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Abstract—The Vehicle Routing Problem with Time Windows is a complete NP combinatorial problem in which product deliveries to 

customers must be made under certain time constraints. This problem can be solved from a single objective approach, well studied in 

the state of the art, in which the objective of the total travel distance or the size of the fleet (number of vehicles) is generally minimized. 

However, recent studies have used a multiobjective approach (Multiobjective Vehicle Routing Problem with Time Windows, 

MOVRPTW) that solves the problem from a viewpoint closer to reality. This work presents a new multiobjective memetic algorithm 

based on the GRASP (Greedy Randomized Adaptive Search Procedures) algorithm called MOMGRASP for the minimization of three 

objectives in MOVRPTW (total travel time, waiting time of customers to be attended, and balance of total travel time between routes). 

The results of the experimentation carried out with 56 problems proposed by Solomon and 45 problems proposed by Castro-Gutiérrez 

show that the proposed algorithm finds better solutions in these three objectives and competitive solutions than those reported by Zhou 

(compared to LSMOVRPTW algorithm and optimizing 5 objectives: number of vehicles, total travel distance, travel time of the longest 

route, total waiting time due to early arrivals, and total delay time due to late arrivals) and by Baños (versus the MMOEASA algorithm 

in two scenarios; case 1: total travel distance and balance of distance and case 2: total travel distance and balance of workload). 
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I. INTRODUCTION

The Vehicle Routing Problem (VRP) occurs in several 

different logistics environments. In the transport of goods and 

supplies, optimal routes are sought while meeting the needs 

of all customers and coping with a restriction on the number 

of vehicles available (fleet size). In a real setting, VRP has 

some or all of the following objectives: reduction of costs, 
reduction of the distances traveled by the vehicles, reduction 

of the time of travel and service of the vehicles, reduction in 

the size of the fleet, and a balance in the distances that vehicles 

are required to travel [1][2]. 

VRP can be classified into the following main categories: 

Capacitated Vehicle Routing Problem (CVRP), in which there 

is a fleet of vehicles with the same characteristics (capacity 

and speed), which, starting from a depot, must deliver some 

products to certain customers located in different parts of a 

region with a specific number of products per customer 

(product demand) and that as a whole (sum of demands for 
that delivery) should not exceed the capacity of the vehicle. 

The cost is determined solely by the distance traveled from 

the vehicles to the clients, and clients can be served in any 

time frame [3]. Heterogeneous Vehicle Routing Problem 

(HVRP) is a problem similar to CVRP but in which the fleet 

has vehicles of different characteristics. Therefore, variations 

in the travel costs of the vehicles, the speed of the vehicles, 

the maximum travel time, and the availability of these can 

occur; And Vehicle Routing Problem with Time Window 

(VRPTW), which is an extension of CVRP adding a time 

window in which customers must be served (service time), 

which is generally different for each one. The time window or 

time interval has a beginning and an end, which must be 
respected, with the purpose that it is in this interval where the 

goods (products) can be delivered to each specific client. 

There is also a service time that corresponds to the service 

time of a vehicle for a customer that must be met when the 

product is delivered. In VRPTW, the travel cost is the cost of 

the distance traveled. There can also be vehicles with 

heterogeneous characteristics, in which case HVRP would be 

combined with VRPTW [2]. 

VRPTW can be solved from a single objective 

optimization approach (much studied in the state of the art) 

where the minimization of travel distances and the number of 
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vehicles (fleet size) is generally sought, or from a 

multiobjective optimization approach (MOVRPTW). The 

latter has recently attracted attention because it allows 

defining objectives that are more applicable to real problems, 

such as, for example, in addition to the classic objectives: 

improve service quality (earlier delivery of products), 

minimize the variance in the distances traveled by vehicles, 

minimize variance in vehicle load, among many others. 

Companies that within their business need to transport 

goods to their customers, mainly seek to retain them through 

the timely delivery of their products and reduce their 
distribution costs by reducing, for example, the total transport 

distance. Carrying out the process in an efficient way allows, 

in addition to the direct benefits to the company, making a 

contribution to the conservation of the environment by 

reducing the emission of carbon dioxide, which is highly 

polluting [4]. 

The algorithms that have been used to solve MOVRPTW, 

VRPTW, or similar can be organized into four main 

categories: 

 Simple state metaheuristics such as Simulated 

Annealing and Tabu search, among others [5]–
[11], 

 Population-based metaheuristics such as Genetic 

Algorithms, Ant Colony Optimization 

algorithms, and Particle Swarm Optimization, 

among others [12]–[21], 

 Hybrid algorithms [9], [22]–[26], and  

 Exact algorithms [27], [28]. 

