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Abstract— LAPAN-A3 (LA3) data has been utilized for earth observation in monitoring natural resources. While most applications are 

toward land resources monitoring, recent utilization indicates the possibility of LA3 detecting oil spill events on the sea surface. This 

research provides information regarding the ability of sensors characteristics of LA3 to detect oil slicks and its initial results by 

examining multispectral bands combination using Optimum Index Factor (OIF), and Digital Number (DN) extraction is carried out on 

each LA3 band in water-oil-water since LA3 is not able to change DN to reflectance value. In this study, besides using LA3 data, 

Sentinel-2 data was also used as comparative data and results in validation.  Based on the results of the OIF calculation, the combination 

of the Blue-Green-NIR (BGN) band has the highest value compared to other combinations. This indicates that the BGN band 

combination is appropriate for visualizing oil and distinguishing between oil and water. The pattern formed from the visualization 

results with the combination of the BGN band is silvery in crude oil and greenish in ship waste disposal. The result is also strengthened 

by DN extraction from slick oil samples that shows a prominent pattern on the Blue and Green bands. Finally, this study can conclude 

that LA3 has great potential to detect oil spills visually but still requires further research for reflectance analysis by converting the DN 

value into reflectance. 
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I. INTRODUCTION

Oil spill accidents from ships or oil platforms cause 

damage to marine and coastal environments and ecosystems 
[1]–[3]. Oil spills may be due to releases of crude oil from 

tankers, offshore platforms, drilling rigs, and wells, as well as 

spills of refined petroleum products (such as gasoline and 

diesel) and their by-products, heavier fuels used by large ships 

such as bunker fuel, or the spill of any oily refuse or waste oil 

[4]. Oil spills found in marine environments have different 

types of oil, and these can come from oil platforms, 

shipwrecks, oil pipeline leaks, unforeseen disasters, and land-

based runoffs [5]–[7]. Efficient monitoring and early 

identification of oil slicks are vital for the corresponding 

authorities to react wisely, restrict environmental pollution 
and avoid further damage [8], [9]. 

Oil spill detection can easily be done by utilizing satellite 

remote sensing data such as active microwave sensors, laser 

floor sensors method, and optical remote sensing. Active 

microwave sensors are widely used remote sensing systems 

for oil spill detection and monitoring because of their 

extensive coverage and ability to collect day and night data in 

all weather conditions [10]. The main radar imaging types are 

used for oil spill detection, namely synthetic aperture radar 

(SAR) and side-looking airborne radar (SLAR). The presence 
of oil in the ocean usually reduces the intensity of backscatter 

energy. As a result, in the SAR image, the oil spill looks dark. 

However, there are shortcomings in detecting oil spills using 

SAR images. Oil spills are just one of the other phenomena 

that can lead to them, such as man-made or natural events. It 

reduces the scattering mechanism and looks dark in SAR 

images. These phenomena are well known as a look-alike, it 

may include: a natural surface film produced by plankton or 

fish, grease, floating algae, internal waves, weak wind areas, 

vegetable oils, shipwrecks, and convergence zones. 

Meanwhile, the laser fluor sensors in oil spill detection 

remains limited. Optical remote sensing (ORS) of reflected 
sunlight has been widely used to assess oil spills in the ocean 
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for several decades. Recent studies started using more spectral 

bands to obtain more information from the detected features 

to discard look-alikes, classify oil types, track an oil tanker 

collision, and/or quantify oil concentration or volume [4], [5]. 

However, cloud cover frequency is highly affected by ORS, 

especially in the rainy season [11]. This limitation is 

compensated by the multiple ORS sensors currently in orbit 

and multiband spectral data from any individual sensor [4]. 

ORS sensors with a visible spectrum can distinguish oil and 

water. In the visible region of the electromagnetic spectrum 

(approximately 400–700 nm), oil has a lower surface 
reflectance than water but shows nonspecific absorption 

tendencies. The reflectance of various crude oils differs 

depending on the type. It is explained by Hu et al. [4]  that 

non-emulsified crude oil and oil emulsions are not visible in 

the narrow-band reflectance. However, the reflectance of non-

emulsified crude oil decreases with increasing oil thickness. 

