
- Random Forest 
- XGBoost 
- LightGBM 

Without Feature 
Selection 

- Random Forest 
- XGBoost 
- LightGBM 

Evaluation 
Model using: 
- Accuracy 
- Precission 
- Recall 

Determine the 
Best Time to 

Predict Student’s 
Academic 

Performance 

Input Data 

Data Pre-Processing 

Feature Selection 
Output 

Modelling 
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minority class data. After using SMOTE, the number of 
minority class data and majority class data becomes equal. for 
example, with a 60:40 proportion, the amount of data in both 
classes is equal at 131. In the testing data, there is no change 
in the number of minority class data where SMOTE is not 
used. 

The performance of each model in the evaluation stage is 
determined based on the corresponding confusion matrix, 
where the positive class represents students that failed, and 
the negative class represents students that passed. The 
confusion matrix can be seen below in Table III [2], [27].  

TABLE III 
CONFUSION MATRIX 

 
Prediction 

Positive Negative 

Actual 
Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN) 

In Table III, True Positive (TP) is a correct prediction of 
failed students, True Negative (TN) is a correct prediction of 
passed students, False Positive (FP) is an incorrect prediction 
of failed students, and False Positive (FN) is an incorrect 
prediction of passed students.  

The model's performances rely on the accuracy, precision 
minority, and recall minority values that can be calculated 
based on the confusion matrix in Table III. The following 
equations can determine each value, respectively [28]. 
Accuracy: The accuracy of a model when predicting failed or 
passed students is as follows: 

 �~~�q<~( = U�BUrU�BUrBu�Bur (8) 

Precision minority: The accuracy of a given model 
incorrectly predicting failed students compared with the 
overall prediction of failed students is as follows: 

 �qz~�|�y
 9�
yq�x( = U�U�Bu� (9) 

Recall minority: The accuracy of a given model in correctly 
predicting the number of failed students is as follows: 

 Rz~<&& 9�
yq�x( = U�U�Bur (10) 

The evaluation stage determines the average accuracy, 
precision minority, recall minority, precision majority, and 
recall the majority of a particular model. The minority class 
represents the class of unsuccessful students, and the majority 
class represents the class of successful students. Based on 
equation (9), the precision majority is the ratio of students 
predicted to pass correctly compared to the number of 
students initially predicted to pass. Based on equation (10), 
the recall majority is how accurately the model predicts 
successful students. The results are in the form of average 
values since there are ten experiments in each category.  

III. RESULTS AND DISCUSSION 

Each model is implemented both with and without feature 
selection. In each case, this is applied to both training and 
testing data. Implementations on training data build the model, 
while implementations on testing data test its performance. 
Each implementation uses three different data proportions to 
determine how they affect each model’s performance. 

Implementation of both training and testing data without 
feature selection is meant to show if any of the models show 

signs of overfitting. The results of the implementation of each 
model on training data with and without feature selection are 
then compared to show if feature selection affects the 
accuracy of each model on training data. 

Implementation of testing data, both with and without 
feature selection, is meant to show if the data sample size (first, 
second, or third months) affects the accuracy of each model. 
The model’s accuracy shows how well that model can predict 
passed or failed students. In addition, this implementation 
also shows if any of the models’ performance is affected by 
feature selection. Their performance is determined by recall 
minority, i.e., the accuracy of a given model in correctly 
predicting the number of failed students. 

A. Models’ Performance without Features Selection 

Tables IV, V, and VI, respectively, state the performance 
of the Random Forest, XGBoost, and LightGBM models on 
training data without feature selection in three train-test 
proportions: 80:20, 70:30, and 60:40, using data up to the end 
of each of the first, second and third months. The 
implementation results in the form of model performance 
include the average accuracy, precision minority, recall 
minority, precision majority, and recall majority. 

TABLE IV 
THE AVERAGE OF RANDOM FOREST MODEL PERFORMANCE WITHOUT 

FEATURE SELECTION USING TRAINING DATA   

Train-test 

Proportion 

End of 

month 

# 

A
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y
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o
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M
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R
e
c
a
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M
a
jo

ri
ty

 

80:20 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 

70:30 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 

60:40 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 

Table IV shows that the Random Forest model created 
using training data without feature selection accurately 
predicted students’ academic performance in each experiment 
as indicated by the performance model with a value of one on 
all performance metrics. The XGBoost model created using 
training data without feature selection yielded a different 
performance in each experiment, as shown in Table V.  

