
Vol.12 (2022) No. 6 

ISSN: 2088-5334 

A Solving Route Optimization of Airplane Travel Problem Use 
Artificial Bee Colony Algorithm 

I Gusti Agung Premananda a, Ahmad Muklason a,*, Rizal Risnanda Hutama a 
a Department of Information System, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya, 60111, Indonesia 

Corresponding author: *mukhlason@is.its.ac.id, ahmad.muklason@gmail.com 

Abstract— The Traveling Salesman Problem (TSP) is very popular in combinatoric optimization. The TSP problem is finding the 

optimal route from several cities where the distance between cities is known, and a salesman must visit each city exactly once and return 

to the origin city. The goal is to find a route with a minimum total distance. This problem is known as a non-deterministic polynomial 

hard (NP-hard) problem, which means the computation time to find a solution increases exponentially with the size of the problem. NP-

Hard problems can be solved by using heuristic methods where the solution obtained is good enough (does not guarantee the most 

optimal solution) in a reasonable time. One of the most recent variants of TSP problem is finding the cheapest flight routes to several 

cities, which is part of the Traveling Salesman Challenge 2.0 (TSC 2.0) 2018 competition . This paper reports our study of implementing 

an artificial bee colony (ABC) algorithm for the TSC 2.0 problem. ABC algorithm is chosen based on its superiority over other 

algorithms in several optimization problems. The algorithm is implemented in a hyper-heuristic form. Several combinations of swap 

operators are used to find the best combination result. The experimental result shows that the ABC algorithm can solve the TSC 2.0 

problem with a fairly good performance by producing a savings cost of 54.6% from the initial solution and 26% compared to the 

Genetic Algorithm. 
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I. INTRODUCTION

TSP is one of the most popular problems in the world of 
combinatoric optimization [1]–[3]. Euler documented TSP in 
1759, whose interest was solving the knight’s tour problem 
[4]. In the TSP problem, it is known the number of cities and 
the distance between them. A salesman will start from one of 
the cities and depart to visit all cities exactly once and return 
to his hometown [5]. This problem's goal is finding the right 
order of cities to cover the minimum distance possible [6]. 
TSP can be described in a mathematical model as in the 
equation below: 
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Equation 1 is the decision variable of the TSP problem. Xij 

is equal to 1 if city i is connected to city j, and Xij is equal to 
0 if city i and city j are not connected [7]. Equation two 
explains the objective function of TSP, which is to find the 
cheapest cost to travel in a number of cities. The objective 
function is obtained by multiplying Cij which means the cost 
from city i to city j and Xij which is the decision variable [8]. 
Equations 3 to 8 are constraints that must be met in the TSP 
problem[9]. 

TSP is also one of the most difficult combinatorial 
optimization problems. The TSP problem is included in the 
NP-Complete problem [10]–[12] where the running time 
increases exponentially with the increase in the size of 
problem [13]. Therefore, the exact algorithm's ability to solve 
this problem depends on the size of the problem. If the size 
increases, it is possible that this problem cannot be solved in 
an acceptable time [14]. One type of algorithm that can 
produce a solution quickly and the resulting solution is quite 
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good is a heuristic algorithm [15]. Previous research has 
proven the effectiveness of heuristic algorithms in solving 
NP-Complete problems: Ha et al [16] apply a hybrid genetic 
algorithm (GA) to the TSP problem with drones, de Freitas 
and Penna [17] apply variable neighborhood search (VNS) to 
the TSP flying sidekick problem, Gao applies Ant Colony 
Optimization (ACO) to the TSP problem [18], Huang et al. 
[19] applies a niching memetic algorithm (MA) to a multi-
solution TSP problem, Ali, Essam and Kasmarik [20] apply a 
differential evolution to a discrete TSP problem, Khan and 
Maiti [21] apply a swap sequence based on an ABC algorithm 
to a TSP problem and Karaboga and Gorkemli [22] solve a 
TSP with a Combinatorial ABC algorithm. 

