
Vol.12 (2022) No. 6

ISSN: 2088-5334

A Solving Route Optimization of Airplane Travel Problem Use
Artificial Bee Colony Algorithm

I Gusti Agung Premananda a, Ahmad Muklason a,*, Rizal Risnanda Hutama a
a Department of Information System, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya, 60111, Indonesia

Corresponding author: *mukhlason@is.its.ac.id, ahmad.muklason@gmail.com

Abstract— The Traveling Salesman Problem (TSP) is very popular in combinatoric optimization. The TSP problem is finding the

optimal route from several cities where the distance between cities is known, and a salesman must visit each city exactly once and return

to the origin city. The goal is to find a route with a minimum total distance. This problem is known as a non-deterministic polynomial

hard (NP-hard) problem, which means the computation time to find a solution increases exponentially with the size of the problem. NP-

Hard problems can be solved by using heuristic methods where the solution obtained is good enough (does not guarantee the most

optimal solution) in a reasonable time. One of the most recent variants of TSP problem is finding the cheapest flight routes to several

cities, which is part of the Traveling Salesman Challenge 2.0 (TSC 2.0) 2018 competition . This paper reports our study of implementing

an artificial bee colony (ABC) algorithm for the TSC 2.0 problem. ABC algorithm is chosen based on its superiority over other

algorithms in several optimization problems. The algorithm is implemented in a hyper-heuristic form. Several combinations of swap

operators are used to find the best combination result. The experimental result shows that the ABC algorithm can solve the TSC 2.0

problem with a fairly good performance by producing a savings cost of 54.6% from the initial solution and 26% compared to the

Genetic Algorithm.

Keywords— Traveling salesman problem; artificial bee colony; traveling salesman challenge 2.0.

Manuscript received 27 Nov. 2021; revised 24 Apr. 2022; accepted 6 Jun. 2022. Date of publication 31 Dec. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

TSP is one of the most popular problems in the world of
combinatoric optimization [1]–[3]. Euler documented TSP in
1759, whose interest was solving the knight’s tour problem
[4]. In the TSP problem, it is known the number of cities and
the distance between them. A salesman will start from one of
the cities and depart to visit all cities exactly once and return
to his hometown [5]. This problem's goal is finding the right
order of cities to cover the minimum distance possible [6].
TSP can be described in a mathematical model as in the
equation below:

��� �1 the path goes from city i to city j
0 otherwise (1)

min ∑ ∑ ��� ���
�
���,���

�
��� (2)

0 ��� 1 !, " # 0, … , % (3)

∑ ��� # 1�
���,��� " # 0, … , % (4)

∑ ��� # 1�
���,��� ! # 0, … , % (5)

&� ∈ (! # 0, … , % (6)

&�) &� * %+�� %) 1 1 ! , " % (7)

Equation 1 is the decision variable of the TSP problem. Xij

is equal to 1 if city i is connected to city j, and Xij is equal to
0 if city i and city j are not connected [7]. Equation two
explains the objective function of TSP, which is to find the
cheapest cost to travel in a number of cities. The objective
function is obtained by multiplying Cij which means the cost
from city i to city j and Xij which is the decision variable [8].
Equations 3 to 8 are constraints that must be met in the TSP
problem[9].

TSP is also one of the most difficult combinatorial
optimization problems. The TSP problem is included in the
NP-Complete problem [10]–[12] where the running time
increases exponentially with the increase in the size of
problem [13]. Therefore, the exact algorithm's ability to solve
this problem depends on the size of the problem. If the size
increases, it is possible that this problem cannot be solved in
an acceptable time [14]. One type of algorithm that can
produce a solution quickly and the resulting solution is quite

2363

good is a heuristic algorithm [15]. Previous research has
proven the effectiveness of heuristic algorithms in solving
NP-Complete problems: Ha et al [16] apply a hybrid genetic
algorithm (GA) to the TSP problem with drones, de Freitas
and Penna [17] apply variable neighborhood search (VNS) to
the TSP flying sidekick problem, Gao applies Ant Colony
Optimization (ACO) to the TSP problem [18], Huang et al.
[19] applies a niching memetic algorithm (MA) to a multi-
solution TSP problem, Ali, Essam and Kasmarik [20] apply a
differential evolution to a discrete TSP problem, Khan and
Maiti [21] apply a swap sequence based on an ABC algorithm
to a TSP problem and Karaboga and Gorkemli [22] solve a
TSP with a Combinatorial ABC algorithm.