TABLE V 
THE AVERAGE OF XGBOOST MODEL PERFORMANCE WITHOUT FEATURE 

SELECTION USING TRAINING DATA   

Train-test 

Proportion 

End 

of 

month 

# A
c
c
u

r
a
c
y
 

P
r
e
ci

si
o
n

 

M
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R
e
c
a
ll

 

M
in

o
ri

ty
 

P
r
e
ci
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R
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c
a
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M
a
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80:20 

1 0.983 0.974 0.99 0.99 0.974 
2 0.994 0.992 0.995 0.995 0.992 
3 0.997 0.993 0.996 0.996 0.993 

70:30 

1 0.985 0.976 0.991 0.991 0.975 
2 0.998 0.997 0.998 0.998 0.997 
3 0.998 0.995 0.997 0.997 0.995 

60:40 

1 0.991 0.985 0.995 0.995 0.985 
2 0.998 0.994 0.997 0.997 0.994 
3 0.999 0.996 0.998 0.998 0.996 
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However, this model predicted students’ academic 
performance in each experiment sufficiently since all the 
parameter values are more than 97% in both the majority and 
minority classes. The performance of the LightGBM model 
created using training data without feature selection, as seen 
in Table VI, also shows that its parameters have a value of 1. 
Therefore, the LightGBM model accurately predicted 
students’ academic performance in each experiment.  

TABLE VI 
THE AVERAGE OF LIGHTGBM MODEL PERFORMANCE WITHOUT FEATURE 

SELECTION USING TRAINING DATA   

Train-test 

Proportion 

End of 

month 

# 

A
c
c
u

r
a
c
y
 

P
r
e
ci
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o
n

 

M
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ty
 

R
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R
e
c
a
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M
a
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80:20 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 

70:30 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 

60:40 

1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 1 

Tables VII through IX show the results of the evaluation of 
each model on testing data without feature selection, with 
predictions at the end of each of the first three months. Based 
on Tables VII through IX, each model with the respective 
train-test proportions has generally improved performance for 
each period based on the average accuracy, precision minority, 
and recall minority values, except for the LightGBM model 
in Table IX. The LightGBM model, with a train-test 
proportion of 80:20, has the highest value of average recall 
minority and precision majority using data up to the second 
month. 

TABLE VII 
THE AVERAGE OF RANDOM FOREST MODEL PERFORMANCE WITHOUT 

FEATURE SELECTION USING TESTING DATA   

Train-test 

Proportion 

End 

of 

month 

# A
c
c
u

r
a
c
y
 

P
r
e
ci
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o
n

 

M
in

o
ri
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R
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M
a
jo
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R
e
c
a
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M
a
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80:20 

1 0.87 0.338 0.432 0.952 0.906 
2 0.927 0.48 0.67 0.972 0.945 
3 0.937 0.569 0.766 0.98 0.953 

70:30 

1 0.874 0.178 0.375 0.96 0.903 
2 0.929 0.488 0.725 0.983 0.941 
3 0.938 0.548 0.775 0.986 0.947 

60:40 

1 0.889 0.196 0.38 0.954 0.915 
2 0.923 0.373 0.68 0.984 0.899 
3 0.952 0.508 0.7 0.985 0.957 

Table VII shows that the Random Forest model created 
using testing data without feature selection for each train-test 
proportion displayed an increasing trend for all parameters. 
Using data up to the end of the first month, the Random Forest 
model can predict at least 87% of successful and unsuccessful 
students correctly. Meanwhile, at the end of the second and 
third months, the model can correctly predict more than 92% 
of successful and unsuccessful students.  

Table VIII shows the increasing trend for all parameters 
also applies to the XGBoost model created using testing data 

without feature selection for each train-test proportion in most 
periods. Using data from the first month, the XGBoost model 
has a prediction rate of at least 82% for both passed and failed 
students. With data from both the second and third months, 
the prediction rate improves to at least 90%.  