From the many heuristic algorithms that exist and proof 
that can solve the NP-Complete problem, one interesting 
algorithm is to be applied in this research. The algorithm is 
the Artificial Bee Colony (ABC) algorithm. ABC is an 
algorithm developed by Dervis Karaboga, inspired by how 
bees find the best food sources around their hives [23].  

ABC algorithm shows better results than other heuristic 
algorithms in several studies of various NP-Complete 
problems. Xu et al. [24] conducted a study by modifying the 
ABC algorithm to improve solution convergence. The 
algorithm developed is applied to the robot path planning 
problem. The results of this algorithm show its superiority by 
being superior to the comparison algorithm, namely partial 
swarm optimization, differential evolution, and ABC 
algorithm from other studies. Another study by Li et al. [25] 
modified the ABC algorithm to solve the multi-objective low-
carbon flexible job shop scheduling problem. The results 
showed that improved ABC resulted in a better solution to the 
three comparison algorithms (MOPSO, MODE, and NSGA-
II). 

In the TSP problem, the ABC algorithm has also been used 
several times in previous studies. Choong, Wong, and Lim [26] 
developed the ABC algorithm with a Modified Choice 
Function (MCF-ABC). The modification is intended to 
automatically select neighborhood search heuristics in the 
employed and onlooker bee phases. The algorithm that has 
been developed is compared with several other algorithms 
(ABC, ACO-ABC, 2-opt ABC, TSPoptBees, bee colony 
optimization, hybrid discrete ABC, chained lin-kernighan, 
effective heuristics ACO, Quantum inspired particle swarm, 
and Honeybees mating optimization). The comparison studies 
indicate that MCF-ABC is competitive among the state-of-

the-art algorithms. Another study by Venkatesh and Singh [27] 
also applied the ABC algorithm with a modified degree of 
perturbation variable to solve the generalized covering 
traveling salesman problem. This algorithm also shows better 
results than the two comparison algorithms (MA and VNS). 

This research solves the TSP problem by optimizing 
airplane travel routes for travel. The ABC algorithm (which 
has good potential based on previous research) was chosen to 
be implemented in a hyper-heuristic framework. The case 
study used comes from the new dataset developed by Kiwi in 
a traveling salesman challenge 2.0 (TSC 2.0) competition. 
The results of this study compared with the GA, which is a 
popular algorithm in combinatorial problems and has been 
proven to solve TSP problems [5], [16], [28], [29]. 

II. MATERIALS AND METHOD 

This section describes the process carried out in this 
research. The process is described in several sub-chapters 
where sub-chapter a discusses the dataset TSC 2.0, sub-
chapter b discusses preprocessing and initial solution, sub-
chapter c discusses the proposed ABC algorithm, sub-chapter 
d discusses experimental parameters, and sub-chapter e 
discusses comparison of algorithms. 

A. Dataset Traveling Salesman Challenge 2.0. (TSC 2.0) 

Traveling Salesman Challenge 2.0. (TSC 2.0) [30] is a 
competition held by the online travel company Kiwi which 
raises the Traveling Salesman Problem in the field of tours. 
The problem in TSC 2.0 aims to find an airplane route with 
the cheapest cost to visit several predetermined areas where 
one or more cities are in that area. In TSC 2.0 given 14 
datasets were derived from real-world data and artificial data. 
The amount of data also varies from small to large. Details of 
the 14 datasets can be seen in table 1.  

In this problem, there are also some hard constraints, such as: 
• Departure city has been determined in advance 
• Each area must be visited exactly once. 
• Travel to the next area must continue from the city that 

was visited the previous day. 
• Switching between areas must be done exactly 1 time 

every day. 
• The journey must end in the same area as the departure 

city area. 

