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Abstract— Tumor is one of the deadly diseases which is frequently to be found in animals. However, identifying whether an animal has 

a tumor still becomes a big challenge. Classification of tumor disease can be done through gene expression, which consists of hundreds 

of genes, but only a small number of samples is taken. This data structure is called microarray data having the characteristic of high-

dimensional data. The choice of a single model can be a problem for high-dimensional data because it ignores model uncertainty. This 

research proposed to use Bayesian Model Averaging (BMA) to model the uncertainty model by averaging the posterior distribution of 

all best models, weighted by their posterior model probabilities. Selecting relevant genes to diagnose animal tumors is very important; 

hence, variable selection needs to be carried out. The selection of predictor variables is carried out by using the iterative BMA algorithm. 

The BMA results showed that from 335 gene expressions, 12 genes were selected to be relevant genes for classifying whether the animals 

have a tumor or normal. Moreover, from 2335 possible models formed, 12 of the best models are selected. The accuracy of BMA results 

is assessed using the Brier Score, resulting from a value indicating that the BMA model is good enough to classify animals, whether they 

have a tumor or not. This research has proven that BMA with logistic performance has very good predictability; hence, the method can 

be applied to classify other diseases.  
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I. INTRODUCTION

Animal tumor disease is one of the deadly diseases which 
typically attacks pets such as dogs and cats. The Indonesian 
Veterinary Medicine Association revealed that in 2013 the 
percentage of tumors in pets was 5% - 10%. Recently, the 
incidence of tumor disease in animals has been quite high, 
especially in dogs and cats. In general, diagnosing animals 
affected by tumor disease occurs when the animal is already 
in an advanced stage, and late handling of animals infected 
with tumors can be fatal. Therefore, animal tumor disease 
must be diagnosed as early as possible before tumor cells 
spread to other internal organs. 

One of the current ways to classify animal diseases is by 
investigating gene expression. Microarray data is genetic 
information data in the form of gene expression. Microarrays 
can evaluate the expression of hundreds to thousands of genes 
and simultaneously monitor ongoing biological processes [1], 
[2]. Furthermore, the thousand gene expressions representing 

animal tissue will be classified as a tumor or healthy tissue. 
Microarray is part of high dimensional data because it has 
hundreds to thousands of features. One of the main challenges 
in analyzing microarray data is that the number of genes 
(predictor variables) exceeds the amount of tissue accessible. 
In addition, it is usually only a subset of genes relevant to 
differentiating into different classes [3], [4]. 

The previous study on gene expression data as microarray 
was carried out by Li and Yang [5], which applied the 
averaging model and ensemble model approaches to classify 
samples in microarray data. A more recent study by Yu et al. 
[6] used the Jackknife model averaging for predicting gene
expression. Another study by Astuti [7] on identifying
differences in microarray experiment gene expression with
Bayesian mixture model averaging (BMMA) showed that the
BMMA-normal model could adequately identify the ID group
of Chickpea data genes in the upregulated, regulated, and
down-regulated groups.

In this study, animal disease gene expression classification 
consists of hundreds of genes. However, the number of 
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samples is very small. Therefore, it needs to be resolved with 
an appropriate method. A single model approach can be a 
problem for high-dimensional microarray data due to a large 
number of genes while the number of samples is small. 
Therefore, to overcome these problems, the Bayesian Model 
Averaging (BMA) method is used. The Bayesian Model 
Averaging (BMA) approach offers the best alternative 
solution to this problem [8], [9]. Bayesian model averaging 
has been applied in other fields such as economic and 
financial [10]–[13], hydrology [14]–[17], engineering [18], 
behavioral research [19], environmental [20],  agriculture [21], 
climate and meteorological [22]–[24] and many others. 

BMA is a Bayesian approach that combines all possible 
models and averages the models by the posterior distribution 
of the selected best models [25]–[27]. Zhou, Liu, and 
Dannenberg [28] argued that the BMA method captures and 
measures complex relations between gene expression patterns 
and sample characteristics in microarray data. A study by 
Yeung, Bumgarner, and Raftery [3] reveals that applying 
BMA method for gene selection and microarray data 
classification led to high accuracy. A study by Annest et al. 
[29] applied iterative BMA to microarrays (Breast Cancer) 
data and found that iterative BMA can capture the uncertainty 
of models for gene selection with excellent performance. 