In Table IX, using data until the end of the first month, the 
LightGBM model can predict at least more than 83% of 
successful and unsuccessful students correctly. By including 
data until the end of the second and third months, its 
successful prediction rate increases to over 90%. 

TABLE VIII 
THE AVERAGE OF XGBOOST MODEL PERFORMANCE WITHOUT FEATURE 

SELECTION USING TESTING DATA   
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80:20 

1 0.819 0.152 0.399 0.953 0.849 
2 0.904 0.431 0.734 0.981 0.915 
3 0.924 0.488 0.734 0.981 0.935 

70:30 

1 0.824 0.123 0.4 0.96 0.849 
2 0.923 0.437 0.75 0.983 0.933 
3 0.932 0.502 0.8 0.986 0.937 

60:40 

1 0.852 0.16 0.4 0.961 0.878 
2 0.902 0.318 0.68 0.983 0.916 
3 0.921 0.4 0.68 0.983 0.936 

The results from Tables VII through IX show that the 
Random Forest and LightGBM models yielded the best 
prediction without feature selection, with an average recall 
minority of 77.5% on a 70:30 proportion by using data until 
the third month. With the same data and proportion, the 
XGBoost model yielded an average recall minority of 80%. 
For the LightGBM model, there is a best average recall 
minority difference between the 70:30 and 80:20 proportions 
no greater than 0.8%. Therefore, data from the end of the 
second month can be used to predict the failure rate for 
students. 

TABLE IX 
THE AVERAGE OF LIGHTGBM MODEL PERFORMANCE WITHOUT FEATURE 

SELECTION USING TESTING DATA   
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80:20 

1 0.836 0.14 0.332 0.95 0.871 
2 0.906 0.441 0.767 0.984 0.914 
3 0.928 0.597 0.7 0.981 0.943 

70:30 

1 0.844 0.131 0.375 0.96 0.871 
2 0.926 0.497 0.725 0.982 0.937 
3 0.936 0.532 0.775 0.986 0.949 

60:40 

1 0.854 0.156 0.36 0.959 0.884 
2 0.906 0.339 0.68 0.983 0.92 
3 0.925 0.419 0.74 0.987 0.936 

By comparing the results of Tables IV through VI to those 
of Tables VII through IX, overfitting is absent in all three 
models, as shown by comparing the performance of all three 
models on training data with their performance on testing data 
in the majority class. The average accuracies, precision 
majorities, and recall majorities for the training data are very 
similar to those of the testing data. The significant difference 
between the average precision minorities and recall minorities 
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in training and testing data results from the small number of 
students that failed (minority class) in testing data. 

B. Models’ Performance with Features Selection 

The following implementation uses feature selection based 
on the feature importance of every model constructed. Table 
X shows each model's top 5 features' importance and a slice 
of the list of features for all three models. The features include 
discussion viewed, and some content has been posted. 
Features from the selection results of feature importance 
include student activity in discussion forums, accessing 
learning materials, and checking the results of quizzes and 
assignments.  

TABLE X 
TOP 5 FEATURE IMPORTANCE OF RANDOM FOREST, XGBOOST, AND 

LIGHTGBM MODELS 

No Random Forest XGBoost LightGBM 

1. File viewed The status of the 
submission has 
been viewed 

Course activity 
completion 
updated 

2. Course viewed Some content has 
been posted. 

File viewed 

3. Discussion 
viewed 

Discussion 
viewed 

URL viewed 

4. Some content has 
been posted. 

URL viewed Discussion 
viewed 

5. The status of the 
submission has 
been viewed 

A submission has 
been submitted 

Some content 
has been posted 

The performance of the Random Forest model on training 
data with feature selection using data at the end of each of the 
first three months is the same as that obtained in Table IV. 
Similarly, the performance of the LightGBM model is 
identical to that shown in Table VI, except that with a 60:40 
train-test proportion, the average accuracy, precision minority, 
and recall majority was 99.7%, 99.9%, and 99.7%, 
respectively. Therefore, the Random Forest and LightGBM 
models accurately predicted students’ academic performance 
in each experiment. Meanwhile, Table XI shows the 
performance of the XGBoost model with feature selection on 
training data.  