The different proposals use specialized operators that seek 

to solve specific problems such as, for example, reducing the 

longest route, reducing the time in the beginning to serve 

customers, balancing the load of the routes (homogeneity in 
the amount of product delivered by vehicles), minimizing the 

total distance traveled by all routes, among others. It should 

be noted that the intelligent initialization of the solutions is 

also necessary to obtain results that solve the real needs of 

customers and companies (good results are not always 

obtained with totally random initial solutions; in addition, the 

convergence time of the algorithms is increased and the time 

windows, for example, are not considered as a priority). 

The main contribution of this work includes 1) a new way 

to convert the original version of GRASP (Greedy 

Randomized Adaptive Search Procedures) algorithm to a 

multi-objective version including in addition of specific 
knowledge of the application context to solve MOVRPTW 

problems. This way of converting GRASP can also be used 

for other single objective algorithms and in other optimization 

problems, and 2) a new multiobjective memetic algorithm 

based on the GRASP algorithm called MOMGRASP. 

MOMGRASP has the following main components: i) an 

initialization of solutions based on two methods that always 

generate feasible solutions and that take advantage of prior 

knowledge of the state of the art to start with good quality 

solutions; ii) the flexibility of using different operators to 

create neighboring solutions according to the objectives to be 
optimized; iii) the use of a local optimizer that performs 

various enhancement operations on a solution to find the best 

possible neighbor within a maximum number of iterations, iv) 

the use of a single-state GRASP to evolve a solution avoiding 

being trapped in local optima; and v) the use of a population 

ordered by the non-dominance of the solutions and the 

Crowding distance that evolves over time. MOMGRASP was 

evaluated in four test scenarios against two algorithms 

reported in the state of the art with superior or competitive 

results in three of these scenarios. 

The rest of the document is organized as follows, Section 2 

presents the proposed algorithm, starting with the formal 

definition of MOVRPTW and the three objectives of interest 

in the proposal, then explains in detail the proposed algorithm 

starting with the Population envelope continuing with the 

simple state and ending with the operators. Then in Section 3, 
the results of the experiments carried out in four different 

scenarios (objective configurations) are presented. Finally, 

the conclusions of the research and the future work that the 

research group hopes to carry out in the short term are 

presented. 

II. MATERIALS AND METHOD 

The proposed algorithm called MOMGRASP searches for 
solutions for MOVRPTW with a population of fixed size that 

provides the user with the set of non-dominated solutions that 

make up the Pareto Front. In the evolutionary process, 

MOMGRASP ends its execution based on a maximum 

execution time defined by the user and uses Crowding 

distance to compare undominated solutions with each other, 

prioritizing the diversity of the solutions. MOMGRASP 

executes a single-state GRASP algorithm as an optimizer that 

uses operators that integrate specific knowledge of the 

problem (memetic approach). 

The proposed algorithm allows to solve MOVRPTW 

problems with the objectives proposed by Baños [12] (total 
travel distance and balance of distance; total travel distance 

and load balance), Zhou [5] (number of vehicles, total travel 

distance, travel time of the longest route, total waiting time 

due to early arrivals, and total delay time due to late arrivals), 

the three objectives of interest of this work (total travel time, 

waiting time of customers to be attended, and balance of total 

travel time between routes) or combinations of these. To 

achieve this, specific operators are used to improve each of 

these objectives by integrating knowledge of the problem. 

A. Formal Definition of MOVRPTW 

The MOVRPTW problem can be described by 3 main 

matrices, namely: the adjacency matrix, the service time 

matrix, and the matrix with the solution of the routes. 

Bearing in mind that it seeks to serve M clients with R 

vehicles, each of which performs its own route (R routes), 

then the adjacency matrix is represented as � = (��,�) of size 

M+1 * M+1, which stores the distances between the depot 

(position 0 of the matrix in rows and columns, that is, base 
index 0 of the matrix) and each customer and the distance of 

all customers from each other, in where ��,� = ��,� y ��,� = 0, 

which implies that the transpose of the matrix (AT) is equal to 

the original matrix A. 

The service time matrix 
 = (��,�) of size M x 3 (base 

index 1) that represents information from each customer �� as 

a triple (�� , ��� ,��� ) o (��,�, ��,� , ��,� ) with the values of 

service time (time it takes to service any vehicle to customer 

i), start time of the service window for customer i and the end 

time of the service window for customer i. This matrix 
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establishes the restrictions of service for each of the clients 

and must be strictly observed to obtain a feasible solution. 