In contrast, oil emulsions have reflectance characteristics 

that contrast to non-emulsified crude oil, namely a visible 

change in the NIR-SWIR wavelengths. Oil generally 

manifests throughout the entire visible spectrum. Sheen 

shows silvery and reflects light over a wide spectral region 
down to the blue [12]. Researchers have widely used the 

utilization of ORS imagery for oil spill detection. MODIS 

data were used for oil spill tracking through texture analysis 

[13], [14]. Landsat-8 was used for a mapping oil spill in Niger 

Delta by Ozigis, Kaduk, and Jarvis [15]. In other research, 

Arslan [16] assessed oil spills using Landsat-8 multispectral 

sensors in Fener (Ufak) Island, Cesme, Turkey. Kolokoussis 

and Karathanassi [17] and Althawadi and Hashim [18] 

mapped oil spills using Sentinel-2 MSI. Determination of 

band combination is one commonly used method for detecting 

oil spills. Previous studies, such as those of Kolokoussis and 
Karathanassi [17] and Rajendran et al. [19], used Sentinel-2 

and multiple band combinations. The NIR-Red-Green band 

combination is commonly used in developing false-color 

composites (FCC), while the Red-Green-Blue band can help 

distinguish oil thickness 

LAPAN-A3 (LA3) is the latest generation satellite 

belonging to Indonesia and was successfully launched in June 

2016. This satellite project aims to achieve microsatellite 

operation in Indonesia for experimental remote sensing in 

agriculture and maritime traffic monitoring [20]. LA3 carries 

a multispectral sensor called the Line Imager Space 

Application (LISA). LISA is a push-broom scanner with four 
bands ranging from the visible (Green-Red-Blue) to near-

infrared spectrum with a spatial resolution of 15 meters [21], 

[22], [23]. Spatial resolution around 10 – 15 meters can obtain 

the smaller scale oil spill onto river water, whereas the river 

site has complex conditions, including terrestrial [24]. So, it 

is absolutely possible to be utilized in ocean areas. 

As the objective of LA3 utilization is for agriculture 

monitoring, it has been utilized to identify agricultural land 

and land use/land cover (LULC). The carried sensors in LA3 

have the ability to present data about the seasonal agricultural 

field [20].  Wijayanto, Yusuf, and Pambudi [25] assessed the 

capability of spectral features of LA3 to identify paddy fields 

in Probolinggo, East Java, and concluded that LA3 spectral 

features were able to detect paddy fields in the vegetative 

phase. LA3 is also capable of identifying LULC. In other 

research, Herawan et al. [26] conducted LULC classification 

from LA3 data over a part of Rote Island. It generated high 

accuracy with a small sample size in distinguishing water, 

bare land, agriculture, forest, and secondary forest. For further 

research, Arifin, Carolita, and Kartika [27] compared the 

NDVI model from LA3 data with Landsat-8 data for forest 
identification. The results showed that the NDVI range 

extracted from LA3 data had moderate similarity with 

Landsat-8. LA3 satellite data has been studied for earth 

observation and can be utilized for monitoring paddy fields, 

built-up areas, forests, agricultural lands, and bare soils [28]. 

It is highly possible to more explore LA3 data for other 

utilization purposes, such as for marine environmental 

monitoring. 

LA3 medium-resolution multispectral data have been 

available for experimental purposes by the National Institute 

of Aeronautics and Space of Indonesia (LAPAN) since 2017. 
Nevertheless, its capability in oil spill detection has not yet 

been explored and investigated. This study aims to assess the 

ability of the LA3 sensor to detect oil slick and its initial 

results by incorporating LISA multispectral bands. 