Comparing Tables V and XI shows a slight decrease in 
parameter values for the XGBoost model. Nevertheless, this 
model can still sufficiently predict students’ academic 
performance in each experiment, given that all the parameter 
values are more than 95% in both the majority and minority 
classes. This discussion shows that feature selection on all 
three models’ training data does not affect predictions of 
students’ academic performance. 

TABLE XI 
THE AVERAGE OF XGBOOST MODEL PERFORMANCE WITH FEATURE 

SELECTION USING TRAINING DATA 
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80:20 

1 0.963 0.957 0.969 0.968 0.957 
2 0.977 0.973 0.981 0.981 0.972 
3 0.988 0.983 0.988 0.988 0.983 

70:30 

1 0.967 0.964 0.972 0.972 0.962 
2 0.985 0.982 0.989 0.989 0.982 
3 0.986 0.984 0.986 0.986 0.983 

60:40 

1 0.972 0.964 0.976 0.976 0.963 
2 0.991 0.988 0.991 0.991 0.988 
3 0.992 0.985 0.995 0.995 0.985 

Tables XII through XIV show the results of the 
implementation of each model on testing data with feature 
selection. Table XII, the average XGBoost model 
performance with feature selection using training data, shows 
that the Random Forest model created using testing data with 
feature selection for each train-test proportion displayed an 
increasing trend for all parameters. The Random Forest model 
with a data proportion of 80:20 can predict at least 86% of 
successful and unsuccessful students correctly. This improves 
to 95.2% with the use of data up to the end of the third month. 

TABLE XII 
THE AVERAGE OF RANDOM FOREST MODEL PERFORMANCE WITH FEATURE 

SELECTION USING TESTING DATA 
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80:20 

1 0.86 0.19 0.4 0.955 0.915 
2 0.923 0.373 0.68 0.984 0.899 
3 0.952 0.508 0.7 0.985 0.957 

70:30 

1 0.862 0.177 0.4 0.963 0.888 
2 0.904 0.448 0.8 0.988 0.908 
3 0.925 0.469 0.825 0.99 0.927 

60:40 

1 0.859 0.164 0.42 0.963 0.884 
2 0.916 0.351 0.7 0.985 0.928 
3 0.935 0.429 0.74 0.987 0.943 

Table XIII, the average XGBoost model performance with 
feature selection using testing data, shows that the model with 
a data proportion of 80:20 can predict at least 84% of 
successful and unsuccessful students correctly. The prediction 
improves to 91.2% with data up to the end of the second 
month. Interestingly, with a 70:30 proportion, using data up 
to the end of the second month yields the highest value of all 
parameters. In addition, the most significant difference 
between each parameter in the proportion 80:20 and 70:30 is 
only 9.8%. Therefore, the model with a 70:30 proportion and 
data up to the end of the second month can predict students’ 
academic performance. 

TABLE XIII 
THE AVERAGE OF XGBOOST MODEL PERFORMANCE WITH FEATURE 

SELECTION USING TESTING DATA 
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80:20 

1 0.84 0.159 0.4 0.955 0.869 
2 0.912 0.451 0.666 0.977 0.929 
3 0.911 0.442 0.699 0.979 0.926 

70:30 

1 0.858 0.164 0.425 0.963 0.881 
2 0.901 0.353 0.75 0.983 0.907 
3 0.893 0.335 0.725 0.983 0.904 

60:40 

1 0.85 0.134 0.38 0.961 0.878 
2 0.89 0.277 0.66 0.98 0.903 
3 0.893 0.304 0.68 0.982 0.906 

 
Table XIV shows that using a data proportion of 80:20 

yields a correct prediction rate of 83.1% for passed and failed 
students, and adding data from the end of the third month 
increases this rate to 95.7%. Interestingly, with feature 
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selection, the most significant difference between parameter 
values using data from the end of the second and third months, 
with an 80:20 train-test data proportion, is at most only 15.4%. 