The solution matrix S = (��,�) of R rows (base index 1) and 

variable size of columns that corresponds in each row to the 

value �� , where row r of S represents the route made by 

vehicle r starting and ending at the depot and going through 

all your customers in order, that is, a variable length array 

{customer A, customer H…, customer C}. 

Given the above, the travel time of route r to customer � 
(���,�) is defined as the travel time from the depot through 

customers of the route to customer �  with the recursive 
expression of Eq. (1). 

 

���,� = � ���,�,� + ���,�,� �� ���,�!� + ���,�"#,��,� ≤ ���,�,����,�!� + ���,�"#,��,� + ���,�,� %& '(' )'%'  (1) 
 

Subject to: 

 � ≥ 1 (the base index of S is one) 

 ���,�!� + ���,�"#,��,� ≤ ���,�,� (the vehicle must 

arrive before the time window for the customer 

ends) 

 ���,, = �,,��,�  (Corresponds to the displacement 

of vehicle r of the last customer to the depot) 

 

The total travel time of route ( (����) is defined as the 

travel time from the depot, passing through all its clients and 

returning to the depot, plus the service time of each client in 

the route, plus the vehicle waiting time (�-�,�) when it reaches 

each customer before the start of the service window, which 

corresponds to: ���� = ���,.� + ���,/� ,,. 

The route vehicle waiting time (() for a customer (�) is 

defined as the time a vehicle must wait to serve a customer 

when it arrives before the service start window, which is 

formally expressed in the Eq. (2). 

�-�,� = � 0 �� ���,�!� + ���,�"#,��,� > ���,�,����,�,� − (���,�!� + ���,�"#,��,�) %& '(' )'%'  (2) 

The version of MOVRPTW that is sought to be solved in 

this work, seeks the optimization (minimization) of three 

objectives (total travel time, waiting time of customers to be 

attended, and balance of total travel time between routes). 

That is, 23435367 8 = 98:, 8;, 8<=, where 8:  corresponds 

to the first objective to be minimized, which corresponds to 
the total travel time of all routes (vehicles) to their clients as 

expressed in Eq. (3). 

 �� = ∑ (����)?�@�  (3) 

8; corresponds to the second objective to be minimized, 

which corresponds to the waiting times of the clients when 
being served as expressed in Eq. (4). 

 �� = ∑ (��-�)?�@�   (4) 

8< corresponds to the third objective, which searches for 

homogeneous routes, that is, it seeks to minimize the 

difference in travel times between the routes as expressed in 

Eq. (5), in which TPS corresponds to the average service time 
of the routes. 

�� = �
? ∑ (���� − �AB)�?�@�  where CDE = �

? ∑ ����?�@�   (5) 

B. MOMGRASP 

Fig. 1 presents the pseudocode of the MOMGRASP 

algorithm. Its execution requires a problem pv (read from a 

file or dataset), the objectives to be minimized (o), the initial 

seed of random values (s) that ensures the repeatability of the 
experiments, the maximum execution time (tm) and other 

parameters that are used when the method Single State 

GRASP is called. Its operation is divided into two main parts. 

 

 
Fig. 1 MOMGRASP algorithm pseudo-code 

 

The first part (lines 1 to 4) delegates to Single State GRASP 

(a method detailed below) the process of construction and 

improvement of solutions that make up the initial population 

(p) with size Psize (parameter defined by the user). Then (line 
4) is reduced based on Crowding distance to a NDsize size 

(population of Nondominated solutions), a parameter that the 

user also defines. In the population, each solution has defined 

the routes. The values obtained for each of the objectives, 

among other data are used to calculate the ranking on the 

Pareto front and the Crowding distance of the solutions that 

share the same Ranking. 

The second part (lines 5 to 11) corresponds to an iterative 

process of improvement of the solutions already built, which 

is repeated if the maximum execution time (tm) defined by 

the user is not reached. The cycle begins by randomly taking 

a non-dominated solution from the population. It then 
determines the number of routes that will be preserved intact 

(amountOfRC) of this solution in the improvement process 

that will be carried out using Single State GRASP. This 

number is obtained (line 7) from the integer division of the 

number of routes in use (NRU) in the solution and the factor 

of routes to conserve (FCR, user-defined parameter), which 

allows the use of prior knowledge of the solutions already 

found in the iterative improvement process. Then, in line 8, 

which routes are to be kept are defined and they are included 

1337



in the rtp list that is then used to make a list of the clients that 

have already been visited (cv) with these routes (line 9). With 

the selected solution, the routes to keep rtp from this solution 

and the clients already visited by these cv routes, Single State 

GRASP is executed seeking to obtain a better solution by 

modifying the other routes that were not marked and visiting 

the clients that were not marked, which causes solutions to be 

exploited in different regions of the search space (line 10). If 

the solution obtained is not dominated by some solution in the 

population, it is included within it. 