II. MATERIALS AND METHOD  

A. Study Area 

Fig. 1 shows the two study sites for this research: Bintan 

waters and Karawang waters. The first location is Bintan 

waters, located in the border area between Indonesia, 
Malaysia, and Singapore. Bintan waters are included in Riau 

Islands Province, located in the western hemisphere of 

Indonesia. It is one of the waters located on the border of the 

country's territory, with a relatively dense area for 

international shipping lanes. It is mostly traversed by 

passenger ships, logistic ships, tankers, barges, and container 

ships. The many types of ships that cross make Bintan waters 

vulnerable to oil spill pollution from ship activities. Oil spill 

events are almost found throughout the year in Bintan waters 

with various areas of oil slicks. This area is under surveillance 

and investigation by Indonesia's environmental pollution task 
force related to oil spill pollution. Oil spill events in this 

location are mostly caused by waste ship disposal onto the sea. 

The second study site is Karawang Waters, located in 

Karawang Regency, West Java, Indonesia. There are offshore 

oil and gas exploration activities located in Karawang waters. 

The offshore oil and gas well is located approximately 38 km 

from shore. In July 2019, one of the oil drilling rigs known 

YYA-1 was leaked. The leaking pipeline caused the large oil 

slick to begin spreading around the rig site and floated for 

about two months. The sea current flowed the oil slicks to 

shore and impacted the resident who lived near the shore. 

 

2166



 
Fig. 1  Locations of study in Bintan and Karawang waters 

 

B. Satellite Data 

The LAPAN-A3 data and Sentinel-2 data were used in this 

study. They both are categorized into medium-resolution 

satellite images. The availability of 15 m LAPAN-A3 for the 

study was acquired from Satellite Technology Research 

Center, National Research and Innovation Agency (BRIN). 

This satellite data is currently aimed for experimental 

purposes related to environmental monitoring. In sun-

synchronous orbit near-equatorial at about 650 or 550 km 
altitude above Earth’s surface, the multispectral LA3 samples 

four spectral bands in the visible and near-infrared spectral 

range. Each band line's size consists of 8023 pixels; effective 

pixels are 6000 pixels. This line imager camera uses a 300 

mm lens with an altitude of 650 km. It is expected to have ~18 

m resolution with ~120 km swath of image [20]. On the other 

hand, Sentinel-2 data was acquired from Copernicus 

European. Sentinel-2A was launched on June 23, 2015, in the 

European Commission’s Copernicus program, and two years 

later, Sentinel-2B was launched, on March 7, 2017, to be 

exact. This satellite orbits in a sun-synchronous also at a mean 
altitude of 786 km above Earth’s surface. It carries the Multi-

Spectral Imager (MSI) with 13 spectral bands, from visible-

near infrared (VNIR) to shortwave infrared (SWIR) [29]. 

Each band has three different spatial resolutions, including 10, 

20, and 60 m (Table 1). 

TABLE I 

OPTICAL SATELLITE BANDS 

Satellite 

Name 

Band Spectral Range 

LAPAN-
A3 

B1 – Blue 410 – 490 nm 
B2 – Green 510 – 580 nm 
B3 – Red 630 – 700 nm 
B4 – NIR 770 – 990 nm 

Sentinel-2 B1 – Coastal 
Aerosol 

443,9 nm (S2A) / 442,3 nm 
(S2B) 

 B2 – Blue 496,6 nm (S2A) / 492,1nm 
(S2B) 

 B3 – Green 560 nm (S2A) / 559nm 
(S2B) 

 B4 – Red 664,5 nm (S2A) / 665 nm 
(S2B) 

 B5 – Vegetation 
Red Edge 1 

703,9 nm (S2A) / 703,8 nm 
(S2B) 

 B6 – Vegetation 
Red Edge 2 

740,2 nm (S2A) / 739,1 nm 
(S2B) 

 B7 – Vegetation 
Red Edge 3 

782,5 nm (S2A) / 779,7 nm 
(S2B) 

 B8 – NIR 835,1 nm (S2A) / 833 nm 
(S2B) 

 B8A – Narrow 

NIR 

864,8 nm (S2A) / 864nm 

(S2B) 
 B9 – Water 

Vapour 
945 nm (S2A) / 943,2 nm 
(S2B) 
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 B10 – SWIR-

Cirrus 

1373,5 nm (S2A) / 1376,9 

nm (S2B) 
 B11 – SWIR 1613,7 nm (S2A) / 1610,4 

nm (S2B) 
 B12 – SWIR 2202,4 nm (S2A) / 2185,7 

nm (S2B) 

 

This study processed and analyzed LAPAN-A3 data as the 

main research object and Sentinel-2 data as the comparison 

feature to assess the ability of LA3 in oil spill detection. Two 

images of LAPAN-A3 used in this study were sensed on 

February 27, 2021, at 01:49 am UTC in Bintan waters and 

August 14, 2019, at 02:09 am UTC in Karawang waters. 