 

TABLE I 
DATASET TSC 2.0 

Dataset Type Size Number of Areas Number of Cities Number of days 

Dataset 1 Artificial  Small  10 10 10 
Dataset 2 Artificial  Small 10 15 10 
Dataset 3 Artificial  Small 13 38 13 
Dataset 4 Artificial  Medium  40 99 40 
Dataset 5 Artificial  Medium  46 138 46 
Dataset 6 Artificial  Medium  96 192 96 
Dataset 7 Artificial  Large 150 300 150 
Dataset 8 Artificial  Large 200 300 200 
Dataset 9 Artificial  Large 250 250 250 
Dataset 10 Artificial  Large  300 300 300 
Dataset 11 Real  Large  150 200 150 
Dataset 12 Real  Large 200 250 200 
Dataset 13 Real  Large 250 275 250 
Dataset 14 Real  Large 300 300 300 
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The main difference from classic TSP is in the presence of 
the terms area and city. In one solution, it is mandatory to visit 
each area once. However, if an area has several cities, we only 
need to visit one city and are free to choose any city so that 
the combinations that appear in this case study become more 
numerous. 

The dataset in TSC 2.0 has the format as shown in Figure 
1. The first line in each dataset contains information on the 
number of areas and the initial city of departure. The next few 
lines will contain the area name information as much as the 
number of areas that have been submitted in the first line. In 
each area it is possible to have one or more cities. The list of 
cities contained in an area is informed right on the line below 
the area name. The next line to the last line contains available 
flight schedule information. Each row contains information 
on the city of departure, city of arrival, day, and cost of the 
flight. On the day information, if the content is 0 then the 
flight is available every day. 

 
Fig. 1  Example dataset TSC 2.0 

B. Preprocessing Data and Initial Solution 

The first step in initializing the initial solution is to ensure 
that the city visited every day has a flight to another city the 
next day. The initial solution formation stage aims to prepare 
materials for optimization at the next stage. However, there is 
a problem where the initial solution cannot be made only by 
using random elements to choose the cities visited daily. This 
happens because in this case study, several combinations of 
cities and days lead to dead ends. This happens because in that 
combination it is not possible to travel the next day from that 
city to another city. Therefore, it is necessary to pre-process 
the data first 

The data preprocessing stage is carried out by mapping the 
city into a graph on a two-dimensional array where the y-axis 
is a list of cities that can be visited, and the x-axis is the day 
of travel. Checking will be done from the first day to the last 
day and from the last day to the first day. If a city is not 
connected to another city on the next day or the previous day, 
then that city will be deleted. For example, in Figure 2 is an 
illustration of the initial conditions of mapping the city in the 
graph. It can be seen on the second day that city 5 is not 
connected to other cities on the second day. So, city 5 will be 

removed from the list of cities that can be visited on the 
second day. The impact of this deletion causes city 4 on the 
first day not to connect with other cities on the second day, so 
city 4 on the first day will also be deleted. An illustration of 
the results after the checking process can be seen in Figure 3. 
The results of data preprocessing do not guarantee that all 
combinations of cities and days that still exist have flights to 
other cities the next day. But this process reduces the chances 
of finding a combination that results in a dead-end 

 

 
Fig. 2  Illustration of City Mapping in Graph 

 
Fig. 3  Illustration of City Check Results 

 
After preprocessing the data, the initial solution is formed. 

The formation of the initial solution is done by randomly 
selecting areas and cities. This will be done continuously until 
all areas have been selected and included in the initial solution. 
The last step is checking to ensure the resulting solution is 
feasible in accordance with the existing hard constraints. If it 
turns out that the solution is not feasible, then the solution will 
be deleted, and the initial solution formation stage is started 
again from the beginning. 

C. ABC Algorithm 

ABC is an algorithm developed by Karaboga [31] which 
is inspired by the way bees find the best food sources around 
their hives. In the ABC algorithm, the bee colony will be 
divided into three parts consisting of employed bees, onlooker 
bees, and scout bees [32]. The number of employed bees and 
onlooker bees will be equal to the number of food sources that 
were initiated at the beginning [33]. The way the ABC 
algorithm works starts with initializing the amount of nectar 
in all food sources carried out by the scout bee. The scout bee 
will provide information to the employed bee and each 
employed bee will go to the food source [21]. Employed bees 
will store the amount of nectar at the destination food source 
in its memory. Employed bees will look for other food sources 
in the vicinity. If it finds a better food source, the employed 
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bee will replace the contents of its memory with the amount 
of nectar and the location of the new food source [34]. After 
that, the employed bee will share information with the 
onlooker bee through a dance regarding the quality of the 
nectar found. Onlooker bee will choose some of the best food 
sources using probability calculations as in equation 8 [35]. 