In this study, the classification of animal tumor disease 
involves hundreds of genes (in this case, as predictor variables) 
with only a few samples; hence, the selection of variables 
needs to be done to obtain only relevant genes for 
classification. The predictor variable selection is done using 
the iterative Bayesian Model Averaging algorithm. The 
accuracy of classification is assessed by using Brier Score 
[30]. Using selected genes is expected to easily classify tumor 
and non-tumor diseases in animals using microarrays. 

II. MATERIAL AND METHOD 

A. Dataset Description 

The data used in this study are secondary data sourced from 
medicinal life science from one of the private universities in 
Japan. The data used is gene data with micro- RNA type, 
namely miRNA. This data consists of 29 animal samples 
consisting of 335 small RNA genes. The research variables 
used in this study are 335 predictor variables in the form of 
microRNA genes (miRNA) and one response variable in the 
form of animal disease categories that are affected by tumors 
or not affected by tumors. 

A tumor is an abnormal growth of body cells. Gene 
expression is a series of processes using information from a 
gene to synthesize functional gene products. MicroRNA or 
miRNA is a small single bundle of ribonucleic acid (RNA) 
bundles (between 21 and 24 nucleotides in length) that inhibit 
the role (down-regulate) of target genes in the post-
transcription stage of gene expression. 

Gene expression comes from microarrays experiments. 
The microarray experiment is a data collection technique by 
using a platform that is the result of duplication of the original 
object identifier [31]. One technology for gene sequencing is 
the Next Generation Sequencing (NGS) platform, which 
provides genetic information in one run of the tool [32]. Data 
from microarrays have the following characteristics: 

 The sample size that can be observed is minimal (few) 
due to limited funds, human resources, time and the 
availability of sample sizes. 

 The characteristics of variables (genes) that can be 
observed are tremendous, reaching tens of thousands of 
characteristics (genes) in each experiment. 

Based on the characteristics of microarray data, in 
microarray data analysis, it needs particular action because 
parametric statistics require a large enough sample size to 
meet the degrees of modeling freedom. If the assumptions are 
violated, the conclusions from the analysis results will be 
biased. 

B. Bayesian Analysis 

Bayesian analysis is a statistical method based on a 
posterior probability distribution model with a structure as a 
combination of two pieces of information, namely past data 
information (prior) and observational data (likelihood) [33]. 

The Bayesian analysis concept can be illustrated as follows; 
given an observation �  which has a likelihood function �(�|�), then the information about the parameter �  that is 
known before the observation is made is called prior � , 
denoted as �(�) . Furthermore, the posterior probability 
distribution of �, which is �(�|�) can be determined based on 
the probability rule of the Bayes Theorem as follows: 

 �(�|�) = 
(�|�)(�)

(�)  (1) 

where �(�) is a normalized constant. Equation (1) can be 
written in a proportional form as:  

 �(�|�) ∝ �(�|�)�(�) (2) 

posterior ∝ (likelihood function) x (prior). 
 

Equation (2) shows that the posterior probability is 
proportional to the multiplication between the likelihood 
function and the prior probability of the model parameters. It 
means that the prior information will be updated using sample 
information in likelihood data to obtain the updated 
information used in decision making [33]. 

C. Bayesian Model Averaging (BMA) 

Bayesian Model Averaging (BMA) is a Bayesian approach 
that combines all possible models that can be formed by 
averaging the posterior distribution of all the best models, 
weighted by the probability of the posterior model. The idea 
of  BMA is to capture model uncertainty to obtain the best 
model [8], [25]. 

This research uses logistic regression to predict the class 
of tumor and non-tumor diseases in animals ��( � = 1| �, ��) which can be expressed as equation (3).  

��( � = 1| �, ��) = �� ���( � = 1|�, ��)
��( � = 0|�, ��)� 

= �� + ����+. . . +�� 

(3) 

where �  represents the expression of the selected gene and �  
is a regression parameter, and ! =  1,2, …  �.  Suppose there 
are � predictor variables, then there are % = 2  models that 
might be formed assuming that there is no interaction between 
the predictor variables.  
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In the case of classification with two classes, let � be the 
response variable (class), where � =  0 or 1. Consider the 
dataset � as the one for which the classes or label are known. 
Then, the equation of BMA model is shown (4). 