Meanwhile, Sentinel-2 was used to compare the result of oil 

spill detection from LAPAN-A3, which were sensed on 
February 26, 2021, at 03:07 am UTC in Bintan waters and 

August 13, 2019, at 02:55 am UTC in Karawang waters. 

Level 2A Surface Reflectance data of Sentinel-2 were 

selected for further analysis in this study. The two images are 

compared according to their respective locations as it contains 

the study site. 

C. Research Stages 

Generally, the method used in this study uses visual 

interpretation by developing a color composite to enhance the 
oil spill features. Specifically, there are three main stages of 

the research method in this study that are conducted to achieve 

the research objectives. Those are pre-processing satellite data, 

processing satellite data, and post-processing. The proposed 

method used is presented in Fig. 2. 

 

 
Fig. 2  The stages of the method in this study 

D. Satellite Image Pre-processing 

Image pre-processing is required to correct radiometric and 

geometric distortions. There are three processes in LA3 image 

pre-processing: Radiometric Vignetting Correction, Band Co-

Registration, and Direct Geo-referencing for geometric 

correction. Radiometric vignetting correction is performed to 
eliminate the vignetting effect. Vignetting effect causes 

differences in brightness at the center and edges of the image. 

The vignetting effect was reduced from 40% to 10% after 

correcting for the relative digital number [30]. 

Band Co-Registration is done due to distortion where the 

object in the image of one band does not align with the object 

in the image of another band. As a result of this distortion, the 

image will appear blurry (blurry effect). In the LA3 co-

registration band correction using the image correction 

method (image matching). The image on the red band is used 

as a reference, while the image on the NGB band will merge 

into the red band image [31]. 

Direct geo-referencing is used to determine the coordinates 
of the earth image. Image with good geometry if in the process 

of image capture, the camera and satellite movements are in 

stable condition [32], [33]. However, geometric distortion and 

inconsistency of location coordinates are still found in LA3 

imagery. Additional geometric corrections need to be made to 

ensure the image has an actual location consistent with the 

standard coordinate system reference. Geometric corrections 

are required to pre-process remote sensing data and eliminate 

geometric problems [29], [34]. Geometrically corrected 

images will remove the spatial distortion give an accurate 

distance [30]. In this study, further geometric corrections were 
carried out. The level of geometric correction for LA3 data is 

rectification. Rectification or geo-reference is the alignment 

of the image on a map which allows the image to be 

planimetric. The LA3 image was corrected using the Image-

to-Map geographic correction technique. This technique uses 

a reference map with the Universal Transverse Mercator 

(UTM) standard reference image [31]. 

To determine the appropriate band composite in detecting 

oil spills this study uses the Optimum Index Factor (OIF) 

calculation. The highest value of OIF calculation indicates the 

appropriate band composite to distinguish oil spills in the sea. 
The number of band combinations was calculated using the 

following factorial equation: 

 ��
3� =  �!

(
!∗(��
!  
where: 

N = Total number of bands in the satellite list 

Then OIF calculation is obtained from the statistical 

extraction results of the training area covering the oil spill 

objects. The OIF calculation in this study used four bands of 

the LA3 satellite, namely bands 1-4. It covers visible light (red, 

green, blue) and Near-Infrared (NIR). The OIF algorithm uses 

the total value of standard deviations divided by the 
correlation coefficient of the bands selected as follows the 

formula [36], [37]: 

 ��� = ∑ ���

��� / ∑ ��� (���


���   

Where: 

SDi = Standard deviation of a band i 

ABS = Absolute value of 3-band correlation coefficient 

E. Satellite Image Processing 

The oil spill occurrence is studied by developing false-

color composites (FCC) according to the OIF calculation 

result. The oil spill features can be revealed by displaying 

different color composites through the multispectral image, 

and it will optimize the differentiation of certain specific 

features of the observed object [38]. Four composite color 
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combinations are developed in RGB format and visually 

interpreted. 