From the many heuristic algorithms that exist and proof
that can solve the NP-Complete problem, one interesting
algorithm is to be applied in this research. The algorithm is
the Artificial Bee Colony (ABC) algorithm. ABC is an
algorithm developed by Dervis Karaboga, inspired by how
bees find the best food sources around their hives [23].

ABC algorithm shows better results than other heuristic
algorithms in several studies of various NP-Complete
problems. Xu et al. [24] conducted a study by modifying the
ABC algorithm to improve solution convergence. The
algorithm developed is applied to the robot path planning
problem. The results of this algorithm show its superiority by
being superior to the comparison algorithm, namely partial
swarm optimization, differential evolution, and ABC
algorithm from other studies. Another study by Li et al. [25]
modified the ABC algorithm to solve the multi-objective low-
carbon flexible job shop scheduling problem. The results
showed that improved ABC resulted in a better solution to the
three comparison algorithms (MOPSO, MODE, and NSGA-
II).

In the TSP problem, the ABC algorithm has also been used
several times in previous studies. Choong, Wong, and Lim [26]
developed the ABC algorithm with a Modified Choice
Function (MCF-ABC). The modification is intended to
automatically select neighborhood search heuristics in the
employed and onlooker bee phases. The algorithm that has
been developed is compared with several other algorithms
(ABC, ACO-ABC, 2-opt ABC, TSPoptBees, bee colony
optimization, hybrid discrete ABC, chained lin-kernighan,
effective heuristics ACO, Quantum inspired particle swarm,
and Honeybees mating optimization). The comparison studies
indicate that MCF-ABC is competitive among the state-of-

the-art algorithms. Another study by Venkatesh and Singh [27]
also applied the ABC algorithm with a modified degree of
perturbation variable to solve the generalized covering
traveling salesman problem. This algorithm also shows better
results than the two comparison algorithms (MA and VNS).

This research solves the TSP problem by optimizing
airplane travel routes for travel. The ABC algorithm (which
has good potential based on previous research) was chosen to
be implemented in a hyper-heuristic framework. The case
study used comes from the new dataset developed by Kiwi in
a traveling salesman challenge 2.0 (TSC 2.0) competition.
The results of this study compared with the GA, which is a
popular algorithm in combinatorial problems and has been
proven to solve TSP problems [5], [16], [28], [29].

II. MATERIALS AND METHOD

This section describes the process carried out in this
research. The process is described in several sub-chapters
where sub-chapter a discusses the dataset TSC 2.0, sub-
chapter b discusses preprocessing and initial solution, sub-
chapter c discusses the proposed ABC algorithm, sub-chapter
d discusses experimental parameters, and sub-chapter e
discusses comparison of algorithms.

A. Dataset Traveling Salesman Challenge 2.0. (TSC 2.0)

Traveling Salesman Challenge 2.0. (TSC 2.0) [30] is a
competition held by the online travel company Kiwi which
raises the Traveling Salesman Problem in the field of tours.
The problem in TSC 2.0 aims to find an airplane route with
the cheapest cost to visit several predetermined areas where
one or more cities are in that area. In TSC 2.0 given 14
datasets were derived from real-world data and artificial data.
The amount of data also varies from small to large. Details of
the 14 datasets can be seen in table 1.

In this problem, there are also some hard constraints, such as:
• Departure city has been determined in advance
• Each area must be visited exactly once.
• Travel to the next area must continue from the city that

was visited the previous day.
• Switching between areas must be done exactly 1 time

every day.
• The journey must end in the same area as the departure

city area.