 ��( � = 1|�) = ∑ ��( � = 1|�, ��) ∗ ��( ��|�)(�)�  (4) 

where the posterior probability of � =  1 given by dataset � 

is the weighted average of the posterior probability of � =  1 
given by dataset � and model �� multiplied by the posterior 
probability of model ��   given dataset � . The sum of the 
whole model ��  is the posterior predictive model ��( � =1|�).  

Using the Bayes theorem, the posterior probability for the �� model can be calculated using the following equation. 

 �(��| �) = *(+,)*(- |+,)
*(-)  (5) 

where �(� | ��)  and �(��)  are likelihood function and 
prior probability for �� model, respectively. Prior probability �(��)  and .�(/�)  for model ��  determines the initial 
description of the model uncertainty. Based on information 
from dataset �, changes are made to the model uncertainty 
description based on the posterior probability model �(��|�) . The posterior mean ∆  is given as follows in 
equation (6). 

 1(∆|�) = ∑ ��(��|�)1(∆|�� , �)(�)�  (6) 

1(∆|�)  shows the weighted expectation value ∆  for each 
possible combination model (priors and models determine 
weight). Meanwhile, the variance  ∆|� is as follows. 

23�(4|�) = 5(63�( 4|�, ��)
(

�)� + [1(4|��, �)]9) ��( ��|�)− 1(4|�)9 

(7) 

As follows is the posterior probability that gene (� ) is 
principal predictors. 

 ��( � ≠ 0|�) = ∑ ��( ��|�)+, which gen   is principal  (8) 

Generally, the posterior probability related with gene (� ) is 
the total of posterior probabilities related with all selected �� 

models that contain the gene (� ). 
In implementing BMA, determining the prior distributions 

is an important step. In this case, the prior distributions that 
must be determined are the prior distribution for the �(��) 

and the prior distribution of the parameter .(<=). Because 
there is only little information about the probability of a model, 
thus it is assumed that all models have the same probability of 
being selected as the best model. So that the prior probability 
of the model �(��), … , �(��) is assumed to have a uniform 
distribution as follows. 

 �(��) = �
�  (9) 

In the case of logistic regression, according to Raftery [22], 
the prior distribution of the <= can be a multivariate normal 
distribution with mean <>+?@  and variance AB�  which is the 
inverse of the expected Fisher information matrix for one 
observation data. This distribution can be thought of as the 
distribution of the prior parameter <= , which contains an 

amount equal to the amount of information about the 
parameter in one observation data [34]. Bayesian logistic 
regression can also be modelled using an adaptive MCMC 
[35]. 

Meanwhile, the process of calculating the integral on the 
marginal likelihood function in equation (6) oftenly leads to a 
non-analytical solution. To deal with this, approach is needed, 
namely the Bayesian Information Criteria (BIC) approach 
will be applied. The formula for calculating BIC is shown in 
equation (10). 

 CAD =  −2 log H(<>) + (� + 1) log(�) (10) 

With the BIC approach, the posterior probability of the Pr (��|�) model in equation (5) can be expressed as 

 Pr (��|�) = KLM,N∗(OPQLROPQ)
∑ KLM,N∗(OPQLROPQ) (11) 

where the maximum value of BIC is the BIC value of all 
models that have the highest value with the following formula 

 SCAD = S3%TUCAD�, % = 1,2, … VW (12) 

One of the challenges in analysis with the BMA method for 
microarray data is the number of models that the algorithm 
can explore. If there are some G genes, then a possible 2G 

models is formed [29]. One of the methods proposed for 
selecting models in BMA is the Occam's Window method [28] 
which selects the models included in the BMA formula based 
on its posterior probability. The model accepted by this 
method (a model that can be included in BMA modeling) 
must fulfill equation (13). 

 XY = ��: [\�]U*^_�`a�bW
*^(+,|-) ≤ d (13) 

where XY  is the posterior odds of the k-model with the 
limit value of d  is 20. The limit value of the k-th model 
selection can be entered or not in BMA modeling. It is 
equivalent to the area of acceptance and rejection of the 
hypothesis with a significant level of α = 5% when using test 
criteria through p-value. The value of 20 refers to the 
following Bayes Factor (BF) tabulation. Tabulation of BF 
values is shown in Table 1. 