Remote sensing satellite images are generally stored in 

digital form, where a two-dimensional image is displayed on 

a computer screen as a set of discrete digital numbers. Each 

pixel in the image has a digital number according to the level 

of brightness or grey level [25]. Digital Number (DN) 

extraction is intended to determine the characteristics of oil in 

LA3 based on the value for each pixel. SNAP software was 

used for this extraction. Each band is viewed in a profile graph 

by creating a water-oil-water line. Then, the DN information 
and path in pixels appeared. 

F. Post-Processing 

A post-processing process is a visual interpretation by 

visually observing oil spills on the image in detail. An oil spill 

on the image is observed by paying attention to the patterns 

formed and the difference of color object (rather oil spill) on 

the sea surface. In this stage, a combination of bands in LA3 

image is examined to obtain a contrast difference in oil spill 
object with other objects around them. This study is using 

Sentinel-2 image to do validation of oil spill features on LA3 

image, whereas the selected Sentinel-2 image has been 

confirmed that the oil spill is recorded. 

III. RESULTS AND DISCUSSION  

A. Results 

1) OIF Calculation of LAPAN-A3: This study utilized 
LAPAN-A3 imagery data and conducted the preliminary 

detection of oil spill objects using the OIF method to obtain 

the most powerful combination of bands. Since the LISA 

sensor in LA3 has only four bands, a Visible-NIR band 

combination is examined. The highest OIF value can 

represent the best combination of bands in distinguishing the 

earth objects on images. The band combinations resulted from 
the OIF method evaluating the standard deviation of each 

band and the correlation coefficient among the bands selected. 

The result of the OIF calculation indicates that the 

combination of band 1 (Blue), band 2 (Green), and band 4 

(NIR) has the highest value at 839.414 and places this 

combination in the first rank (Table 2), even though it is a bit 
different in a number with a combination of band 2,3,4. 

Whilst, the lowest OIF value belongs to a combination of 

bands 1,2,3 (Blue-Red-NIR) by 473.661. An interesting part 

of this result is that the combination of band 1,2,3 (Blue-

Green-Red) has the highest correlation coefficient value of 

bands but only has an OIF value of 559.686. According to 

Ziliwu et al. [39], the higher the total standard deviation of the 

three bands used, the more information is generated, while the 

smaller the total correlation coefficient between the two bands 

used, the less duplication produced. The optimum 

combination of three bands with the highest OIF value can 

have the maximum extraction of the object selected with the 
least amount of duplication [34]. Refers to the OIF calculation 

result (Table 2), the band combination with the highest OIF 

that highlighted spectral range for oil spill detection is band 

1,2,4, or Blue-Green-NIR. Further out, this combination of 

bands is utilized for the next analysis. 

 

TABLE II 

OIF VALUES OF LAPAN-A3 

Band 

combinations 

Sum of 

standard 

deviations 

Sum of 

correlation 

coefficient of 

bands 

OIF Rank 

124 (Blue-

Green-NIR) 1254.08503 1.494 

839.

414 1 

234 (Green-

Red-NIR) 1317.27643 1.587 

830.

042 2 

123 (Blue-

Green-Red) 1326.45746 2.37 

559.

686 3 

134 (Blue-

Red-NIR) 689.17646 1.455 

473.

661 4 

2) OIL Spill Detection and Analysis: The appearance of 

the oil layer on each band combination is different. In the 

RGB combination, one can see a thin pattern (shown in a red 
circle) on the surface of the water, but it is not very clear. In 

this combination, it is doubtful whether this pattern is oil or 

not. On BGR, two patterns are seen that are clearer than the 

RGB combination. The combination of GRN showed no 

pattern, and the combination of BGN showed two patterns 

again on the water surface. When compared to the BGR 

combination, the pattern in the BGN combination is clearer. 

