
Vol.12 (2022) No. 4

ISSN: 2088-5334

Multiobjective Memetic GRASP to Solve Vehicle Routing Problems

with Time Windows Size

Carlos Molano a, Manuel Lagos a, Carlos Cobos a,*
a Computer Science Department, Universidad del Cauca, Sector: Tulcan - Building: FIET - Office: 422, Popayán, 190001, Colombia

Corresponding author: *ccobos@unicauca.edu.co

Abstract—The Vehicle Routing Problem with Time Windows is a complete NP combinatorial problem in which product deliveries to

customers must be made under certain time constraints. This problem can be solved from a single objective approach, well studied in

the state of the art, in which the objective of the total travel distance or the size of the fleet (number of vehicles) is generally minimized.

However, recent studies have used a multiobjective approach (Multiobjective Vehicle Routing Problem with Time Windows,

MOVRPTW) that solves the problem from a viewpoint closer to reality. This work presents a new multiobjective memetic algorithm

based on the GRASP (Greedy Randomized Adaptive Search Procedures) algorithm called MOMGRASP for the minimization of three

objectives in MOVRPTW (total travel time, waiting time of customers to be attended, and balance of total travel time between routes).

The results of the experimentation carried out with 56 problems proposed by Solomon and 45 problems proposed by Castro-Gutiérrez

show that the proposed algorithm finds better solutions in these three objectives and competitive solutions than those reported by Zhou

(compared to LSMOVRPTW algorithm and optimizing 5 objectives: number of vehicles, total travel distance, travel time of the longest

route, total waiting time due to early arrivals, and total delay time due to late arrivals) and by Baños (versus the MMOEASA algorithm

in two scenarios; case 1: total travel distance and balance of distance and case 2: total travel distance and balance of workload).

Keywords— Vehicle routing problem; grasp; metaheuristic algorithm; combinatorial optimization; multiobjective; memetic.

Manuscript received 13 Aug. 2021; revised 29 Oct. 2021; accepted 10 Nov. 2021. Date of publication 31 Aug. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The Vehicle Routing Problem (VRP) occurs in several

different logistics environments. In the transport of goods and

supplies, optimal routes are sought while meeting the needs

of all customers and coping with a restriction on the number

of vehicles available (fleet size). In a real setting, VRP has

some or all of the following objectives: reduction of costs,
reduction of the distances traveled by the vehicles, reduction

of the time of travel and service of the vehicles, reduction in

the size of the fleet, and a balance in the distances that vehicles

are required to travel [1][2].

VRP can be classified into the following main categories:

Capacitated Vehicle Routing Problem (CVRP), in which there

is a fleet of vehicles with the same characteristics (capacity

and speed), which, starting from a depot, must deliver some

products to certain customers located in different parts of a

region with a specific number of products per customer

(product demand) and that as a whole (sum of demands for
that delivery) should not exceed the capacity of the vehicle.

The cost is determined solely by the distance traveled from

the vehicles to the clients, and clients can be served in any

time frame [3]. Heterogeneous Vehicle Routing Problem

(HVRP) is a problem similar to CVRP but in which the fleet

has vehicles of different characteristics. Therefore, variations

in the travel costs of the vehicles, the speed of the vehicles,

the maximum travel time, and the availability of these can

occur; And Vehicle Routing Problem with Time Window

(VRPTW), which is an extension of CVRP adding a time

window in which customers must be served (service time),

which is generally different for each one. The time window or

time interval has a beginning and an end, which must be
respected, with the purpose that it is in this interval where the

goods (products) can be delivered to each specific client.

There is also a service time that corresponds to the service

time of a vehicle for a customer that must be met when the

product is delivered. In VRPTW, the travel cost is the cost of

the distance traveled. There can also be vehicles with

heterogeneous characteristics, in which case HVRP would be

combined with VRPTW [2].

VRPTW can be solved from a single objective

optimization approach (much studied in the state of the art)

where the minimization of travel distances and the number of

1335

vehicles (fleet size) is generally sought, or from a

multiobjective optimization approach (MOVRPTW). The

latter has recently attracted attention because it allows

defining objectives that are more applicable to real problems,

such as, for example, in addition to the classic objectives:

improve service quality (earlier delivery of products),

minimize the variance in the distances traveled by vehicles,

minimize variance in vehicle load, among many others.

Companies that within their business need to transport

goods to their customers, mainly seek to retain them through

the timely delivery of their products and reduce their
distribution costs by reducing, for example, the total transport

distance. Carrying out the process in an efficient way allows,

in addition to the direct benefits to the company, making a

contribution to the conservation of the environment by

reducing the emission of carbon dioxide, which is highly

polluting [4].

The algorithms that have been used to solve MOVRPTW,

VRPTW, or similar can be organized into four main

categories:

 Simple state metaheuristics such as Simulated

Annealing and Tabu search, among others [5]–
[11],

 Population-based metaheuristics such as Genetic

Algorithms, Ant Colony Optimization

algorithms, and Particle Swarm Optimization,

among others [12]–[21],

 Hybrid algorithms [9], [22]–[26], and

 Exact algorithms [27], [28].

The different proposals use specialized operators that seek

to solve specific problems such as, for example, reducing the

longest route, reducing the time in the beginning to serve

customers, balancing the load of the routes (homogeneity in
the amount of product delivered by vehicles), minimizing the

total distance traveled by all routes, among others. It should

be noted that the intelligent initialization of the solutions is

also necessary to obtain results that solve the real needs of

customers and companies (good results are not always

obtained with totally random initial solutions; in addition, the

convergence time of the algorithms is increased and the time

windows, for example, are not considered as a priority).