TABLE I 
BAYES FACTOR TABULATION 

2 log (B10) (B10) Evidence to Reject H0 

0 – 2 1 – 3 None 
2 – 6 3 – 20 Positive 

6 – 10 20 – 150 Strong 
>10 >150 Very strong 

 
Based on Table 1, the BF value of 20 indicates that the 

hypothesized data distribution model is positive according to 
the observed data. The maximuml formula (�(�`|e))  in 
equation (7) is the � model in f, which has a high posterior 
probability value. The posterior probability of each 
significant model parameter is determined by averaging the 
posterior probabilities of each parameter from the selected 
best models [18]. If a model has a value of XY greater than d = 20 , the model will be eliminated. After this step is 
completed, the remaining group of models forms the set �� 
to be used in equation (3). 
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D. Iterative BMA Algorithm 

In general, the iterative BMA method works by iteratively 
applying the conventional BMA to a set of minimized 
predictor variables (w) known as the BMA window. 
Traditional BMA may be used to process the BMA window 
since it is small enough. Iterative BMA is achieved by ranking 
genes using the univariate gene selection approach, then using 
the conventional BMA algorithm successively to the 
sequenced genes. The between-group to within-group sum of 
squares (BSS/WSS) ratio was used to calculate the first gene 
sequencing [29]. The important variables are likely to be 
genes with a lot of variation across classes and a lot of 
variation within classes. BSS/WSS is a univariate gene 
selection technique in which genes with a high BSS/WSS 
ratio are excellent candidates for class prediction [3]. 

Let � g represent the level of gene j expression in sample i, 
��g symbolize the average level of gene j expression across 
all samples in class k and �hiii imply the average level of gene 
j expression across all samples. The following formula is used 
to get the BSS/WSS ratio: 

 
jkk(g)
lkk(g) = ∑ ∑ m(no)�)(-p ,qB-p,o q)r

∑ ∑ m(no)�)(-,qB-,o q)r (14) 

where A(� = %) is same with one if the sample ! belongs to 
the group %, and zero if it is not. We compute the BSS/WSS 
ratio for each of the s genes in the first step of iterative BMA 
method and order the genes by their BSS/WSS ratio. The 
BMA window size refers to the number of variables (genes) 
used in every iteration of the conventional BMA algorithm. 
The iterative Bayesian Model Averaging algorithm is as 
follows: 
a. Input: s genes and � samples data (D) 
b. Pre-Processing: Using a univariate gene selection 

method, order all G genes. Let t�, t9, … , tu  be the 
ordered list of genes. The size of the BMA window is 
denoted by w. 

c. Parameter: nbest and p, where p is the total number of 
genes to be processed such that w < p ≤ G. 
1. Initiation step is started with the w top ranked genes 

w (x1, x2, ..., xw), and apply the conventional BMA 
algorithm. The result is a list of genes ordered from 
highest to lowest rank (w + 1) to p.  

2. Repeat this procedure until all p genes have been 
examined. 
 Using ��(� ≠ 0|�) v d, delete all i genes. 
 Determine the lowest minimum �(� ≠ 0|�),   

minProbne0, among the w genes in the current 
BMA window if all genes have ��(� ≠ 0|�)  w 1%. This step called adaptive threshold step. 

 Delete all genes ��(� ≠ 0|�) < (minProbne0 + 
1)%. 

d. Output: selected genes and their probability posterior. 
Genes having a high posterior probability ��(� ≠ 0|�) 

are excellent candidates to be selected as the relevant gene. 
The gene with low posterior probability ��(� ≠ 0|�)  will 
be omitted. The threshold value used is d. However, Yeung, 
Bumgarner & Raftery [3] used 1% as the threshold value 
because 1% is a conservative threshold in which only genes 
that have a low posterior probability ��(� ≠ 0|�)   are 
omitted. So, in this study, used 1% for the threshold. A 

threshold of 1% usually results in good predictive 
performance [3]. 