TABLE I
DATASET TSC 2.0

Dataset Type Size Number of Areas Number of Cities Number of days

Dataset 1 Artificial Small 10 10 10
Dataset 2 Artificial Small 10 15 10
Dataset 3 Artificial Small 13 38 13
Dataset 4 Artificial Medium 40 99 40
Dataset 5 Artificial Medium 46 138 46
Dataset 6 Artificial Medium 96 192 96
Dataset 7 Artificial Large 150 300 150
Dataset 8 Artificial Large 200 300 200
Dataset 9 Artificial Large 250 250 250
Dataset 10 Artificial Large 300 300 300
Dataset 11 Real Large 150 200 150
Dataset 12 Real Large 200 250 200
Dataset 13 Real Large 250 275 250
Dataset 14 Real Large 300 300 300

2364

The main difference from classic TSP is in the presence of
the terms area and city. In one solution, it is mandatory to visit
each area once. However, if an area has several cities, we only
need to visit one city and are free to choose any city so that
the combinations that appear in this case study become more
numerous.

The dataset in TSC 2.0 has the format as shown in Figure
1. The first line in each dataset contains information on the
number of areas and the initial city of departure. The next few
lines will contain the area name information as much as the
number of areas that have been submitted in the first line. In
each area it is possible to have one or more cities. The list of
cities contained in an area is informed right on the line below
the area name. The next line to the last line contains available
flight schedule information. Each row contains information
on the city of departure, city of arrival, day, and cost of the
flight. On the day information, if the content is 0 then the
flight is available every day.

Fig. 1 Example dataset TSC 2.0

B. Preprocessing Data and Initial Solution

The first step in initializing the initial solution is to ensure
that the city visited every day has a flight to another city the
next day. The initial solution formation stage aims to prepare
materials for optimization at the next stage. However, there is
a problem where the initial solution cannot be made only by
using random elements to choose the cities visited daily. This
happens because in this case study, several combinations of
cities and days lead to dead ends. This happens because in that
combination it is not possible to travel the next day from that
city to another city. Therefore, it is necessary to pre-process
the data first

The data preprocessing stage is carried out by mapping the
city into a graph on a two-dimensional array where the y-axis
is a list of cities that can be visited, and the x-axis is the day
of travel. Checking will be done from the first day to the last
day and from the last day to the first day. If a city is not
connected to another city on the next day or the previous day,
then that city will be deleted. For example, in Figure 2 is an
illustration of the initial conditions of mapping the city in the
graph. It can be seen on the second day that city 5 is not
connected to other cities on the second day. So, city 5 will be

removed from the list of cities that can be visited on the
second day. The impact of this deletion causes city 4 on the
first day not to connect with other cities on the second day, so
city 4 on the first day will also be deleted. An illustration of
the results after the checking process can be seen in Figure 3.
The results of data preprocessing do not guarantee that all
combinations of cities and days that still exist have flights to
other cities the next day. But this process reduces the chances
of finding a combination that results in a dead-end

Fig. 2 Illustration of City Mapping in Graph

Fig. 3 Illustration of City Check Results

After preprocessing the data, the initial solution is formed.

The formation of the initial solution is done by randomly
selecting areas and cities. This will be done continuously until
all areas have been selected and included in the initial solution.
The last step is checking to ensure the resulting solution is
feasible in accordance with the existing hard constraints. If it
turns out that the solution is not feasible, then the solution will
be deleted, and the initial solution formation stage is started
again from the beginning.

C. ABC Algorithm

ABC is an algorithm developed by Karaboga [31] which
is inspired by the way bees find the best food sources around
their hives. In the ABC algorithm, the bee colony will be
divided into three parts consisting of employed bees, onlooker
bees, and scout bees [32]. The number of employed bees and
onlooker bees will be equal to the number of food sources that
were initiated at the beginning [33]. The way the ABC
algorithm works starts with initializing the amount of nectar
in all food sources carried out by the scout bee. The scout bee
will provide information to the employed bee and each
employed bee will go to the food source [21]. Employed bees
will store the amount of nectar at the destination food source
in its memory. Employed bees will look for other food sources
in the vicinity. If it finds a better food source, the employed

2365

bee will replace the contents of its memory with the amount
of nectar and the location of the new food source [34]. After
that, the employed bee will share information with the
onlooker bee through a dance regarding the quality of the
nectar found. Onlooker bee will choose some of the best food
sources using probability calculations as in equation 8 [35].