The main contribution of this work includes 1) a new way

to convert the original version of GRASP (Greedy

Randomized Adaptive Search Procedures) algorithm to a

multi-objective version including in addition of specific
knowledge of the application context to solve MOVRPTW

problems. This way of converting GRASP can also be used

for other single objective algorithms and in other optimization

problems, and 2) a new multiobjective memetic algorithm

based on the GRASP algorithm called MOMGRASP.

MOMGRASP has the following main components: i) an

initialization of solutions based on two methods that always

generate feasible solutions and that take advantage of prior

knowledge of the state of the art to start with good quality

solutions; ii) the flexibility of using different operators to

create neighboring solutions according to the objectives to be
optimized; iii) the use of a local optimizer that performs

various enhancement operations on a solution to find the best

possible neighbor within a maximum number of iterations, iv)

the use of a single-state GRASP to evolve a solution avoiding

being trapped in local optima; and v) the use of a population

ordered by the non-dominance of the solutions and the

Crowding distance that evolves over time. MOMGRASP was

evaluated in four test scenarios against two algorithms

reported in the state of the art with superior or competitive

results in three of these scenarios.

The rest of the document is organized as follows, Section 2

presents the proposed algorithm, starting with the formal

definition of MOVRPTW and the three objectives of interest

in the proposal, then explains in detail the proposed algorithm

starting with the Population envelope continuing with the

simple state and ending with the operators. Then in Section 3,
the results of the experiments carried out in four different

scenarios (objective configurations) are presented. Finally,

the conclusions of the research and the future work that the

research group hopes to carry out in the short term are

presented.

II. MATERIALS AND METHOD

The proposed algorithm called MOMGRASP searches for
solutions for MOVRPTW with a population of fixed size that

provides the user with the set of non-dominated solutions that

make up the Pareto Front. In the evolutionary process,

MOMGRASP ends its execution based on a maximum

execution time defined by the user and uses Crowding

distance to compare undominated solutions with each other,

prioritizing the diversity of the solutions. MOMGRASP

executes a single-state GRASP algorithm as an optimizer that

uses operators that integrate specific knowledge of the

problem (memetic approach).

The proposed algorithm allows to solve MOVRPTW

problems with the objectives proposed by Baños [12] (total
travel distance and balance of distance; total travel distance

and load balance), Zhou [5] (number of vehicles, total travel

distance, travel time of the longest route, total waiting time

due to early arrivals, and total delay time due to late arrivals),

the three objectives of interest of this work (total travel time,

waiting time of customers to be attended, and balance of total

travel time between routes) or combinations of these. To

achieve this, specific operators are used to improve each of

these objectives by integrating knowledge of the problem.

A. Formal Definition of MOVRPTW

The MOVRPTW problem can be described by 3 main

matrices, namely: the adjacency matrix, the service time

matrix, and the matrix with the solution of the routes.

Bearing in mind that it seeks to serve M clients with R

vehicles, each of which performs its own route (R routes),

then the adjacency matrix is represented as � = (��,�) of size

M+1 * M+1, which stores the distances between the depot

(position 0 of the matrix in rows and columns, that is, base
index 0 of the matrix) and each customer and the distance of

all customers from each other, in where ��,� = ��,� y ��,� = 0,

which implies that the transpose of the matrix (AT) is equal to

the original matrix A.

The service time matrix
 = (��,�) of size M x 3 (base

index 1) that represents information from each customer �� as

a triple (�� , ��� ,���) o (��,�, ��,� , ��,�) with the values of

service time (time it takes to service any vehicle to customer

i), start time of the service window for customer i and the end

time of the service window for customer i. This matrix

1336

establishes the restrictions of service for each of the clients

and must be strictly observed to obtain a feasible solution.

The solution matrix S = (��,�) of R rows (base index 1) and

variable size of columns that corresponds in each row to the

value �� , where row r of S represents the route made by

vehicle r starting and ending at the depot and going through

all your customers in order, that is, a variable length array

{customer A, customer H…, customer C}.

Given the above, the travel time of route r to customer �
(���,�) is defined as the travel time from the depot through

customers of the route to customer � with the recursive
expression of Eq. (1).

���,� = � ���,�,� + ���,�,� �� ���,�!� + ���,�"#,��,� ≤ ���,�,����,�!� + ���,�"#,��,� + ���,�,� %& '(')'%' (1)

Subject to:

 � ≥ 1 (the base index of S is one)

 ���,�!� + ���,�"#,��,� ≤ ���,�,� (the vehicle must

arrive before the time window for the customer

ends)

 ���,, = �,,��,� (Corresponds to the displacement

of vehicle r of the last customer to the depot)

The total travel time of route ((����) is defined as the

travel time from the depot, passing through all its clients and

returning to the depot, plus the service time of each client in

the route, plus the vehicle waiting time (�-�,�) when it reaches

each customer before the start of the service window, which

corresponds to: ���� = ���,.� + ���,/� ,,.

The route vehicle waiting time (() for a customer (�) is

defined as the time a vehicle must wait to serve a customer

when it arrives before the service start window, which is

formally expressed in the Eq. (2).

�-�,� = � 0 �� ���,�!� + ���,�"#,��,� > ���,�,����,�,� − (���,�!� + ���,�"#,��,�) %& '(')'%' (2)

The version of MOVRPTW that is sought to be solved in

this work, seeks the optimization (minimization) of three

objectives (total travel time, waiting time of customers to be

attended, and balance of total travel time between routes).

That is, 23435367 8 = 98:, 8;, 8<=, where 8: corresponds

to the first objective to be minimized, which corresponds to
the total travel time of all routes (vehicles) to their clients as

expressed in Eq. (3).