C. Single State GRASP method 

Fig. 2 shows the general pseudo-code of the Single State 

GRASP method. In line 1 is the construction of the initial 

solution (best solution, bestSol). This construction is carried 

out by choosing one of two initialization methods that are 

explained later in section D. Choosing the first method of 

initialization is done based on a percentage (parameter pl) that 

corresponds to a parameter defined by the user. In 

initialization regardless of method, the rls parameter that 
corresponds to the restricted list size is used when creating a 

solution with classic GRASP metaheuristics. If Single State 

GRASP receives a solution (sol other than null), it does not 

perform the initialization process and takes that solution as a 

starting point. 

A check is carried out in line 2 that the initial solution is 

valid (if it was started from an existing solution in the 

population, the validation is not carried out since the solutions 

are always built in the space of feasible solutions). This means 

that it complies with the restrictions of the problem such as 

capacity per route, customer service times (time windows), 

the arrival of vehicles at the depot within the stipulated times, 
that all customers are served and the other restrictions 

inherent to the VRPTW problem. If an initial invalid solution 

is found, null is returned. 

Between lines 3 and 8 the optimization cycle is carried out, 

which is executed until a maximum number of optimization 

iterations (mnoi) is reached. In line 5, a copy of the best 

current solution (bestSol) is made in a variable called 

currentSol. This variable goes to the local optimization 

process in line 5, which is modified a specific number of times 

(om parameter). This process is explained in more detail later. 

In line 6, if the current solution dominates the best solution, it 
replaces the best one in such a way that this new solution is 

the one to which optimization is applied in the next iteration. 

Otherwise, the one that was already the best solution is left. If 

the algorithm's execution time (from the start of 

MOMGRASP) exceeds the maximum execution time defined 

by the user (line 7), the cycle is broken to exit from Single 

State GRASP method and return the best solution found (line 

9) to the MOMGRASP method. 

Fig. 3 shows the pseudocode of the Single State GRASP 

local optimization method (Local Optimizer). This method 

receives a solution from Single State GRASP and assumes 
that it is the best solution (bestSol) from the input parameter. 

In the loop of lines 1 to 7, an optimization operation is 

executed and if the solution obtained is better, it replaces it to 

make the next cycle of improvement on this one. Otherwise, 

the one that is currently considered the best is continued (line 

5). If the execution time of the algorithm (from the start of 

MOMGRASP) exceeds the maximum execution time defined 

by the user (line 6), the cycle is broken to exit from Local 

Optimizer method and return the best solution (line 8) found 

to the Single State GRASP method. 

 

 
Fig. 2  Single State GRASP method pseudo-code 

 

 
Fig. 3  Local Optimizer method pseudo-code used by Single State GRASP 

 

The Local Optimizer is configured to use the operators of 

the state of the art algorithm LSMOVRPTW (Local Search-

Based Multiobjective Optimization Algorithm for 
Multiobjective Vehicle Routing Problem with Time Windows) 

[5]. If the parameter oc (operators configuration) is equal to 2 

(line 3), or use the operators of the state of the art algorithm 

MMOEASA (a multi-start multi-objective evolutionary 

algorithm with simulated annealing) [12] If the parameter oc 

is equal to 3 (line 4), or use the operators presented later in 

section E which are defined for the 3 objectives of interest in 

this work (line 2). Existing operators and new ones include 

specific knowledge of the problem (memetic approach). 
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D. Initializing a Solution 

Considering that most of the state-of-the-art articles 

express that the creation of the initial solutions should be done 

based on the early attention of the clients who have a closer 

start window. In Single State GRASP (line 1, Initialize Routes 
method), this approach is adapted to create two initialization 

methods. The first initialization that is executed with a 

probability pl, seeks to build routes sequentially and has the 

following steps: 

1. Customers are sorted in a list by their start time in the 

service window. 

2. The depot at the beginning and at the end is added to all 

routes. The first customer from the list built-in step 1 is 

added to the first route, and that customer is deleted 

from that list. 