Band combinations were also performed in the Karawang 

area. The combination selection is the same as Bintan. As a 

result, RGB and GRN do not show any patterns. The 

combination of BGR and BGN shows a pattern (shown in the 

red arrow). However, BGN is clearer than BGN, and the BGN 

combination can clearly show the oil rig. Based on these 

results, a comparison is made between LA3 (BGN 

combination) and Sentinel-2. For Sentinel-2 using the SNR 

combination, according to the results of research by Dave, 

Joshi, and Srivastava [35] regarding the appropriate band 
combination for Sentinel-2 in detecting oil spills. The 

comparison results are in Fig. 3. 

With the BGN combination on LA3, the oil slick looks 

reddish on the sea surface, while on Sentinel-2 the SWIR-

NIR-Red (SNR) combination shows a greenish pattern (Fig. 

3). Hu et al. [4] conducted research with Landsat-8 

combination SWIR-NIR-Red showing a greenish and reddish 

colored pattern. The greenish color has higher reflectance in 

NIR than SWIR, indicating that the oil is an oil-in-water 

emulsion. In this emulsion type, the oil phase is the dispersed 

phase, and water is the dispersion medium [36]. 

On the other hand, reflectance in SWIR is higher than NIR 
and will cause a reddish color. This indicates that the reddish 

pattern is a water-in-oil emulsion oil. This emulsion occurs 

when the dispersed phase consists of water and oil as a 

dispersion medium [36]. These emulsions sometimes form 

after oil is spilled onto the water's surface [37]. When this 

emulsion is formed, the physical properties of the oil change 

drastically. Liquids are converted into semi-solid and heavy 

materials. Oil spill recovery equipment should be used, as 

these emulsions are difficult to recover. The oil spill incident 

in Karawang was an event that resulted in a fairly widespread 

of oil. Therefore, oil is quite easily detected at this location. 
The appearance of oil on LA3 is brownish and on Sentinel-2 

is a dark pattern. The oil layer has a reflectance contrast at 

400-700 nm [38]. Sensors with the visible to near-infrared 

(VNIR) spectral range can recognize the spectral change 

associated with oil-covered water [39]. Debdip [42] explained 

that at 400-600 nm (Blue-Green), the bottom disturbance is 
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minimized and eliminated at 600 nm. The 660 - 760 nm range 

is the best for detecting oil spills in coastal. Meanwhile, 

Abdunaser [38] explained that concentrated oil would appear 

brownish with a wavelength of 600-700 nm, and if it is close 

to 700 nm, it will be brownish-red. 

. 

 
(a) 

 
(b) 

Fig. 3  (a) LA3 (Blue-Green-NIR) and Sentinel-2 (SWIR-NIR-Red) in Bintan; (b) LA3 (Blue-Green-NIR) and Sentinel-2 (SWIR-NIR-Red) on Karawang 

 

Pure oil can be detected in a narrow band of reflection at 

NIR-SWIR reflectance [43]. At a mixing ratio of oil and water 

of 60:40, the reflectance of NIR-SWIR also increases with 

increasing oil thickness. Reflectance of oil emulsions has a 

greater reflectance as compared to water in the NIR range [3].  

The biggest change in NIR reflectance is because the oil is 

less absorbent at this wavelength [40], [41]. In NIR, the 

reflectance level and absorption features are caused by 

organic compounds in the oil that have variations in the 

thickness of the oil, such as the mixing ratio of oil and water.  
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(a) 

 
(b) 

Fig. 4  Histogram of DN value for the Oil Spill and Water Object in each band for (a) Bintan and (b) Karawang. The X-axis is path in pixels and the Y-axis is DN 

value (Source: Data Processing) 

 

LA3 cannot be further processed for reflectance yet. 