 �� = ∑ (����)?�@� (3)

8; corresponds to the second objective to be minimized,

which corresponds to the waiting times of the clients when
being served as expressed in Eq. (4).

 �� = ∑ (��-�)?�@� (4)

8< corresponds to the third objective, which searches for

homogeneous routes, that is, it seeks to minimize the

difference in travel times between the routes as expressed in

Eq. (5), in which TPS corresponds to the average service time
of the routes.

�� = �
? ∑ (���� − �AB)�?�@� where CDE = �

? ∑ ����?�@� (5)

B. MOMGRASP

Fig. 1 presents the pseudocode of the MOMGRASP

algorithm. Its execution requires a problem pv (read from a

file or dataset), the objectives to be minimized (o), the initial

seed of random values (s) that ensures the repeatability of the
experiments, the maximum execution time (tm) and other

parameters that are used when the method Single State

GRASP is called. Its operation is divided into two main parts.

Fig. 1 MOMGRASP algorithm pseudo-code

The first part (lines 1 to 4) delegates to Single State GRASP

(a method detailed below) the process of construction and

improvement of solutions that make up the initial population

(p) with size Psize (parameter defined by the user). Then (line
4) is reduced based on Crowding distance to a NDsize size

(population of Nondominated solutions), a parameter that the

user also defines. In the population, each solution has defined

the routes. The values obtained for each of the objectives,

among other data are used to calculate the ranking on the

Pareto front and the Crowding distance of the solutions that

share the same Ranking.

The second part (lines 5 to 11) corresponds to an iterative

process of improvement of the solutions already built, which

is repeated if the maximum execution time (tm) defined by

the user is not reached. The cycle begins by randomly taking

a non-dominated solution from the population. It then
determines the number of routes that will be preserved intact

(amountOfRC) of this solution in the improvement process

that will be carried out using Single State GRASP. This

number is obtained (line 7) from the integer division of the

number of routes in use (NRU) in the solution and the factor

of routes to conserve (FCR, user-defined parameter), which

allows the use of prior knowledge of the solutions already

found in the iterative improvement process. Then, in line 8,

which routes are to be kept are defined and they are included

1337

in the rtp list that is then used to make a list of the clients that

have already been visited (cv) with these routes (line 9). With

the selected solution, the routes to keep rtp from this solution

and the clients already visited by these cv routes, Single State

GRASP is executed seeking to obtain a better solution by

modifying the other routes that were not marked and visiting

the clients that were not marked, which causes solutions to be

exploited in different regions of the search space (line 10). If

the solution obtained is not dominated by some solution in the

population, it is included within it.

C. Single State GRASP method

Fig. 2 shows the general pseudo-code of the Single State

GRASP method. In line 1 is the construction of the initial

solution (best solution, bestSol). This construction is carried

out by choosing one of two initialization methods that are

explained later in section D. Choosing the first method of

initialization is done based on a percentage (parameter pl) that

corresponds to a parameter defined by the user. In

initialization regardless of method, the rls parameter that
corresponds to the restricted list size is used when creating a

solution with classic GRASP metaheuristics. If Single State

GRASP receives a solution (sol other than null), it does not

perform the initialization process and takes that solution as a

starting point.

A check is carried out in line 2 that the initial solution is

valid (if it was started from an existing solution in the

population, the validation is not carried out since the solutions

are always built in the space of feasible solutions). This means

that it complies with the restrictions of the problem such as

capacity per route, customer service times (time windows),

the arrival of vehicles at the depot within the stipulated times,
that all customers are served and the other restrictions

inherent to the VRPTW problem. If an initial invalid solution

is found, null is returned.

Between lines 3 and 8 the optimization cycle is carried out,

which is executed until a maximum number of optimization

iterations (mnoi) is reached. In line 5, a copy of the best

current solution (bestSol) is made in a variable called

currentSol. This variable goes to the local optimization

process in line 5, which is modified a specific number of times

(om parameter). This process is explained in more detail later.

In line 6, if the current solution dominates the best solution, it
replaces the best one in such a way that this new solution is

the one to which optimization is applied in the next iteration.

Otherwise, the one that was already the best solution is left. If

the algorithm's execution time (from the start of

MOMGRASP) exceeds the maximum execution time defined

by the user (line 7), the cycle is broken to exit from Single

State GRASP method and return the best solution found (line

9) to the MOMGRASP method.

Fig. 3 shows the pseudocode of the Single State GRASP

local optimization method (Local Optimizer). This method

receives a solution from Single State GRASP and assumes
that it is the best solution (bestSol) from the input parameter.

In the loop of lines 1 to 7, an optimization operation is

executed and if the solution obtained is better, it replaces it to

make the next cycle of improvement on this one. Otherwise,

the one that is currently considered the best is continued (line

5). If the execution time of the algorithm (from the start of

MOMGRASP) exceeds the maximum execution time defined

by the user (line 6), the cycle is broken to exit from Local

Optimizer method and return the best solution (line 8) found

to the Single State GRASP method.

Fig. 2 Single State GRASP method pseudo-code

Fig. 3 Local Optimizer method pseudo-code used by Single State GRASP

The Local Optimizer is configured to use the operators of

the state of the art algorithm LSMOVRPTW (Local Search-

Based Multiobjective Optimization Algorithm for
Multiobjective Vehicle Routing Problem with Time Windows)

[5]. If the parameter oc (operators configuration) is equal to 2

(line 3), or use the operators of the state of the art algorithm

MMOEASA (a multi-start multi-objective evolutionary

algorithm with simulated annealing) [12] If the parameter oc

is equal to 3 (line 4), or use the operators presented later in

section E which are defined for the 3 objectives of interest in

this work (line 2). Existing operators and new ones include

specific knowledge of the problem (memetic approach).