 -� # .�/0
∑ .�/123145

 (8)

Pi is the probability of the i food source obtained by dividing
the value of the i food source (fiti) by the sum of all food
sources (fitn). Some of the best food sources will be re-
searched around food sources to find better food sources. If
the results of one of the food sources produced at the
employed bee and onlooker bee stages do not increase in
several searches, then the scout bee will carry out its duties by
looking for new food sources randomly and the employed bee
and onlooker bee will repeat the steps from the beginning [26].

In the application of the TSC 2.0 problem, the ABC
algorithm uses the low-level heuristic (LLH) as the move
operator. Several LLH operators proposed in this study will
be selected, consisting of swap 2 cities, swap 3 cities, swap 4
cities, and a combination of swap 3 cities and 4 cities. The
selection will be done by trying on 3 representative datasets
where dataset 6 represents a small dataset, dataset 11
represents a medium dataset and dataset 14 represents a large
dataset. The way a 2-city swap works is by choosing from two
cities from the initial solution that has been generated and then
swapping the positions of the two cities. In a 3-city swap, the
first step is to carry out the same process as in a 2-city swap.
After that, swap 2 cities again where 1 city is chosen randomly
from the 2 cities selected at the beginning, and another city is
chosen randomly outside the two cities selected at the
beginning. So, the city that is exchanged becomes 3 cities. In
a 4-city swap, it is the same as a 3-city swap, but only the
number of cities increases to 4. In a combination of 3-city and
4-city swap, random selection is made to determine the
operator to be run in each iteration.

The application of this LLH will be carried out in the
solution change process carried out in the ABC algorithm,
namely at the employed bee and onlooker bee stages which
are the stages for solution exploitation, and at the scout bee
stage which is the stage for solution exploration. Figure 4
shows the final result of the algorithm used in this study. The
ABC algorithm will be applied 10 times on each dataset to get
average results in each dataset.

D. Parameter Experiment

Two parameters need to be adjusted to obtain better results.
These parameters are the NP parameter which is the bee
population, and the limit parameter, which functions to set the
stage when the exploration stage is carried out and the
exploitation stage. Experiments will be carried out by trying
random parameter values and decreasing or adding extreme
values to find the optimal value estimate. After getting the
estimated optimal value, a trial is carried out by adding and
subtracting the parameter value by 50% to ensure that the
value used is the closest to the best value.

E. Comparison of Algorithms

Because very few studies use the same dataset, to see the
performance of the results of this study, GA will be used as a
comparison algorithm. The application of GA will be carried
out the same as with ABC using the same initial solution and
the same parameter experimental method. Experiments will
also be carried out 10 times on each dataset with the same
amount of time as the ABC algorithm.

Fig. 4 Pseudocode Artificial Bee Colony Algorithm

III. RESULT AND DISCUSSION

All experiments ran on an Intel’s Core i7 2.6 GHz
computer with 16 GB of RAM under the Windows 10 64-bit
operating system. The programming language used was java
with idea NetBeans 8.2.

A. Preprocessing Data and Initial Solution

The first step to solving a TSP problem is to find an initial
solution. This process is carried out by preprocessing the data
by removing the possibility of a city that can be visited on
certain days, which will lead to a dead-end route. The next
stage is forming an initial solution by choosing a city
randomly. This stage succeeded in finding 14 datasets with
feasible solutions. Preprocessing data plays an important role
in this stage. Without preprocessing the data, only two
datasets (datasets 1 and 3) can find a feasible solution.

B. Parameter Experiment

The first experiment was to test the limit parameters.
Datasets number six chosen to represent small and medium
artificial dataset, dataset number 11 chosen to represent large
artificial dataset, and dataset number 14 chosen to represent
real-world datasets. Parameter testing begins by finding the
approximate range of optimal parameter values. The result is
that there are three possible values, namely 2500, 5000, and
7500. These three values are applied to datasets 6, 11, 14 11

2366

times. Table 2 shows the average results of the three limit
parameter values. These results show that the limit parameter
with a value of 5000 can produce the most stable results in
small, medium, and large datasets. Therefore, the limit
parameter value of 5000.