Previous studies have tried to change the DN to TOA radiance 

in the Madura region, but further studies need to be done to 

determine the validity of the resulting coefficient on all 
images [44], [45]. Therefore, we evaluate DN LA3 in each 

band both in Bintan and Karawang (Fig. 4).  The extraction 

results show that the Blue and Green bands have prominent 

peaks in both the Bintan and Karawang areas even though the 

two areas have different types of oil. This striking pattern is 

oil. Oil was detected in the range of DN 1,000 to 3,500 for 

Blue in Bintan and 1,000 to 1,750 for Blue in Karawang. For 

Green on Bintan, oil was detected in the range of DN 5,000 to 

7,000 and in Karawang with a DN value of 6,000 to 8,000. A 

red band peak in Bintan has been detected, but in Karawang, 

it is not visible, likewise with NIR. 

B. Discussion 

This unique property of oil can be studied, especially when 

it interacts with light and satellite sensors receive it. Oil has a 

higher emissivity than water, so when it is exposed to sunlight, 

it emits infrared radiation [19]. The oil layer that is exposed 

to sunlight will emit infrared radiation. This is the basis for 

using NIR as a combination band in LA3. The appearance of 

the oil on the Blue-Green band is unique, making it easier to 

detect oil spills. The type of oil can be found through optical 
satellites. Hu et al. [4] noted that the reddish pattern is an oil-

in-water emulsion, while the greenish pattern is a water-in-oil 

emulsion. The oil also contains asphaltene compounds which 

are very strongly absorbed in Blue and UV, and the tiny 

particles in the oil scatter the light and limit the penetration to 

form a dark reddish color [40]. 

Meanwhile, the thin oil spill appears in light greenish, fine 

texture, and wide flow pattern since the thin oil has high 
reflectance [19]. Thin oil in Sentinel-2 MSI is well detected 

from the Green to Red bands (543-680 nm), while LA3, which 

has a resolution similar to Sentinel-2, also produces the same-

colored oil appearance as Sentinel-2. In other words, LA3 can 

detect thin oil spills. However, further research is still needed 

on the capabilities of LA3, especially field validation. 

This difference cannot be separated from the ability of the 

SWIR band. The SWIR band is important for determining the 

type of oil and the bonds of organic molecules and compounds. 

Overtones and combinations of organic molecules and 

compounds are dominant in petroleum reflectance spectra for 
NIR-SWIR. Spectral wavelength can be classified for all oils 

in Table 3 [46]:  

TABLE III 

CLASSIFIED OIL SPILLS ACCORDING TO SPECTRAL WAVELENGTH 

Wavelength 

(nm) 

Group 

1390/1410 O-H first overtone and C-H first 
combinations first overtone 

1720-1730  There are found a combination of the CH3 and 
CH2 stretching. Also, the combination of 
symmetric and asymmetric CH2 stretching 

1750-1760  there is an overtone of the CH2 vibration 

2310  filled by the combination of the CH3 
asymmetric axial deformation with the CH3 
symmetric angular deformation, or a 
composite of the CH3 symmetric axial 
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deformation with the CH3 asymmetric+CH2 

symmetric angular deformation 
2350  resulted from the combination of the CH3 

symmetric axial deformation and the CH3 
symmetric angular deformation. In general, 
C-H composite dominates the spectral range 
between 1950 to 2450 nm 

IV. CONCLUSION 

This study assessed the LISA sensor belonging to LA3 to 

detect the oil spill features in two different causes. The visible 

and near-infrared spectral range in LA3 was studied for oil 

spill detection by creating a band composite with FCC (False 

Color Composite). The proposed method discriminated the oil 

spill features well. The right band combination can 
distinguish the features of oil on the sea surface. Blue-Green-

NIR is the recommended combination for LA3. LA3 does not 

have a SWIR band, so it is difficult to determine the type of 

oil. However, because it is only visible and NIR bands in LA3, 

it still has limitations in detecting the type and thickness of oil 

in detail. This study demonstrated the potential use of the 

LISA sensor in LA3 with the proposed band composite to 

discriminate and assess the oil spill events. Therefore, LA3 

detection is only up to the detection of the presence of oil, not 

to determine the type of oil. 
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