1338

D. Initializing a Solution

Considering that most of the state-of-the-art articles

express that the creation of the initial solutions should be done

based on the early attention of the clients who have a closer

start window. In Single State GRASP (line 1, Initialize Routes
method), this approach is adapted to create two initialization

methods. The first initialization that is executed with a

probability pl, seeks to build routes sequentially and has the

following steps:

1. Customers are sorted in a list by their start time in the

service window.

2. The depot at the beginning and at the end is added to all

routes. The first customer from the list built-in step 1 is

added to the first route, and that customer is deleted

from that list.

3. The last customer of the current route is taken (route 1
at the beginning). An order is made of the customers

that remain to be attended (list in step 1) by their

proximity in travel time to this last customer, that is, the

distance to the customer plus the waiting time to serve

them, from the list a customer is taken by raising who

is in the first positions based on the parameter rls (size

of the restricted list). If that customer can be added to

the route complying with the restrictions, it is added

and removed from the list in step 1. Now this client (last

of the current route) is taken, and the same process is

applied again until no more clients can be added to the

route current.
4. Step 3 is repeated with the following routes (2, 3 and so

on).

5. The attention of all the clients to the problem is verified

to make sure to deliver a feasible solution.

In the second initialization that is executed with a

probability 1-pl, it is sought to assign clients to the routes

where the last client is closest and is carried out with the

following steps:

1. Customers are sorted in a list by their start time in the

service window.

2. The depot at the beginning and at the end is added to all
routes. The first customer from the list built in step 1 is

added to the first route and that customer is deleted

from that list.

3. Take the next customer on the list and create a list L1

of how close this customer is to the last customer on

each route (at first it is compared against the first

customer on route 1 and for the other routes with the

depot because no clients have been assigned). From this

L1 list, a route from the closest ones is randomly chosen

(based on the restricted list size parameter, rls) and the

client is assigned to that route if they comply with the

restrictions, if not, the process is repeated.
4. Step 3 is repeated with the remaining clients (3, 4, and

so on).

5. The attention of all the clients of the problem is verified,

to make sure to deliver a feasible solution.

E. Operators

The operators of the algorithm proposed in this research are

three (3), namely:

 Operator 1: Takes a random route and from this a
random client takes afterwards it evaluates different

positions of other routes to relocate it to the position

where it achieves the best fitness of the objective to be

optimized.

 Operator 2: Takes a specific number of clients from a

route chosen at random and proceeds to relocate them

to the best positions on other routes, bearing in mind

that one of the three objectives to be optimized can be

improved.

 Operator 3: Takes a sequence of a random number of

clients, from a position of a client chosen at random,

from a route also selected at random, and proceeds to
test the insertion of this ordered sequence of clients in

another route. The Insertion must preserve order and

the location will be where one of the three objectives

can be minimized to the greatest extent.

F. Experimental setup

The proposed algorithm was evaluated and compared with

two state-of-the-art algorithms, LSMOVRPTW [5] and

MMOEASA 14], with datasets that the authors of these
algorithms used to evaluate their proposals using four test

scenarios (A, B, C, and D). The measure used to evaluate the

quality of the results obtained was Hypervolume (higher

values are better), and it was obtained as the average of 31

executions (repetitions) of each algorithm in each dataset

(problem) using different seeds of random numbers to thereby

generate different initial solutions.

1) Test problems (datasets): For this work, the problems

proposed in [29] (available at https://github.com/psxjpc) were

selected for the comparison of Population GRASP against

LSMOVRPTW. These problems are organized into three

groups by the number of clients: 50, 150, and 250.

The problems proposed by Solomon [30] (available at

http://w.cba.neu.edu/~msolomon/problems.htm) were also

used, which are divided into 6 categories, random R1 (12 in

total) and R2 (11 in total), grouped C1 (9 in total) and C2 (8

in total) and semi-grouped RC1 (8 in total) and RC2 (8 in total)
that give a total of 56 instances. These were used for the

evaluation of the proposed algorithm versus the MMOEASA

and LSMOVRPTW algorithms.

2) Optimum values for test problems: Considering that

the datasets reported in the literature do not have the optimal

reference values for the objectives (maximum and minimum),

it was necessary to calculate these. To achieve this, the three

algorithms (MOMGRASP, LSMOVRPTW and MMOEASA)

were executed 30 times each for 100 seconds. All the initial

and final solutions of the same problem (dataset) were

organized in two files. The non-dominated solutions (Pareto

front) were selected from the second file. Then, for each

objective, the arithmetic mean (F̅) and the standard deviation

(ℴ) of the values of the objectives were calculated both for

the solutions resulting from the initialization process (to

calculate the maximums), and for the non-dominated

solutions (for calculate the minimums). The maximum values

of the objectives were calculated as follows: max = F̅ +(3.72 ∗ ℴ), while the minimum values were calculated as

follows: min = F̅ − (3.72 ∗ ℴ). The 3.72 makes it possible
to have a virtually 100% probability of taking all the data

based on a normal distribution of the data.

1339

3) Test scenarios: The proposed algorithm
(MOMGRASP) was evaluated in four (4) scenarios, namely:

A - against LSMOVRPTW algorithm over 5 objectives

(number of vehicles, total travel distance, travel time of the

longest route, total waiting time due to early arrivals, and total

delay time due to late arrivals) and using the operators of

LSMOVRPTW for a fair comparison; B – against

MMOEASA algorithm over 2 objectives (total travel distance

and balance of distance between routes - case 1) and using the

MMOEASA operators for a fair comparison; C - against

MMOEASA algorithm over 2 objectives (total travel distance
and balance of workload - case 2) and using the MMOEASA

operators; D - against LSMOVRPTW and MMOEASA

algorithms over 3 objectives (total travel time, waiting time of

customers to be attended, and balance of total travel time

between routes) and using the MOMGRASP operators in all

algorithms for a fair comparison.