3. The last customer of the current route is taken (route 1 
at the beginning). An order is made of the customers 

that remain to be attended (list in step 1) by their 

proximity in travel time to this last customer, that is, the 

distance to the customer plus the waiting time to serve 

them, from the list a customer is taken by raising who 

is in the first positions based on the parameter rls (size 

of the restricted list). If that customer can be added to 

the route complying with the restrictions, it is added 

and removed from the list in step 1. Now this client (last 

of the current route) is taken, and the same process is 

applied again until no more clients can be added to the 

route current. 
4. Step 3 is repeated with the following routes (2, 3 and so 

on). 

5. The attention of all the clients to the problem is verified 

to make sure to deliver a feasible solution. 

In the second initialization that is executed with a 

probability 1-pl, it is sought to assign clients to the routes 

where the last client is closest and is carried out with the 

following steps: 

1. Customers are sorted in a list by their start time in the 

service window. 

2. The depot at the beginning and at the end is added to all 
routes. The first customer from the list built in step 1 is 

added to the first route and that customer is deleted 

from that list. 

3. Take the next customer on the list and create a list L1 

of how close this customer is to the last customer on 

each route (at first it is compared against the first 

customer on route 1 and for the other routes with the 

depot because no clients have been assigned). From this 

L1 list, a route from the closest ones is randomly chosen 

(based on the restricted list size parameter, rls) and the 

client is assigned to that route if they comply with the 

restrictions, if not, the process is repeated. 
4. Step 3 is repeated with the remaining clients (3, 4, and 

so on). 

5. The attention of all the clients of the problem is verified, 

to make sure to deliver a feasible solution. 

E. Operators 

The operators of the algorithm proposed in this research are 

three (3), namely: 

 Operator 1: Takes a random route and from this a 
random client takes afterwards it evaluates different 

positions of other routes to relocate it to the position 

where it achieves the best fitness of the objective to be 

optimized. 

 Operator 2: Takes a specific number of clients from a 

route chosen at random and proceeds to relocate them 

to the best positions on other routes, bearing in mind 

that one of the three objectives to be optimized can be 

improved. 

 Operator 3: Takes a sequence of a random number of 

clients, from a position of a client chosen at random, 

from a route also selected at random, and proceeds to 
test the insertion of this ordered sequence of clients in 

another route. The Insertion must preserve order and 

the location will be where one of the three objectives 

can be minimized to the greatest extent. 

F. Experimental setup 

The proposed algorithm was evaluated and compared with 

two state-of-the-art algorithms, LSMOVRPTW [5] and 

MMOEASA 14], with datasets that the authors of these 
algorithms used to evaluate their proposals using four test 

scenarios (A, B, C, and D). The measure used to evaluate the 

quality of the results obtained was Hypervolume (higher 

values are better), and it was obtained as the average of 31 

executions (repetitions) of each algorithm in each dataset 

(problem) using different seeds of random numbers to thereby 

generate different initial solutions. 

1) Test problems (datasets): For this work, the problems 

proposed in [29] (available at https://github.com/psxjpc) were 

selected for the comparison of Population GRASP against 

LSMOVRPTW. These problems are organized into three 

groups by the number of clients: 50, 150, and 250. 

The problems proposed by Solomon [30] (available at 

http://w.cba.neu.edu/~msolomon/problems.htm) were also 

used, which are divided into 6 categories, random R1 (12 in 

total) and R2 (11 in total), grouped C1 (9 in total) and C2 (8 

in total) and semi-grouped RC1 (8 in total) and RC2 (8 in total) 
that give a total of 56 instances. These were used for the 

evaluation of the proposed algorithm versus the MMOEASA 

and LSMOVRPTW algorithms. 

2) Optimum values for test problems: Considering that 

the datasets reported in the literature do not have the optimal 

reference values for the objectives (maximum and minimum), 

it was necessary to calculate these. To achieve this, the three 

algorithms (MOMGRASP, LSMOVRPTW and MMOEASA) 

were executed 30 times each for 100 seconds. All the initial 

and final solutions of the same problem (dataset) were 

organized in two files. The non-dominated solutions (Pareto 

front) were selected from the second file. Then, for each 

objective, the arithmetic mean (F̅) and the standard deviation 

(ℴ ) of the values of the objectives were calculated both for 

the solutions resulting from the initialization process (to 

calculate the maximums), and for the non-dominated 

solutions (for calculate the minimums). The maximum values 

of the objectives were calculated as follows: max = F̅ +(3.72 ∗  ℴ), while the minimum values were calculated as 

follows: min =  F̅ − (3.72 ∗ ℴ). The 3.72 makes it possible 
to have a virtually 100% probability of taking all the data 

based on a normal distribution of the data. 
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3) Test scenarios: The proposed algorithm 
(MOMGRASP) was evaluated in four (4) scenarios, namely: 