 -� # .�/0
∑ .�/123145

 (8) 

Pi is the probability of the i food source obtained by dividing 
the value of the i food source (fiti) by the sum of all food 
sources (fitn). Some of the best food sources will be re-
searched around food sources to find better food sources. If 
the results of one of the food sources produced at the 
employed bee and onlooker bee stages do not increase in 
several searches, then the scout bee will carry out its duties by 
looking for new food sources randomly and the employed bee 
and onlooker bee will repeat the steps from the beginning [26]. 

In the application of the TSC 2.0 problem, the ABC 
algorithm uses the low-level heuristic (LLH) as the move 
operator. Several LLH operators proposed in this study will 
be selected, consisting of swap 2 cities, swap 3 cities, swap 4 
cities, and a combination of swap 3 cities and 4 cities. The 
selection will be done by trying on 3 representative datasets 
where dataset 6 represents a small dataset, dataset 11 
represents a medium dataset and dataset 14 represents a large 
dataset. The way a 2-city swap works is by choosing from two 
cities from the initial solution that has been generated and then 
swapping the positions of the two cities. In a 3-city swap, the 
first step is to carry out the same process as in a 2-city swap. 
After that, swap 2 cities again where 1 city is chosen randomly 
from the 2 cities selected at the beginning, and another city is 
chosen randomly outside the two cities selected at the 
beginning. So, the city that is exchanged becomes 3 cities. In 
a 4-city swap, it is the same as a 3-city swap, but only the 
number of cities increases to 4. In a combination of 3-city and 
4-city swap, random selection is made to determine the 
operator to be run in each iteration. 

The application of this LLH will be carried out in the 
solution change process carried out in the ABC algorithm, 
namely at the employed bee and onlooker bee stages which 
are the stages for solution exploitation, and at the scout bee 
stage which is the stage for solution exploration. Figure 4 
shows the final result of the algorithm used in this study. The 
ABC algorithm will be applied 10 times on each dataset to get 
average results in each dataset. 

D. Parameter Experiment 

Two parameters need to be adjusted to obtain better results. 
These parameters are the NP parameter which is the bee 
population, and the limit parameter, which functions to set the 
stage when the exploration stage is carried out and the 
exploitation stage. Experiments will be carried out by trying 
random parameter values and decreasing or adding extreme 
values to find the optimal value estimate. After getting the 
estimated optimal value, a trial is carried out by adding and 
subtracting the parameter value by 50% to ensure that the 
value used is the closest to the best value. 

 
 

E. Comparison of Algorithms 

Because very few studies use the same dataset, to see the 
performance of the results of this study, GA will be used as a 
comparison algorithm. The application of GA will be carried 
out the same as with ABC using the same initial solution and 
the same parameter experimental method. Experiments will 
also be carried out 10 times on each dataset with the same 
amount of time as the ABC algorithm. 

 

 
Fig. 4  Pseudocode Artificial Bee Colony Algorithm 

III. RESULT AND DISCUSSION 

All experiments ran on an Intel’s Core i7 2.6 GHz 
computer with 16 GB of RAM under the Windows 10 64-bit 
operating system. The programming language used was java 
with idea NetBeans 8.2. 

A. Preprocessing Data and Initial Solution 

The first step to solving a TSP problem is to find an initial 
solution. This process is carried out by preprocessing the data 
by removing the possibility of a city that can be visited on 
certain days, which will lead to a dead-end route. The next 
stage is forming an initial solution by choosing a city 
randomly. This stage succeeded in finding 14 datasets with 
feasible solutions. Preprocessing data plays an important role 
in this stage. Without preprocessing the data, only two 
datasets (datasets 1 and 3) can find a feasible solution. 