4) Software for experimentation: Considering the large

amount of time it takes to execute the experiments

(approximately 28 days on a single computer), a task

distribution scheme was implemented with a server that

deploys a web service that allows assigning MOVRPTW
optimization tasks to customer computers and another web

service to record the results reported by those clients. The

client computers execute an optimization algorithm on a

dataset as defined in the task, and when it finishes it requests

the results record and if there are still tasks to be executed on

the server it takes one and solves it. On the server computer,

the tasks that are expected to be developed are configured,

storing them in the database, and then when the client

computers request tasks, the server delivers them, marking

them so as not to assign them later to other client computers.

Then, when a client computer finishes the task, it registers in
the database through the other web service. With the above,

the database has at the end, the record of the results of all the

tasks, tasks that include the algorithm to be executed, the

dataset or specific problem to be solved, the objectives to be

optimized, the specific parameters with which the algorithm

is executed, the value of the hypervolume (HV) and the

solutions of the Pareto front. The client computers were a total

of 18 computers with an AMD A10 PRO-7800B R/ processor,

12 Compute Cores C + 8G 3.50GHz and 8 GB RAM.

5) Parameter tuning: In the proposed algorithm 3

parameters were tuned, the percentage of use of the first

initialization method (probability pl), the restricted list size
(rls) and the factor of routes that are preserved (FCR) for the

second cycle of improvement. To tune these parameters,

Covering Arrays (CAs) were used, avoiding exhaustive tests,

and thus reducing the parameter tuning time. This fine-tuning

method has been used with success in different previous

works [31], [32]. CA was defined as strength 2 and with an

alphabet of 4 for each parameter. For the first parameter, the

values 0.3, 0.4, 0.5, 0.6; for the second parameter 3, 4, 5, 6

and for the third parameter the values 1.42, 1.66, 2, 2.5. The

exhaustive tests that were going to be 64 (4 * 4 * 4) trials were

reduced to 17. In addition, only 6 datasets were used (reducing
the possible overfitting of the results), 2 for each category and

the processing was parallelized in the 18 client computers.

Table I shows the parameters used for each operator’s

configuration and experimentation scenarios.

III. RESULTS AND DISCUSSION

Table II shows the values obtained for the average

hypervolume for the two algorithms (MOMGRASP and

LSMOVRPTW) on test scenario A. In this scenario, the

MOMGRASP algorithm had better (higher) hypervolume

than LSMOVRPTW in 35 datasets out of the 45 (77.8%).

MOMGRASP had better results in all class of datasets (50
clients, 150 clients and 250 clients), winning roughly in 12

out of 15 of each (approximately in 80% of each class).

Friedman nonparametric test reports that MOMGRASP

algorithm is better than LSMOVRPTW with a p-value of

0.00019 (<0.05) and a Friedman statistic of 13.88888.

TABLE I
PARAMETERS USED FOR EXPERIMENTS

Objectives pl rls FCR

5 objectives of LSMOVRPTW 0,3 5 0,602

2 objectives of MMOEASA - case 1 0,6 3 0,602

2 objectives of MMOEASA - case 2 0,6 3 0,602

3 objectives of MOMGRASP 0,6 3 0,602

TABLE II

GENERAL RESULTS FOR MOMGRASP, LSMOVRPTW AND MMOEASA
IN THREE SCENARIOS

Test

Scenario
Measure

Populational

GRASP
LSMOVRPTW MMOEASA

A

Avg.
HV

0.195806 0.154911
-

Best 50 11 4 -
Best

150
12 3

-

Best
250

12 3
-

Best 35 10 -

B

Avg.
HV

0.814427 - 0.807543

Best C 14 - 3
Best R 12 - 11

Best
RC

3 - 13

Best 29 - 27

C

Avg.
HV

0.729781 0.763323

Best C 1 - 16
Best R 7 - 16

Best
RC

4 - 12

Best 12 - 44

Table II also shows the obtained average hypervolume

values for MOMGRASP and MMOEASA algorithms on test

scenario B. For this case, the MOMGRASP algorithm had

higher hypervolume than MMOEASA in only 29 instances of

the 56 (51.8%). MOMGRASP obtains better results in

instances C (grouped type and easy to solve) and in instances
R (random type and more difficult to solve), where it was

better in 12 of 23 (52.2%), but the results are poor in instances

RC (semi-grouped type). The Friedman nonparametric test

reports that there is no significant difference in mean values

(p-value of 0.78927) of this scenario.

Table II also shows the values obtained for average

hypervolume for MOMGRASP and MMOEASA algorithms

on test scenario C. For this case, the MMOEASA technique

1340

had higher hypervolume than MOMGRASP in 44 datasets of

the 56 (78.6%) and in all dataset types (random, grouped, and

semi-grouped) it was better in 12 datasets or more. The

Friedman nonparametric test reports that MMOEASA is

better than MOMGRASP with a p-value of 1.901E-5 (<0.05)

and a Friedman statistic of 18.28571.

Table III shows the mean hypervolume values for the three

algorithms on test scenario D. In each row, the highest value

for the respective dataset (problem) is presented with an

asterisk. In this case, the MOMGRASP technique was the best

technique with the highest hypervolume in 41 datasets of the
56 (73.2%), and in problems R (random type and with greater

difficulty to solve), it was better in 21 of 23 (91.3%). In the

second place, MMOEASA was found with the highest

hypervolume in 12 of the 56 problems (21.4%), and in type R

problems it obtained 2 hypervolume values that were better

(8.7%). Finally, the algorithm with the lowest hypervolume

value was LSMOVRPTW, winning in 3 of the 56 datasets

(5.4%) and in none of the R-type datasets.