Therefore, with feature selection, the model can make an 
accurate prediction using an 80:20 distribution and data from 
the end of the second month. Based on the results of Tables 
XIII and XIV, the XGBoost and LightGBM models can 
predict students’ academic performance using data after the 
second month. The XGBoost model with a data proportion of 
70:30 has a recall minority of 75% (less than the 80% figure 
recorded without feature selection), whereas the LightGBM 
model requires an 80:20 proportion with a maximum recall 
minority of 86.8% (higher than the 76.7% figure recorded 
without feature selection).  

TABLE XIV 
THE AVERAGE OF LIGHTGBM MODEL PERFORMANCE WITH FEATURE 

SELECTION USING TESTING DATA 
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80:20 

1 0.831 0.143 0.366 0.94 0.869 
2 0.926 0.483 0.868 0.992 0.928 
3 0.957 0.637 0.834 0.99 0.964 

70:30 

1 0.834 0.145 0.4 0.96 0.859 
2 0.921 0.44 0.85 0.989 0.924 
3 0.939 0.555 0.8 0.988 0.944 

60:40 

1 0.836 0.153 0.46 0.965 0.857 
2 0.914 0.389 0.76 0.988 0.922 
3 0.929 0.471 0.8 0.99 0.938 

In Table XII, the Random Forest model with a 70:30 
proportion and data taken from the end of the third month 
yielded a peak average recall minority of 82.5%. However, 
this model’s average peak recall minority was 80% by the end 
of the second month (greater than the pre-feature selection 
figure of 76.6%). Therefore, feature selection can improve the 
performance of the Random Forest and LightGBM models, 
but not the XGBoost model. To determine if the Random 
Forest model with a data proportion of 70:30 using data taken 
after the third month yields results that are not significantly 
different from the same model using data taken from after the 
second month, use a statistic test called McNemar’s Test [29], 
[30]. The hypotheses of McNemar’s Test are as follows: 

 H0 = The predictions from the models built using data 
until the end of the second and third months show no 
significant differences. 

 H1 = The predictions from the models built using data 
until the end of the second and third months show 
significant differences. 

with α = 0.01. Reject H0 if p-value ≤ α. Based on McNemar’s 
Test, the p-value of the accuracy of both models is 0.062 and 
the p-value of the recall minority is 1. Since the p-values of 
both the accuracy and recall minority are larger than α, we can 
accept H0. Therefore, the Random Forest model with a data 
proportion of 70:30 using data taken after the third-month 
yields results that are not significantly different from the same 
model using data from the end of the second month. Thus, all 
three models (Random Forest, XGBoost, and LightGBM) can 
be used to predict unsuccessful students earlier, i.e., after the 
second month. 

IV. CONCLUSION 

This research aims to predict students’ academic 
performance, particularly unsuccessful students, based on 
academic activity features recorded by LMS UI using three 
tree-based ensemble methods: the Random Forest, XGBoost, 
and LightGBM models. Implementing training and testing 
data without feature selection shows no signs of overfitting on 
any of these models. Implementing training data for all three 
models shows that feature selection has little effect on their 
performance.  

The implementation of testing data on these models shows 
that data proportions, data size and feature selection affect 
their performance. The Random Forest and XGBoost models 
can predict 77.5% and 80% of unsuccessful students based on 
data after the third month without feature selection on a 70:30 
proportion. The prediction rate of the LightGBM model using 
data up to the second month is 76.7% on an 80:20 proportion. 
Meanwhile, for models created using feature selection and 
data up to the end of the second month, the LightGBM, 
Random Forest, and XGBoost models can predict 86.6%, 
80%, and 75% of unsuccessful students with 80:20, 70:30, 
and 60:40 proportions, respectively. Based on these results, 
the XGBoost model performs best without feature selection 
with three months of data, but the other two models perform 
best with feature selection with two months of data.  

To predict unsuccessful students, prediction results should 
be obtained sooner. In this research, the LightGBM and 
Random Forest models should be used to successfully predict 
unsuccessful students, since, compared to the XGBoost model, 
they can yield a better prediction using data up to the end of 
the second month. 
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