E. Evaluation Performance 

Brier Score is the score function to measure the accuracy 
of a probabilistic prediction [36]. In this study, prediction 
probability for each class, Pr (� = %|�)  are known. Let �   

represent the response variable (class) of sample !  for data 
with two classes (binary data), where Yi= 0 or 1. Pr(� = 1|�) is the probability of predicting that sample ! 
belongs to class 1 or denoted as Pr(�y i). This is how the Brier 
Score is calculated: 

 Cz = ∑ (� − ��( �y ))9{ )�  (15) 

Brier Score may be used to compare deterministic 
classification performance with probabilistic techniques like 
Bayesian Model Averaging (BMA). The Brier Score is a 
numerical number that goes from 0 to 1. The BMA model is 
more accurate the closer the number is near 0. In contrast, if 
the Brier Score is near to 1, the model will be inaccurate. 

III. RESULT AND DISCUSSION 

A. Characteristic of Data 

Data on animal tumor microarrays consisted of 29 animal 
samples. The 29 animals are divided into two classes: animals 
with tumor tissue and do not have tumors (healthy). Figure 1 
depicts the proportion of animals affected by tumor and non-
tumor (healthy) diseases. 

 

 
Fig. 1  Percentage of Animal Disease 

 

Fig. 1 shows that the number of animals infected with 
tumors is doubled compared to animals that do not have 
tumors (healthy). The percentage of animals infected with 
tumors is 69% or equal to 20 animals included in the tumor 
class. These animals consist of three animals that have Mast 
Cell Tumor (MCT) tissue, five animals have MMelanoma 
(Malignant Melanoma) tissue, three animals have 
BMelanoma (Benign Melanoma) tissue, three animals have 
HCC (Hepatocellular Carcinoma) tissue, three animals have 
tissue BMGT (Benign Mammary Gland Tumor), and three 
animals have MMGT (Malignant Mammary Gland Tumor) 
disease.  

Characteristics of animal gene expression or predictor 
variables for disease classification are shown in Fig. 2. Fig. 2 
shows boxplots of the gene expression for each class of 
tumor-affected and non-tumor (healthy) animals. The box 
plot shows the differences in gene expression distribution 
(level) between animals with tumor disease and does not have 
tumor disease (healthy). Gene expression in animals infected 
with tumor disease is lower in value compared to healthy 
animals, and the healthy animal gene expression has a smaller 
range of values than the expression of animal genes infected 
with tumor disease. 

69%

31%

Tumor Normal
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Fig. 2  Boxplot average of Gene Expression by Categories Disease 

B. Gene Selection for Classification 

This study uses 335 micro-RNA gene expressions as 
predictor variables to classify whether an animal is in the 
tumor and normal categories. The BMA approach considers 
all possible combinations of 335 variables. Thus, regardless 
of the interaction between variables, there are 2335 = 
6.9992∙10100 models to predict the classification of animal 
tumor diseases. 

The BMA implementation by Madigan and Raftery [25] is 
inefficient for high dimensional data, and hence, the iterative 
BMA algorithm is applied. The iterative BMA is started by 
sorting each gene expression according to the value of 
BSS/WSS. Furthermore, iteratively applies the BMA 
algorithm to the BMA window until the entire gene is applied. 
In one iteration in the BMA window, the model selection will 
be performed using the Occam Window selection method. 
Foreign genes will be removed from the BMA window and 
replaced by other genes not yet in the BMA window. This 
process will continue until all genes enter the BMA window. 
In the last iteration, there are 23 gene IDs left in the BMA 
window. The posterior probabilities of ��(� ≠ 0|�) , 1(�|�), and z�(�|�) of the remaining predictor variables in 
the last iteration are shown in Table 2. 

Table 2 column ��(� ≠ 0|�)  shows the posterior 
probability that the coefficient is not equal to zero. Whereas 1(�|�) shows the posterior mean of the coefficient or the 
value we expect in the BMA model, the posterior standard 
deviation shows the posterior SD, or standard deviation, 
giving a measure of the coefficient of variability. 