In addition to this, it is evident that the datasets for which

LSMOVRPTW or MMOEASA wins are mostly grouped in

category C (Clustered Clients) - with 6 cases for MMOEASA
and none for LSMOVRPTW - and RC (Semi Clustered

Clients) - with 3 cases in which MMOEASA wins and 3 in

which LSMOVRPTW wins. These results may be due to the

simpler structure of LSMOVRPTW and MMOEASA that

allows them to create and evaluate more solutions

simultaneously than MOMGRASP, which helps them when

the problem is simpler to resolve. However, the extra time it

takes for MOMGRASP to search different regions of the

solution space allows it to get better results on the most

difficult category R problems.

The Friedman nonparametric test reports that the results of
MOMGRASP come in first in the ranking, followed by

MMOEASA and LSMOVRPTW with a p-value of 1.979E-14

(<0.05) and a Friedman statistic of 63.107. The Wilcoxon

signed test shows that the results of MOMGRASP are

statistically better than those obtained by MMOEASA and

LSMOVRPTW, and the results obtained by MMOEASA are

better than those obtained by LSMOVRPTW.

Based on the results presented in the previous tables, it is

evident that the Population GRASP algorithm is, on average,

better at solving MOVRPTW problems than the

LSMOVRPTW and MMOEASA algorithms by obtaining

better hypervolume values in 3 of the four evaluated scenarios.
It is important to note that the results were better (statistically

speaking) in 2 of the 3 scenarios evaluated.

TABLE III

MEAN HYPERVOLUME FOR GRASP, LSMOVRPTW AND MMOEASA WITH

3 OBJECTIVES (TEST SCENARIO D)

Dataset
Mean hypervolume

Populational GRASP LSMOVRPTW MMOEASA

c101 0.528260 0.395171 0.572061 *
c102 0.600100 * 0.379695 0.564227
c103 0.562528 * 0.424531 0.486334
c104 0.655225 * 0.463461 0.509355
c105 0.519515 * 0.414634 0.489361
c106 0.522354 * 0.345378 0.465299
c107 0.456147 0.354747 0.464556 *

c108 0.499508 * 0.378500 0.422958
c109 0.516369 * 0.413881 0.443786
c201 0.619604 0.456444 0.707160 *

c202 0.583739 * 0.570456 0.577368

c203 0.600100 * 0.544819 0.539503
c204 0.597830 * 0.494517 0.442941
c205 0.618218 0.506289 0.689901 *
c206 0.606931 0.516212 0.658527 *
c207 0.607466 * 0.518960 0.592833
c208 0.616000 0.474917 0.645634 *
r101 0.566541 0.258998 0.580007 *
r102 0.548540 * 0.173072 0.327957

r103 0.515323 * 0.182282 0.326287
r104 0.520792 * 0.184636 0.338129
r105 0.575079 0.465485 0.613484 *
r106 0.587514 * 0.337585 0.417290
r107 0.661440 * 0.376360 0.487487
r108 0.680890 * 0.390823 0.513461
r109 0.754385 * 0.600738 0.728779
r110 0.740928 * 0.534670 0.588620

r111 0.538709 * 0.278150 0.513030
r112 0.829284 * 0.536445 0.570785
r201 0.633107 * 0.534328 0.435269
r202 0.633651 * 0.492317 0.507840
r203 0.592544 * 0.475165 0.475679
r204 0.562594 * 0.288127 0.419086
r205 0.630430 * 0.499747 0.619663
r206 0.643737 * 0.537211 0.552724
r207 0.625506 * 0.497641 0.556514

r208 0.598985 * 0.334917 0.449362
r209 0.643405 * 0.491637 0.565669
r210 0.596368 * 0.328392 0.463461
r211 0.604551 * 0.546226 0.567945
rc101 0.587630 0.482087 0.634470 *
rc102 0.573753 * 0.346066 0.433272
rc103 0.661290 * 0.411882 0.526581
rc104 0.522674 * 0.271624 0.518995

rc105 0.496100 * 0.287144 0.262144
rc106 0.703848 0.583576 0.728921 *
rc107 0.709239 * 0.521584 0.545812
rc108 0.590758 0.405941 0.591275 *
rc201 0.562897 0.609762 * 0.477835
rc202 0.596940 * 0.592544 0.469020
rc203 0.558211 * 0.488075 0.470694
rc204 0.545555 * 0.389162 0.414218

rc205 0.512501 0.521544 * 0.347995
rc206 0.599962 0.523235 0.609238 *
rc207 0.619014 0.625470 * 0.524144
rc208 0.595777 * 0.579961 0.550126

Avg. HV 0.596970 * 0.439950 0.517769
Best R 21 0 2
Best 41 3 12

IV. CONCLUSION

The proposed way of adapting the original version of

GRASP to solve a problem with multi or many objectives

using specific knowledge of the problem (memetic approach)

- in this case, MOVRPTW - can be used to convert other

single objective metaheuristics and use them to solve different

problems from a multiobjective memetic approach.

The proposed multiobjective memetic adaptation of
GRASP is a good option for solving MOVRPTW problems

and obtaining competitive or better results than those reported

in the state of the art for LSMOVRPTW and MMOEASA.

The Friedman nonparametric test shows with 95% confidence

that MOMGRASP obtained better results in two (2) out of

four (4) test scenarios, similar results to MMOEASA in one

(1) test scenario and worse results in another scenario against

MMOEASA. The experiments showed that MOMGRASP

1341

beat LSMOVRPTW and that it overwhelmingly beat both

algorithms in its own experimentation scenario (three

objectives) of initial interest of the work.