TABLE II
TEST RESULTS LIMIT PARAMETER

Limit Value Dataset 6 Dataset 11 Dataset 14

2500 3668.1 61681.8 151380
5000 3723.9 62113.8 150909
7500 3777.1 62491.1 152161

The next experiment was carried out on the NP parameters.

With the same method applied to the limit parameters, values
of 4, 8, and 12 were obtained to be tested on datasets 6, 11,
and 14 11 times. This experiment results in the parameter
value 8 being the optimal value. However, the difference
obtained is only around 1-2% and is not comparable to the
increase in running time, almost two times. Therefore, the NP
parameter value to be used is 4. The test results can be seen in
Table 3.

TABLE III
TEST RESULTS NP PARAMETER

NP Value Dataset 6 Dataset 11 Dataset 14

4 3668,1 61681,8 151380
8 3610,8 60957,6 149571,4
12 3623,1 61065,6 148643,6

C. Move Strategy

In this section, the movement strategy is selected by
applying several combinations of LLH that can produce the
most optimal solution. Four types of operator swaps were
applied to datasets 6, 11, and 14 for 11 repetitions. The results
show that swap 4 city operators produce the best solution on
dataset number six. In datasets 11 and 14, the combination of
swap operators 3 and 4 cities produced the best results. The
4-city swap operator will produce a more diverse solution.
However, the 4-city swap operator allows for a better solution
when just swapping 2 or 3 cities. So the combination method
between swap 3 and 4 cities produces the best results.

TABLE IV
TEST RESULT OF MOVE STRATEGY

LLH Dataset 6 Dataset 11 Dataset 14

Swap 2-City 3668,1 61681,8 151380
Swap 3-City 3429,8 61242,6 148982
Swap 4-City 3351,5 61196,5 148956,7
Swap 3&4-City 3420 60453.7 148304.6

D. Result of Implementation ABC Algorithm

After finding the parameter values and move strategy that
can produce optimal results, then the ABC algorithm is
applied to 14 datasets with 500.000.000 iteration for 11
repetitions. The results can be seen in Table 5 and Figure 5.
Based on the comparison with the initial solution, the ABC
algorithm can optimize travel costs with an average of 54.6%
smaller than the results produced by the initial solution. The
ABC algorithm only produces the same solution in dataset 2
because the results in the initial solution are already the
optimal results.

These results can be interpreted based on artificial datasets
and real-world datasets. In the artificial dataset, the ABC
algorithm can reduce costs by an average of 62.96%. If dataset
number two is omitted from the calculation because the initial
solution is already the optimal solution, the ABC algorithm
can reduce costs by an average of 69.95%. The difference in
size from small to large datasets does not significantly differ
in the optimization results. These results show that the ABC
algorithm can optimize the solution well on artificial datasets.

TABLE V
RESULT ABC ALGORITHM COMPARED TO INITIAL SOLUTION

Dataset Initial

Solution

ABC Cost Reduction (%)

1 8609 1396 83,78%
2 1498 1498 0,00%
3 17818 9032,2 49,31%
4 52623 17313,5 67,10%
5 5157 911,2 82,33%
6 12625 3420 72,91%
7 89234 33238,1 62,75%
8 17434 7518,1 56,88%
9 290733 83534,2 71,27%
10 374530 62852,8 83,22%
11 94610 61681,8 34,80%
12 147314 85024,8 42,28%
13 184021 142147 22,76%
14 230839 148304,6 35,75%

Fig. 5 Comparison of initial solution and optimized solution

Different results exist in real-world datasets. The ABC
algorithm can only optimize costs with an average of 33.9%.
Based on the number of areas, cities, and days, there is no
significant difference between real-world and large artificial
datasets. The ABC algorithm can still optimize costs in large
artificial datasets with cost reductions above 50%. So it can
be concluded that unknown factors distinguish between
artificial and real-world datasets in the TSC 2.0 problem.

E. Result Compared to GA

GA is run to 14 datasets with 500,000,000 iterations for 11
repetitions. The results of the comparison of the ABC and GA
algorithms can be seen in Table 6 and Figure 6. From these
results, it can be seen that the ABC algorithm outperform in
13 data sets from 14 data sets. Only one dataset obtained the
same result, namely dataset 2, because indeed from the initial
results the solution was already the optimal solution and
indeed there was only one available solution. In percentage
terms, the ABC algorithm produces more cost-effectiveness
than GA with an average of 26% savings.