B. Parameter Experiment 

The first experiment was to test the limit parameters. 
Datasets number six chosen to represent small and medium 
artificial dataset, dataset number 11 chosen to represent large 
artificial dataset, and dataset number 14 chosen to represent 
real-world datasets. Parameter testing begins by finding the 
approximate range of optimal parameter values. The result is 
that there are three possible values, namely 2500, 5000, and 
7500. These three values are applied to datasets 6, 11, 14 11 
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times. Table 2 shows the average results of the three limit 
parameter values. These results show that the limit parameter 
with a value of 5000 can produce the most stable results in 
small, medium, and large datasets. Therefore, the limit 
parameter value of 5000. 

TABLE II 
TEST RESULTS LIMIT PARAMETER 

Limit Value Dataset 6 Dataset 11 Dataset 14 

2500 3668.1 61681.8 151380 
5000 3723.9 62113.8 150909 
7500 3777.1 62491.1 152161 

 
The next experiment was carried out on the NP parameters. 

With the same method applied to the limit parameters, values 
of 4, 8, and 12 were obtained to be tested on datasets 6, 11, 
and 14 11 times. This experiment results in the parameter 
value 8 being the optimal value. However, the difference 
obtained is only around 1-2% and is not comparable to the 
increase in running time, almost two times. Therefore, the NP 
parameter value to be used is 4. The test results can be seen in 
Table 3. 

TABLE III 
TEST RESULTS NP PARAMETER 

NP Value Dataset 6 Dataset 11 Dataset 14 

4 3668,1 61681,8 151380 
8 3610,8 60957,6 149571,4 
12 3623,1 61065,6 148643,6 
    

C. Move Strategy 

In this section, the movement strategy is selected by 
applying several combinations of LLH that can produce the 
most optimal solution. Four types of operator swaps were 
applied to datasets 6, 11, and 14 for 11 repetitions. The results 
show that swap 4 city operators produce the best solution on 
dataset number six. In datasets 11 and 14, the combination of 
swap operators 3 and 4 cities produced the best results. The 
4-city swap operator will produce a more diverse solution. 
However, the 4-city swap operator allows for a better solution 
when just swapping 2 or 3 cities. So the combination method 
between swap 3 and 4 cities produces the best results. 

TABLE IV 
TEST RESULT OF MOVE STRATEGY 

LLH Dataset 6 Dataset 11 Dataset 14 

Swap 2-City 3668,1 61681,8 151380 
Swap 3-City 3429,8 61242,6 148982 
Swap 4-City 3351,5 61196,5 148956,7 
Swap 3&4-City 3420 60453.7 148304.6 

D. Result of Implementation ABC Algorithm 

After finding the parameter values and move strategy that 
can produce optimal results, then the ABC algorithm is 
applied to 14 datasets with 500.000.000 iteration for 11 
repetitions. The results can be seen in Table 5 and Figure 5. 
Based on the comparison with the initial solution, the ABC 
algorithm can optimize travel costs with an average of 54.6% 
smaller than the results produced by the initial solution. The 
ABC algorithm only produces the same solution in dataset 2 
because the results in the initial solution are already the 
optimal results. 

These results can be interpreted based on artificial datasets 
and real-world datasets. In the artificial dataset, the ABC 
algorithm can reduce costs by an average of 62.96%. If dataset 
number two is omitted from the calculation because the initial 
solution is already the optimal solution, the ABC algorithm 
can reduce costs by an average of 69.95%. The difference in 
size from small to large datasets does not significantly differ 
in the optimization results. These results show that the ABC 
algorithm can optimize the solution well on artificial datasets. 

TABLE V 
RESULT ABC ALGORITHM COMPARED TO INITIAL SOLUTION 

Dataset Initial 

Solution 

ABC  Cost Reduction (%) 

1 8609 1396 83,78% 
2 1498 1498 0,00% 
3 17818 9032,2 49,31% 
4 52623 17313,5 67,10% 
5 5157 911,2 82,33% 
6 12625 3420 72,91% 
7 89234 33238,1 62,75% 
8 17434 7518,1 56,88% 
9 290733 83534,2 71,27% 
10 374530 62852,8 83,22% 
11 94610 61681,8 34,80% 
12 147314 85024,8 42,28% 
13 184021 142147 22,76% 
14 230839 148304,6 35,75% 

 

 
Fig. 5  Comparison of initial solution and optimized solution 

Different results exist in real-world datasets. The ABC 
algorithm can only optimize costs with an average of 33.9%. 
Based on the number of areas, cities, and days, there is no 
significant difference between real-world and large artificial 
datasets. The ABC algorithm can still optimize costs in large 
artificial datasets with cost reductions above 50%. So it can 
be concluded that unknown factors distinguish between 
artificial and real-world datasets in the TSC 2.0 problem. 