As future work, it is expected to study the behavior of the

proposed algorithm by including an adaptive parameter that

defines the percentage of times that an operator should be

used in a specific problem, seeking to use more times the

operator that makes the greatest improvements to the

solutions. The results obtained are expected to be transferred

to a company with a MOVPRTW problem in Colombia. It is

also expected to compare the result of the work carried out
with the most recent publications in the field, for example,

against the use of specific variation operators in NSGA-II and

the hybrid genetic algorithm of two phases (ruin and

recreation).

ACKNOWLEDGMENTS

The Universidad del Cauca partially funded this work. The

authors thank Colin McLachlan for translating this document.

REFERENCES

[1] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan,

“Rich vehicle routing problem: Survey,” ACM Comput. Surv., vol. 47,

no. 2, pp. 1–28, 2014, doi: 10.1145/2666003.

[2] A. Dixit, A. Mishra, and A. Shukla, “Vehicle routing problem with

time windows using meta-heuristic algorithms: A survey,” in

Advances in Intelligent Systems and Computing, 2019, vol. 741, pp.

539–546, doi: 10.1007/978-981-13-0761-4_52.

[3] S. Ben Hamida, R. Gorsane, and K. Gorsan Mestiri, “Towards a better

understanding of genetic operators for ordering optimization:

Application to the capacitated vehicle routing problem,” in 15th

International Conference on Software Technologies, ICSOFT 2020,

2020, pp. 461–469.

[4] R. S. Kumar, K. Kondapaneni, V. Dixit, A. Goswami, L. S. Thakur,

and M. K. Tiwari, “Multi-objective modeling of production and

pollution routing problem with time window: A self-learning particle

swarm optimization approach,” Comput. Ind. Eng., vol. 99, pp. 29–40,

2016, doi: 10.1016/j.cie.2015.07.003.

[5] Y. Zhou and J. Wang, “A Local Search-Based Multiobjective

Optimization Algorithm for Multiobjective Vehicle Routing Problem

with Time Windows,” IEEE Syst. J., vol. 9, no. 3, pp. 1100–1113, 2015,

doi: 10.1109/JSYST.2014.2300201.

[6] H. Yousefi, R. Tavakkoli-Moghaddam, M. Taheri Bavil Oliaei, M.

Mohammadi, and A. Mozaffari, “Solving a bi-objective vehicle

routing problem under uncertainty by a revised multichoice goal

programming approach,” Int. J. Ind. Eng. Comput., vol. 8, no. 3, pp.

283–302, 2017, doi: 10.5267/j.ijiec.2017.1.003.

[7] E. T. Yassen, M. Ayob, M. Z. A. Nazri, and N. R. Sabar, “An adaptive

hybrid algorithm for vehicle routing problems with time windows,”

Comput. Ind. Eng., vol. 113, pp. 382–391, 2017, doi:

10.1016/j.cie.2017.09.034.

[8] V. F. Yu, T. Iswari, N. M. E. Normasari, A. M. S. Asih, and H. Ting,

“Simulated annealing with restart strategy for the blood pickup routing

problem,” in IOP Conference Series: Materials Science and

Engineering, 2018, vol. 337, no. 1, doi: 10.1088/1757-

899X/337/1/012007.

[9] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y. Zhou, “A Hybrid

Multiobjective Memetic Algorithm for Multiobjective Periodic

Vehicle Routing Problem with Time Windows,” IEEE Trans. Syst.

Man, Cybern. Syst., vol. 50, no. 11, pp. 4732–4745, 2020, doi:

10.1109/TSMC.2018.2861879.

[10] A. Agárdi, L. Kovács, and T. Bányai, “Optimization of multi-depot

periodic vehicle routing problem with time window,” Acad. J. Manuf.

Eng., vol. 17, no. 4, pp. 96–108, 2019.

[11] M. Gmira, M. Gendreau, A. Lodi, and J.-Y. Potvin, “Tabu search for

the time-dependent vehicle routing problem with time windows on a

road network,” Eur. J. Oper. Res., vol. 288, no. 1, pp. 129–140, 2021,

doi: https://doi.org/10.1016/j.ejor.2020.05.041.

[12] R. Baños, J. Ortega, C. Gil, A. L. Márquez, and F. De Toro, “A hybrid

meta-heuristic for multi-objective Vehicle Routing Problems with

Time Windows,” Comput. Ind. Eng., vol. 65, no. 2, pp. 286–296, 2013,

doi: 10.1016/j.cie.2013.01.007.

[13] A. B. Pratiwi, A. Pratama, I. Sa’diyah, and H. Suprajitno, “Vehicle

routing problem with time windows using natural inspired algorithms,”

in Journal of Physics: Conference Series, 2018, vol. 974, no. 1, doi:

10.1088/1742-6596/974/1/012025.

[14] J. Chen and J. Shi, “A multi-compartment vehicle routing problem

with time windows for urban distribution – A comparison study on

particle swarm optimization algorithms,” Comput. Ind. Eng., vol. 133,

pp. 95–106, 2019, doi: 10.1016/j.cie.2019.05.008.

[15] N. Rezaei, S. Ebrahimnejad, A. Moosavi, and A. Nikfarjam, “A green

vehicle routing problem with time windows considering the

heterogeneous fleet of vehicles: Two metaheuristic algorithms,” Eur.

J. Ind. Eng., vol. 13, no. 4, pp. 507–535, 2019, doi:

10.1504/EJIE.2019.100919.