2367

When compared to the problem's size, the ABC algorithm
optimizes the solution with an average of 32% on small and
medium datasets and 22% on large datasets. Compared to the
type of problem, the ABC algorithm optimizes the solution
with an average of 27% on the large artificial dataset and 17%
on the real-world dataset. From all aspects, the ABC
algorithm outperforms GA.

Another difference is in the variation of the resulting
solution. The ABC algorithm produces solutions with smaller
solution variations than the GA algorithm on the entire dataset.
Figures 7, 8, and 9 compare the two algorithms from the
boxplot graph. Smaller solution variation tends to find results
similar to the average found in this study if the algorithm is
re-run on the same problem. Meanwhile, the larger solution
variation will increase the possibility of producing a solution
with a rather large difference from the average found in this
study.

TABLE VI
COMPARISON BETWEEN ABC ALGORITHM AND GA

Dataset ABC GA Cost Reduction (%)

1 1396 1986,4 30%
2 1498 1498 0%
3 9032,2 10874,4 17%
4 17313,5 34243 49%
5 911,2 3366,5 73%
6 3420 4332,4 21%
7 33238,1 38000,9 13%
8 7518,1 8674,2 13%
9 83534,2 126242 34%
10 62852,8 120034,4 48%
11 61681,8 67614,4 9%
12 85024,8 97529,4 13%
13 142147 170819,8 17%
14 148304,6 209126,3 29%

Fig. 6 Comparison of ABC and GA

Fig. 7 Boxplot dataset 1-5

Fig. 8 Boxplot dataset 6-10

Fig. 9 Boxplot dataset 11-14

IV. CONCLUSION

TSP is a combinatoric optimization problem that belongs
to the NP-Hard category. This research completes a case study
of TSP problems published by Kiwi. This problem contains
how to find the cheapest air transportation travel costs to be
able to visit each area exactly once. ABC algorithm is
proposed to find the shortest route. Several combinations of
operator swaps were applied to this problem, ranging from
swaps between two cities, swaps between three cities, swaps
between 4-cities, and swap combinations between 3 and 4-
cities. The experimental results show that the overall swap
combination between 3 and 4 produces the best results. In
addition, the NP and limit parameters were tested. The result
is that the NP parameter value is 4 and the limit parameter
value of 5000 is the optimal value. After finding the optimal
parameter values and swap operator, the ABC algorithm is
executed on each dataset with a total of 500,000,000 iterations.
The result is that this algorithm can reduce travel costs by an
average of 54.6%. This research applies the same problem to
the GA as a comparison algorithm. The result is that the ABC
algorithm can find solutions with cheaper travel costs by an
average of 26%. This approach may be improved in the future
by trying different experiments and swap operator
combinations. In addition, this approach can also be tested on
other TSP problems with more real-world dataset.

REFERENCES

[1] M. A. H. Akhand, S. I. Ayon, S. A. Shahriyar, N. Siddique, and H.
Adeli, “Discrete Spider Monkey Optimization for Travelling
Salesman Problem,” Appl. Soft Comput. J., vol. 86, 2020, doi:
10.1016/j.asoc.2019.105887.

2368

[2] G. Campuzano, C. Obreque, and M. M. Aguayo, “Accelerating the
Miller–Tucker–Zemlin model for the asymmetric traveling salesman
problem,” Expert Syst. Appl., vol. 148, 2020, doi:
10.1016/j.eswa.2020.113229.

[3] E. Baş and E. Ülker, “Dıscrete socıal spıder algorıthm for the travelıng
salesman problem,” Artif. Intell. Rev., vol. 54, no. 2, 2021, doi:
10.1007/s10462-020-09869-8.

[4] Komarudin and S. F. Parhusip, “Composite algorithm based on Clarke
– Wright and local search for the traveling salesman problem,” 2019.
doi: 10.1145/3364335.3364388.