Based on Table 2, there are 12 variables with posterior 
probability of predictor variables above 1%. This study uses 
1% as the threshold value because 1% is a conservative 
threshold in which only genes that have a low posterior 
probability of ��(� ≠ 0|�) are removed. Genes with a high 
posterior probability of ��(� ≠ 0|�) are good candidates as 
relevant genes for predicting tumor disease in animals. Genes 
with a low posterior probability of ��(� ≠ 0|�)  will be 
removed. So that selected 12 relevant genes. The gene IDs are 
mir-23a, mir-23b, mir-491, mir-212, mir-424, mir-1468, mir-
542, mir-450a, mir-450b, mir-503, mir-124-3- 1-2, and mir-
8890 because it has a posterior probability of ��(� ≠ 0|�) 
of more than 1%. 

The higher the posterior probability value possessed by a 
gene indicates that the gene strongly influences the 

classification of animal tumor disease. Based on Table 2, the 
ID gene mir-23a is a gene with the highest posterior 
probability value, so the gene can be said to be the most 
crucial. The posterior probability of the variable is obtained 
by summing up the posterior probability of the model for each 
variable included in the model.  

TABLE II 
POSTERIOR PROBABILITY SELECTED GENES 

Predictor Pr(bi ≠ 0 |D) (%) E(b|D) SD (b|D) 

Intercept 100 70.16 65690 
mir-23a 74.1 -0.1807 152.4 
mir-23b 25.9 -0.7525 130.5 
mir-491 4.8 -0.8332 1779 
mir-212 4.8 -0.04464 1627 
mir-424 4.8 -0.003397 615.7 
mir-1468 4.8 -0.01904 46670 
mir-542 4.8 -2.67 ∙ 10-4 4.213 
mir-450a 4.8 -4.70 ∙ 10-5 1.382 
mir-450b 4.8 -2.09 ∙ 10-5 0.5206 
mir-503 4.8 -0.00111 195.8 
mir-124-3-1-2 4.8 -1.109 24890 
mir-8890 4.8 0.1632 759.5 
mir-219-1-2   0 0.0000 0.0000 
mir-1838      0 0.0000 0.0000 
mir-8859b     0 0.0000 0.0000 
mir-26a-2-1   0 0.0000 0.0000 
mir-138b 0 0.0000 0.0000 
mir-326          0 0.0000 0.0000 

 
The results of the iterative BMA show that there were 12 

selected models out of 2335 = 6.9992∙10100 models formed. The 
twelve selected models are a combination of 12 relevant genes: 
ID mir-23a, mir-23b, mir-491, mir-212, mir-424, mir-1468, 
mir-542, mir-450a, mir-450b, mir-503, mir-124-3-1-2, and 
mir-8890. The results of selecting the best model are 
presented in Table 3. 

Table 3 confirms that the mir-23a gene ID is a predictor in 
almost all models except the first model. It shows that the mir-
23a ID gene results in a highly variable posterior probability 
because it is included in many models. The mir-23b gene ID 
has the second-highest possibility after the mir-23a gene id 
with a posterior probability of 25.9%. 

Table 3 shows the model with the highest posterior model 
probability (PMP) of only 25.93% out of the total posterior 
probability, indicating that the model's uncertainty is quite 
high. Model 1 with PMP 0.259272 indicates that Model 1 
contributes 25.93% of the total posterior probability. 
Likewise, model 2 contributes 25.93% of the total posterior 
probability. 

In terms of contribution of each gene or predictor variable, 
the mir-23a gene ID contributes to eleven selected models so 
that it enormously influences the response variable. Therefore, 
the mir-23a gene ID has a significant posterior probability. ID 
mir-23b has the second-largest contribution compared to 
other genes even though it only appears in model 1. While 
other gene IDs only contribute to one model with low PMP, 
meaning that these genes' influence is quite small. The 
predictor variable or gene ID's coefficient has a consistent 
negative sign on all models. Based on the value of Bayesian 
Information Criterion (BIC), the first model and the second 
model are the models that have the smallest BIC, indicating 
that the first and the second models fit better than other 
models. BIC shows the goodness of fit of a model. The 
smaller the BIC value, the better the model formed. 
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TABLE III 
SELECTED MODEL USING ITERATIVE BMA 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