[16] L. Deng and J. Zhang, “A Hybrid Ant Colony Optimization for Bi-

Objective VRP with Time Windows,” Complex Syst. Complex. Sci.,

vol. 17, no. 4, pp. 73–84, 2020, doi: 10.13306/j.1672-

3813.2020.04.009.

[17] M. Song, J. Li, Y. Han, Y. Han, L. Liu, and Q. Sun, “Metaheuristics

for solving the vehicle routing problem with the time windows and

energy consumption in cold chain logistics,” Appl. Soft Comput., vol.

95, p. 106561, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106561.

[18] G. Srivastava, A. Singh, and R. Mallipeddi, “NSGA-II with objective-

specific variation operators for multiobjective vehicle routing problem

with time windows,” Expert Syst. Appl., vol. 176, p. 114779, 2021, doi:

https://doi.org/10.1016/j.eswa.2021.114779.

[19] T. S. Khoo and B. B. Mohammad, “The parallelization of a two-phase

distributed hybrid ruin-and-recreate genetic algorithm for solving

multi-objective vehicle routing problem with time windows,” Expert

Syst. Appl., vol. 168, p. 114408, 2021, doi:

https://doi.org/10.1016/j.eswa.2020.114408.

[20] H. Zhang, Q. Zhang, L. Ma, Z. Zhang, and Y. Liu, “A hybrid ant

colony optimization algorithm for a multi-objective vehicle routing

problem with flexible time windows,” Inf. Sci. (Ny)., vol. 490, pp.

166–190, 2019, doi: https://doi.org/10.1016/j.ins.2019.03.070.

[21] J. C. Molina, J. L. Salmeron, and I. Eguia, “An ACS-based memetic

algorithm for the heterogeneous vehicle routing problem with time

windows,” Expert Syst. Appl., vol. 157, p. 113379, 2020, doi:

https://doi.org/10.1016/j.eswa.2020.113379.

[22] A. K. Ariyani, W. F. Mahmudy, and Y. P. Anggodo, “Hybrid genetic

algorithms and simulated annealing for multi-trip vehicle routing

problem with time windows,” Int. J. Electr. Comput. Eng., vol. 8, no.

6, pp. 4713–4723, 2018, doi: 10.11591/ijece.v8i6.pp.4713-4723.

[23] J. Euchi, S. Zidi, and L. Laouamer, “A Hybrid Approach to Solve the

Vehicle Routing Problem with Time Windows and Synchronized

Visits In-Home Health Care,” Arab. J. Sci. Eng., vol. 45, no. 12, pp.

10637–10652, 2020, doi: 10.1007/s13369-020-04828-5.

[24] P. Jiang, J. Men, H. Xu, S. Zheng, Y. Kong, and L. Zhang, “A Variable

Neighborhood Search-Based Hybrid Multiobjective Evolutionary

Algorithm for HazMat Heterogeneous Vehicle Routing Problem with

Time Windows,” IEEE Syst. J., vol. 14, no. 3, pp. 4344–4355, 2020,

doi: 10.1109/JSYST.2020.2966788.

[25] M. Liu, Y. Shen, Q. Zhao, and Y. Shi, “A Hybrid BSO-ACS Algorithm

for Vehicle Routing Problem with Time Windows on Road Networks,”

in 2020 IEEE Congress on Evolutionary Computation (CEC), 2020,

pp. 1–8, doi: 10.1109/CEC48606.2020.9185868.

[26] Y. Shen, M. Liu, J. Yang, Y. Shi, and M. Middendorf, “A hybrid

swarm intelligence algorithm for vehicle routing problem with time

windows,” IEEE Access, vol. 8, pp. 93882–93893, 2020, doi:

10.1109/ACCESS.2020.2984660.

[27] A. Pessoa, R. Sadykov, and E. Uchoa, “Enhanced Branch-Cut-and-

Price algorithm for heterogeneous fleet vehicle routing problems,” Eur.

J. Oper. Res., vol. 270, no. 2, pp. 530–543, 2018, doi:

https://doi.org/10.1016/j.ejor.2018.04.009.

[28] R. F. Fachini and V. A. Armentano, “Logic-based Benders

decomposition for the heterogeneous fixed fleet vehicle routing

problem with time windows,” Comput. Ind. Eng., vol. 148, p. 106641,

2020, doi: https://doi.org/10.1016/j.cie.2020.106641.

[29] J. Castro-Gutierrez, D. Landa-Silva, and J. Moreno Pérez, “Nature of

real-world multi-objective vehicle routing with evolutionary

algorithms,” in Conference Proceedings - IEEE International

Conference on Systems, Man and Cybernetics, 2011, pp. 257–264, doi:

10.1109/ICSMC.2011.6083675.

[30] M. M. Solomon, “Algorithms for the Vehicle Routing and Scheduling

Problems with Time Window Constraints,” Oper. Res., vol. 35, no. 2,

pp. 254–265, 1987, doi: 10.1287/opre.35.2.254.

1342

[31] C. Cobos, A. Paz, J. Luna, C. Erazo, and M. Mendoza, “A Multi-

Objective Approach for the Calibration of Microscopic Traffic Flow

Simulation Models,” IEEE Access, vol. 8, pp. 103124–103140, 2020,

doi: 10.1109/ACCESS.2020.2999081.

[32] E. Ruano-Daza, C. Cobos, J. Torres-Jimenez, M. Mendoza, and A. Paz,

“A multiobjective bilevel approach based on global-best harmony

search for defining optimal routes and frequencies for bus rapid transit

systems,” Appl. Soft Comput. J., vol. 67, pp. 567–583, Jun. 2018, doi:

10.1016/j.asoc.2018.03.026.

1343