[5] M. A. Al-Furhud and Z. Hussain, “Genetic Algorithms for the
Multiple Travelling Salesman Problem,” Int. J. Adv. Comput. Sci.

Appl., vol. 11, no. 7, 2020, doi: 10.14569/IJACSA.2020.0110768.
[6] A. C. Cinar, S. Korkmaz, and M. S. Kiran, “A discrete tree-seed

algorithm for solving symmetric traveling salesman problem,” Eng.

Sci. Technol. an Int. J., vol. 23, no. 4, pp. 879–890, Aug. 2020, doi:
10.1016/j.jestch.2019.11.005.

[7] J. Kaur and A. Pal, “An analysis of different metaheuristic approaches
for solving travelling salesman problems,” Adv. Math. Sci. J., vol. 9,
no. 8, 2020, doi: 10.37418/amsj.9.8.29.

[8] M. Mosayebi, M. Sodhi, and T. A. Wettergren, “The Traveling
Salesman Problem with Job-times (TSPJ),” Comput. Oper. Res., vol.
129, 2021, doi: 10.1016/j.cor.2021.105226.

[9] N. Rokbani et al., “Bi-heuristic ant colony optimization-based
approaches for traveling salesman problem,” Soft Comput., vol. 25, no.
5, 2021, doi: 10.1007/s00500-020-05406-5.

[10] M. A. Tawhid and P. Savsani, “Discrete Sine-Cosine Algorithm (DSCA)
with Local Search for Solving Traveling Salesman Problem,” Arab. J.

Sci. Eng., vol. 44, no. 4, 2019, doi: 10.1007/s13369-018-3617-0.
[11] Z. Daoqing and J. Mingyan, “Parallel discrete lion swarm optimization

algorithm for solving traveling salesman problem,” J. Syst. Eng.

Electron., vol. 31, no. 4, 2020, doi: 10.23919/JSEE.2020.000050.
[12] S. K. R. Kanna, K. Sivakumar, and N. Lingaraj, “Development of Deer

Hunting linked Earthworm Optimization Algorithm for solving large
scale Traveling Salesman Problem,” Knowledge-Based Syst., vol. 227,
2021, doi: 10.1016/j.knosys.2021.107199.

[13] I. G. A. Premananda and A. Muklason, “Complex University
Timetabling Using Iterative Forward Search Algorithm and Great
Deluge Algorithm,” Khazanah Inform. J. Ilmu Komput. dan Inform.,
vol. 7, no. 2, 2021.

[14] C. Jiang, Z. Wan, and Z. Peng, “A new efficient hybrid algorithm for
large scale multiple traveling salesman problems,” Expert Syst. Appl.,
vol. 139, 2020, doi: 10.1016/j.eswa.2019.112867.

[15] R. S. de Moraes and E. P. de Freitas, “Experimental analysis of
heuristic solutions for the moving target traveling salesman problem
applied to a moving targets monitoring system,” Expert Syst. Appl.,
vol. 136, 2019, doi: 10.1016/j.eswa.2019.04.023.

[16] Q. M. Ha, Y. Deville, Q. D. Pham, and M. H. Hà, “A hybrid genetic
algorithm for the traveling salesman problem with drone,” J.

Heuristics, vol. 26, no. 2, 2020, doi: 10.1007/s10732-019-09431-y.
[17] J. C. de Freitas and P. H. V. Penna, “A variable neighborhood search

for flying sidekick traveling salesman problem,” Int. Trans. Oper. Res.,
vol. 27, no. 1, pp. 267–290, 2020, doi: 10.1111/itor.12671.

[18] W. Gao, “New ant colony optimization algorithm for the traveling
salesman problem,” Int. J. Comput. Intell. Syst., vol. 13, no. 1, 2020,
doi: 10.2991/ijcis.d.200117.001.

[19] T. Huang, Y. J. Gong, S. Kwong, H. Wang, and J. Zhang, “A Niching
Memetic Algorithm for Multi-Solution Traveling Salesman Problem,”

IEEE Trans. Evol. Comput., vol. 24, no. 3, 2020, doi:
10.1109/TEVC.2019.2936440.