A - against LSMOVRPTW algorithm over 5 objectives 

(number of vehicles, total travel distance, travel time of the 

longest route, total waiting time due to early arrivals, and total 

delay time due to late arrivals) and using the operators of 

LSMOVRPTW for a fair comparison; B – against 

MMOEASA algorithm over 2 objectives (total travel distance 

and balance of distance between routes - case 1) and using the 

MMOEASA operators for a fair comparison; C - against 

MMOEASA algorithm over 2 objectives (total travel distance 
and balance of workload - case 2) and using the MMOEASA 

operators; D - against LSMOVRPTW and MMOEASA 

algorithms over 3 objectives (total travel time, waiting time of 

customers to be attended, and balance of total travel time 

between routes) and using the MOMGRASP operators in all 

algorithms for a fair comparison. 

4) Software for experimentation: Considering the large 

amount of time it takes to execute the experiments 

(approximately 28 days on a single computer), a task 

distribution scheme was implemented with a server that 

deploys a web service that allows assigning MOVRPTW 
optimization tasks to customer computers and another web 

service to record the results reported by those clients. The 

client computers execute an optimization algorithm on a 

dataset as defined in the task, and when it finishes it requests 

the results record and if there are still tasks to be executed on 

the server it takes one and solves it. On the server computer, 

the tasks that are expected to be developed are configured, 

storing them in the database, and then when the client 

computers request tasks, the server delivers them, marking 

them so as not to assign them later to other client computers. 

Then, when a client computer finishes the task, it registers in 
the database through the other web service. With the above, 

the database has at the end, the record of the results of all the 

tasks, tasks that include the algorithm to be executed, the 

dataset or specific problem to be solved, the objectives to be 

optimized, the specific parameters with which the algorithm 

is executed, the value of the hypervolume (HV) and the 

solutions of the Pareto front. The client computers were a total 

of 18 computers with an AMD A10 PRO-7800B R/ processor, 

12 Compute Cores C + 8G 3.50GHz and 8 GB RAM. 

5) Parameter tuning: In the proposed algorithm 3 

parameters were tuned, the percentage of use of the first 

initialization method (probability pl), the restricted list size 
(rls) and the factor of routes that are preserved (FCR) for the 

second cycle of improvement. To tune these parameters, 

Covering Arrays (CAs) were used, avoiding exhaustive tests, 

and thus reducing the parameter tuning time. This fine-tuning 

method has been used with success in different previous 

works [31], [32]. CA was defined as strength 2 and with an 

alphabet of 4 for each parameter. For the first parameter, the 

values 0.3, 0.4, 0.5, 0.6; for the second parameter 3, 4, 5, 6 

and for the third parameter the values 1.42, 1.66, 2, 2.5. The 

exhaustive tests that were going to be 64 (4 * 4 * 4) trials were 

reduced to 17. In addition, only 6 datasets were used (reducing 
the possible overfitting of the results), 2 for each category and 

the processing was parallelized in the 18 client computers. 

Table I shows the parameters used for each operator’s 

configuration and experimentation scenarios. 

III. RESULTS AND DISCUSSION 

Table II shows the values obtained for the average 

hypervolume for the two algorithms (MOMGRASP and 

LSMOVRPTW) on test scenario A. In this scenario, the 

MOMGRASP algorithm had better (higher) hypervolume 

than LSMOVRPTW in 35 datasets out of the 45 (77.8%). 

MOMGRASP had better results in all class of datasets (50 
clients, 150 clients and 250 clients), winning roughly in 12 

out of 15 of each (approximately in 80% of each class). 

Friedman nonparametric test reports that MOMGRASP 

algorithm is better than LSMOVRPTW with a p-value of 

0.00019 (<0.05) and a Friedman statistic of 13.88888. 