Intercept 47.77 118.95 50.46 54.01 51.32 57.94 55.99 56.65 58.89 59.42 59.76 72.55 

mir-23a - -0.42 -0.11 -0.11 -0.11 -0.12 -0.144 -0.145 -0.146 -0.147 -0.15 -0.29 

mir-23b -0.29 - - - - - - - - - - - 

mir-491 - - -17.31 - - - - - - - - - 

mir-212 - - - - - -0.93 - - - - -  

mir-424 - - - - - - - - -0.07 - - - 

mir-1468 - - - - -0.39 - - - - - - - 

mir-542 - - - - - - - - - - -0.006 - 

mir-450a - - - - - - -0.00098 - - - - - 

mir-450b - - - - - - - -0.00043 - - - - 

mir-503 - - - - - - - - - -0.23067 - - 

mir-124-3-1-2 - - - -23.03 - - - - - - - - 

mir-8890 - - - - - - - - - - - 3.39 

n 1 1 2 2 2 2 2 2 2 2 2 2 

BIC -90.92 -90.92 -87.54 -87.54 -87.54 -87.54 -87.54 -87.54 -87.54 -87.54 -87.54 -87.54 

PMP 0.259 0.259 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 

Based on the posterior model's probability in Table 3, the 
BMA model to predict or classify tumor disease in animals is 
as follows. Pr(� = 1|�) = 0.2593�� + 0.2593�9 + 0.0481��+ 0.0481�� + 0.0481�� + 0.0481��+ 0.0481�� + 0.0481�� + 0.0481��+ 0.0481��� + 0.0481��� + 0.0481��9 
where ��, �9,  until ��9  are logistic models. The logistic 
models have the following model equations. 

1 67

Pr( 1)
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The BMA model will obtain the predictive probability for 
an animal to be classified as an animal with a tumor or an 
animal not infected by a tumor (normal). The higher the 
probability value, the greater the likelihood that an animal is 
included in animals that have tumor disease. The minimum 
opportunity limit to determine the class of animals based on 
the percentage of the number of animals that have tumors and 
not tumors that exist in Fig. 1. If the predictive probability is 
more than 0.69, the animals are classified into animal with 
tumor disease. The visualization of genes and selected models 
using the BMA iterative algorithm is shown in Fig. 3. 

 

 
Fig. 3  Selected Genes and Models with Iterative BMA 

 
In Fig. 3, the selected variable by BMA is shown on the 

vertical axis, and the selected BMA model is displayed on the 
horizontal axis. The variables (genes) are sorted from the 
highest to the lowest posterior probability from top to bottom. 
Models are sorted in order based on the largest to smallest 
posterior model (PMP) probability from left to right. The 
heatmap shows that the mirna-23a gene ID as a predictor 
variable for models 2 to 12 models mir-23b gene ID is only a 
predictor variable in model 1.Mir-491 gene ID enters into 
model 6.Mir-212 gene ID as a variable a predictor in model 
11.Mir-424 gene ID as a predictor variable in model 3.Mir-
1468 gene ID as a predictor variable in model 5. Mir-542 gene 
ID as a predictor variable in model 8. Mir-450a gene ID is 
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included in model 9. Mir-450b gene ID was included as a 
predictor variable in model 7. Mir-124-3-1-2 gene ID was 
included in model 4. Mir-503 gene ID was a predictor variable 
in model 10. While the mir-8890 gene ID was a variable 
predictor in model 12. 

C. Performance of Classification 

The results of classification accuracy are calculated using 
the Brier Score value. By using the 12 selected genes, the 
resulting Brier Score value is 0.00231799. This value is close 
to 0, so it can be said that the resulting BMA model is quite 
good. The smaller the Brier Score value, the better the BMA 
results in classifying animals into tumor or non-tumor 
categories (normal). 

IV. CONCLUSION 

This study used an iterative BMA algorithm to classify 
animal disease based on gene expression microarray data.  
The BMA results show that of 335 gene expressions, 12 
relevant genes were selected to classify animals included in 
the tumor or normal class. The coefficient of the predictor 
variable or gene ID has a consistent sign on all models, which 
is negative. Besides, from 2335 possible models that were 
formed, selected 12 best models. The accuracy of the BMA 
results is measured using the Brier Score value. The resulting 
Brier Score is 0.00231799. This value is small enough and 
close to 0 so that it can be said that the BMA model is good 
enough to classify animals included in the tumor or normal 
categories. 
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