[20] I. M. Ali, D. Essam, and K. Kasmarik, “A novel design of differential
evolution for solving discrete traveling salesman problems,” Swarm

Evol. Comput., vol. 52, 2020, doi: 10.1016/j.swevo.2019.100607.
[21] I. Khan and M. K. Maiti, “A swap sequence based Artificial Bee

Colony algorithm for Traveling Salesman Problem,” Swarm Evol.

Comput., vol. 44, 2019, doi: 10.1016/j.swevo.2018.05.006.
[22] D. Karaboga and B. Gorkemli, “Solving Traveling Salesman Problem

by Using Combinatorial Artificial Bee Colony Algorithms,” Int. J.

Artif. Intell. Tools, vol. 28, no. 1, 2019, doi:
10.1142/S0218213019500040.

[23] M. R. Batchanaboyina and N. R. Devarakonda, “Handling
optimization problem, and the scope of varied artificial bee colony
(ABC) algorithms: A contemporary research,” Int. J. Innov. Technol.

Explor. Eng., vol. 8, no. 6 Special Issue 4, 2019, doi:
10.35940/ijitee.F1125.0486S419.

[24] F. Xu et al., “A new global best guided artificial bee colony algorithm
with application in robot path planning,” Appl. Soft Comput. J., vol.
88, 2020, doi: 10.1016/j.asoc.2019.106037.

[25] Y. Li, W. Huang, R. Wu, and K. Guo, “An improved artificial bee
colony algorithm for solving multi-objective low-carbon flexible job
shop scheduling problem,” Appl. Soft Comput. J., vol. 95, 2020, doi:
10.1016/j.asoc.2020.106544.

[26] S. S. Choong, L. P. Wong, and C. P. Lim, “An artificial bee colony
algorithm with a Modified Choice Function for the traveling salesman
problem,” Swarm Evol. Comput., vol. 44, 2019, doi:
10.1016/j.swevo.2018.08.004.

[27] V. Pandiri and A. Singh, “An artificial bee colony algorithm with
variable degree of perturbation for the generalized covering traveling
salesman problem,” Appl. Soft Comput. J., vol. 78, 2019, doi:
10.1016/j.asoc.2019.03.001.

[28] A. M. H. Al-Ibrahim, “Solving Travelling Salesman Problem (TSP)
by Hybrid Genetic Algorithm (HGA),” Int. J. Adv. Comput. Sci. Appl.,
vol. 11, no. 6, 2020, doi: 10.14569/IJACSA.2020.0110649.

[29] A. Riazi, “Genetic algorithm and a double-chromosome
implementation to the traveling salesman problem,” SN Appl. Sci., vol.
1, no. 11, 2019, doi: 10.1007/s42452-019-1469-1.

[30] Kiwi, “Travelling Salesman Challenge 2.0,” 2019.
https://travellingsalesman.kiwi.com.

[31] K. Hussain, M. N. Mohd Salleh, S. Cheng, Y. Shi, and R. Naseem,
“Artificial bee colony algorithm: A component-wise analysis using
diversity measurement,” J. King Saud Univ. - Comput. Inf. Sci., vol.
32, no. 7, 2020, doi: 10.1016/j.jksuci.2018.09.017.

[32] H. C. Tsai, “Artificial bee colony directive for continuous
optimization,” Appl. Soft Comput. J., vol. 87, 2020, doi:
10.1016/j.asoc.2019.105982.

[33] M. A. Awadallah, M. A. Al-Betar, A. L. Bolaji, I. A. Doush, A. I.
Hammouri, and M. Mafarja, “Island artificial bee colony for global
optimization,” Soft Comput., vol. 24, no. 17, 2020, doi:
10.1007/s00500-020-04760-8.

[34] W. li Xiang, Y. zhen Li, R. chun He, and M. qing An, “Artificial bee
colony algorithm with a pure crossover operation for binary
optimization,” Comput. Ind. Eng., vol. 152, 2021, doi:
10.1016/j.cie.2020.107011.

[35] Y. Deng, H. Xu, and J. Wu, “Optimization of blockchain investment
portfolio under artificial bee colony algorithm,” J. Comput. Appl.

Math., vol. 385, 2021, doi: 10.1016/j.cam.2020.113199.

2369