TABLE I 
PARAMETERS USED FOR EXPERIMENTS 

Objectives pl rls FCR 

5 objectives of LSMOVRPTW 0,3 5 0,602 

2 objectives of MMOEASA - case 1 0,6 3 0,602 

2 objectives of MMOEASA - case 2 0,6 3 0,602 

3 objectives of MOMGRASP  0,6 3 0,602 

TABLE II 

GENERAL RESULTS FOR MOMGRASP, LSMOVRPTW AND MMOEASA  
IN THREE SCENARIOS 

Test 

Scenario 
Measure 

Populational 

GRASP 
LSMOVRPTW MMOEASA 

A 

Avg. 
HV 

0.195806 0.154911 
- 

Best 50 11 4 - 
Best 

150 
12 3 

- 

Best 
250 

12 3 
- 

Best 35 10 - 

B 

Avg. 
HV 

0.814427 - 0.807543 

Best C 14 - 3 
Best R 12 - 11 

Best 
RC 

3 - 13 

Best 29 - 27 

C 

Avg. 
HV 

0.729781  0.763323 

Best C 1 - 16 
Best R 7 - 16 

Best 
RC 

4 - 12 

Best 12 - 44 

Table II also shows the obtained average hypervolume 

values for MOMGRASP and MMOEASA algorithms on test 

scenario B. For this case, the MOMGRASP algorithm had 

higher hypervolume than MMOEASA in only 29 instances of 

the 56 (51.8%). MOMGRASP obtains better results in 

instances C (grouped type and easy to solve) and in instances 
R (random type and more difficult to solve), where it was 

better in 12 of 23 (52.2%), but the results are poor in instances 

RC (semi-grouped type). The Friedman nonparametric test 

reports that there is no significant difference in mean values 

(p-value of 0.78927) of this scenario. 

Table II also shows the values obtained for average 

hypervolume for MOMGRASP and MMOEASA algorithms 

on test scenario C. For this case, the MMOEASA technique 
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had higher hypervolume than MOMGRASP in 44 datasets of 

the 56 (78.6%) and in all dataset types (random, grouped, and 

semi-grouped) it was better in 12 datasets or more. The 

Friedman nonparametric test reports that MMOEASA is 

better than MOMGRASP with a p-value of 1.901E-5 (<0.05) 

and a Friedman statistic of 18.28571. 

Table III shows the mean hypervolume values for the three 

algorithms on test scenario D. In each row, the highest value 

for the respective dataset (problem) is presented with an 

asterisk. In this case, the MOMGRASP technique was the best 

technique with the highest hypervolume in 41 datasets of the 
56 (73.2%), and in problems R (random type and with greater 

difficulty to solve), it was better in 21 of 23 (91.3%). In the 

second place, MMOEASA was found with the highest 

hypervolume in 12 of the 56 problems (21.4%), and in type R 

problems it obtained 2 hypervolume values that were better 

(8.7%). Finally, the algorithm with the lowest hypervolume 

value was LSMOVRPTW, winning in 3 of the 56 datasets 

(5.4%) and in none of the R-type datasets. 

In addition to this, it is evident that the datasets for which 

LSMOVRPTW or MMOEASA wins are mostly grouped in 

category C (Clustered Clients) - with 6 cases for MMOEASA 
and none for LSMOVRPTW - and RC (Semi Clustered 

Clients) - with 3 cases in which MMOEASA wins and 3 in 

which LSMOVRPTW wins. These results may be due to the 

simpler structure of LSMOVRPTW and MMOEASA that 

allows them to create and evaluate more solutions 

simultaneously than MOMGRASP, which helps them when 

the problem is simpler to resolve. However, the extra time it 

takes for MOMGRASP to search different regions of the 

solution space allows it to get better results on the most 

difficult category R problems. 

The Friedman nonparametric test reports that the results of 
MOMGRASP come in first in the ranking, followed by 

MMOEASA and LSMOVRPTW with a p-value of 1.979E-14 

(<0.05) and a Friedman statistic of 63.107. The Wilcoxon 

signed test shows that the results of MOMGRASP are 

statistically better than those obtained by MMOEASA and 

LSMOVRPTW, and the results obtained by MMOEASA are 

better than those obtained by LSMOVRPTW. 

Based on the results presented in the previous tables, it is 

evident that the Population GRASP algorithm is, on average, 

better at solving MOVRPTW problems than the 

LSMOVRPTW and MMOEASA algorithms by obtaining 

better hypervolume values in 3 of the four evaluated scenarios. 
It is important to note that the results were better (statistically 

speaking) in 2 of the 3 scenarios evaluated. 