E. Result Compared to GA 

GA is run to 14 datasets with 500,000,000 iterations for 11 
repetitions. The results of the comparison of the ABC and GA 
algorithms can be seen in Table 6 and Figure 6. From these 
results, it can be seen that the ABC algorithm outperform in 
13 data sets from 14 data sets. Only one dataset obtained the 
same result, namely dataset 2, because indeed from the initial 
results the solution was already the optimal solution and 
indeed there was only one available solution. In percentage 
terms, the ABC algorithm produces more cost-effectiveness 
than GA with an average of 26% savings. 
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When compared to the problem's size, the ABC algorithm 
optimizes the solution with an average of 32% on small and 
medium datasets and 22% on large datasets. Compared to the 
type of problem, the ABC algorithm optimizes the solution 
with an average of 27% on the large artificial dataset and 17% 
on the real-world dataset. From all aspects, the ABC 
algorithm outperforms GA. 

Another difference is in the variation of the resulting 
solution. The ABC algorithm produces solutions with smaller 
solution variations than the GA algorithm on the entire dataset. 
Figures 7, 8, and 9 compare the two algorithms from the 
boxplot graph. Smaller solution variation tends to find results 
similar to the average found in this study if the algorithm is 
re-run on the same problem. Meanwhile, the larger solution 
variation will increase the possibility of producing a solution 
with a rather large difference from the average found in this 
study. 

TABLE VI 
COMPARISON BETWEEN ABC ALGORITHM AND GA 

Dataset ABC GA Cost Reduction (%) 

1 1396 1986,4 30% 
2 1498 1498 0% 
3 9032,2 10874,4 17% 
4 17313,5 34243 49% 
5 911,2 3366,5 73% 
6 3420 4332,4 21% 
7 33238,1 38000,9 13% 
8 7518,1 8674,2 13% 
9 83534,2 126242 34% 
10 62852,8 120034,4 48% 
11 61681,8 67614,4 9% 
12 85024,8 97529,4 13% 
13 142147 170819,8 17% 
14 148304,6 209126,3 29% 

 

Fig. 6  Comparison of ABC and GA 
 

 

Fig. 7  Boxplot dataset 1-5 

 
Fig. 8  Boxplot dataset 6-10 

 

 
Fig. 9  Boxplot dataset 11-14 

IV. CONCLUSION 

TSP is a combinatoric optimization problem that belongs 
to the NP-Hard category. This research completes a case study 
of TSP problems published by Kiwi. This problem contains 
how to find the cheapest air transportation travel costs to be 
able to visit each area exactly once. ABC algorithm is 
proposed to find the shortest route. Several combinations of 
operator swaps were applied to this problem, ranging from 
swaps between two cities, swaps between three cities, swaps 
between 4-cities, and swap combinations between 3 and 4-
cities. The experimental results show that the overall swap 
combination between 3 and 4 produces the best results. In 
addition, the NP and limit parameters were tested. The result 
is that the NP parameter value is 4 and the limit parameter 
value of 5000 is the optimal value. After finding the optimal 
parameter values and swap operator, the ABC algorithm is 
executed on each dataset with a total of 500,000,000 iterations. 
The result is that this algorithm can reduce travel costs by an 
average of 54.6%. This research applies the same problem to 
the GA as a comparison algorithm. The result is that the ABC 
algorithm can find solutions with cheaper travel costs by an 
average of 26%. This approach may be improved in the future 
by trying different experiments and swap operator 
combinations. In addition, this approach can also be tested on 
other TSP problems with more real-world dataset. 
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