TABLE III 

MEAN HYPERVOLUME FOR GRASP, LSMOVRPTW AND MMOEASA WITH 

3 OBJECTIVES (TEST SCENARIO D) 

Dataset 
Mean hypervolume 

Populational GRASP LSMOVRPTW MMOEASA 

c101 0.528260 0.395171 0.572061 * 
c102 0.600100 * 0.379695 0.564227 
c103 0.562528 * 0.424531 0.486334 
c104 0.655225 * 0.463461 0.509355 
c105 0.519515 * 0.414634 0.489361 
c106 0.522354 * 0.345378 0.465299 
c107 0.456147 0.354747 0.464556 * 

c108 0.499508 * 0.378500 0.422958 
c109 0.516369 * 0.413881 0.443786 
c201 0.619604 0.456444 0.707160 * 

c202 0.583739 * 0.570456 0.577368 

c203 0.600100 * 0.544819 0.539503 
c204 0.597830 * 0.494517 0.442941 
c205 0.618218 0.506289 0.689901 * 
c206 0.606931 0.516212 0.658527 * 
c207 0.607466 * 0.518960 0.592833 
c208 0.616000 0.474917 0.645634 * 
r101 0.566541 0.258998 0.580007 * 
r102 0.548540 * 0.173072 0.327957 

r103 0.515323 * 0.182282 0.326287 
r104 0.520792 * 0.184636 0.338129 
r105 0.575079 0.465485 0.613484 * 
r106 0.587514 * 0.337585 0.417290 
r107 0.661440 * 0.376360 0.487487 
r108 0.680890 * 0.390823 0.513461 
r109 0.754385 * 0.600738 0.728779 
r110 0.740928 * 0.534670 0.588620 

r111 0.538709 * 0.278150 0.513030 
r112 0.829284 * 0.536445 0.570785 
r201 0.633107 * 0.534328 0.435269 
r202 0.633651 * 0.492317 0.507840 
r203 0.592544 * 0.475165 0.475679 
r204 0.562594 * 0.288127 0.419086 
r205 0.630430 * 0.499747 0.619663 
r206 0.643737 * 0.537211 0.552724 
r207 0.625506 * 0.497641 0.556514 

r208 0.598985 * 0.334917 0.449362 
r209 0.643405 * 0.491637 0.565669 
r210 0.596368 * 0.328392 0.463461 
r211 0.604551 * 0.546226 0.567945 
rc101 0.587630 0.482087 0.634470 * 
rc102 0.573753 * 0.346066 0.433272 
rc103 0.661290 * 0.411882 0.526581 
rc104 0.522674 * 0.271624 0.518995 

rc105 0.496100 * 0.287144 0.262144 
rc106 0.703848 0.583576 0.728921 * 
rc107 0.709239 * 0.521584 0.545812 
rc108 0.590758 0.405941 0.591275 * 
rc201 0.562897 0.609762 * 0.477835 
rc202 0.596940 * 0.592544 0.469020 
rc203 0.558211 * 0.488075 0.470694 
rc204 0.545555 * 0.389162 0.414218 

rc205 0.512501 0.521544 * 0.347995 
rc206 0.599962 0.523235 0.609238 * 
rc207 0.619014 0.625470 * 0.524144 
rc208 0.595777 * 0.579961 0.550126 

Avg. HV 0.596970 * 0.439950 0.517769 
Best R 21 0 2 
Best  41 3 12 

IV. CONCLUSION 

The proposed way of adapting the original version of 

GRASP to solve a problem with multi or many objectives 

using specific knowledge of the problem (memetic approach) 

- in this case, MOVRPTW - can be used to convert other 

single objective metaheuristics and use them to solve different 

problems from a multiobjective memetic approach. 

The proposed multiobjective memetic adaptation of 
GRASP is a good option for solving MOVRPTW problems 

and obtaining competitive or better results than those reported 

in the state of the art for LSMOVRPTW and MMOEASA. 

The Friedman nonparametric test shows with 95% confidence 

that MOMGRASP obtained better results in two (2) out of 

four (4) test scenarios, similar results to MMOEASA in one 

(1) test scenario and worse results in another scenario against 

MMOEASA. The experiments showed that MOMGRASP 
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beat LSMOVRPTW and that it overwhelmingly beat both 

algorithms in its own experimentation scenario (three 

objectives) of initial interest of the work. 

As future work, it is expected to study the behavior of the 

proposed algorithm by including an adaptive parameter that 

defines the percentage of times that an operator should be 

used in a specific problem, seeking to use more times the 

operator that makes the greatest improvements to the 

solutions. The results obtained are expected to be transferred 

to a company with a MOVPRTW problem in Colombia. It is 

also expected to compare the result of the work carried out 
with the most recent publications in the field, for example, 

against the use of specific variation operators in NSGA-II and 

the hybrid genetic algorithm of two phases (ruin and 

recreation). 
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