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Abstract— Convolutional Neural Network (CNN) usually uses a large image dataset with many parameters. Small datasets require a 

small number of parameters. Existing standard (pre-trained) models such as Alexnet, VGG, Inception, and Resnet have been tested 

with high accuracy but have many parameters. For small datasets, too many parameters become less efficient and increase computation 

costs. The high computational costs make the model unsuitable for computers with limited resources such as embedded devices and 

mobile phones. This research proposes pruning on the depth of resnet50 architecture and adds a dimensionality reduction layer after 

the pruning point. This approach does not require a complex pruning criteria algorithm, so it is easy to implement. Resnet50 was chosen 

because it is a good performance with batch normalization and skip connections. We use transfer learning for Resnet50 weight. Pruning 

is carried out at a depth of the network by cutting at the layer of the activation function. Several pruning points were selected to produce 

several models with certain parameters. The more networks layer pruned, the smaller the number of parameters produced. We add a 

layer for channel reduction after pruned network to reduce the number of feature maps before entering the fully connected (FC) layer 

as a classifier. We retrained a new network using a 2000 tobacco leaf pest dataset split into 1600 training and 400 validation images 

with 4-classes. The result shows that the accuracy could be maintained equal to the unpruned network up to 100% accuracy and 74.38% 

reduction rate for the number of parameters. A higher reduction rate of the number of parameters up to 90.62% still provides high 

accuracy of validation data around 99.3%. These prove that our proposed method effectively maintained accuracy and reduced the 

number of parameters.  

Keywords— Convolutional neural network; transfer learning; pruning; tobacco leaf pest. 

Manuscript received 2 Aug. 2021; revised 24 Sep. 2021; accepted 13 Dec. 2021. Date of publication 30 Jun. 2022. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

The agro-industry sector is still a mainstay that can support 

the economy and address the workforce in many countries. 

One of the agro-industry products is tobacco leaf. Tobacco is 

not only used in making cigarettes/cigars, but it can also be 

used as other raw materials such as perfume, biopesticides, 

and drugs. Its role as an industrial raw material demands high-

quality tobacco leaves to produce products according to the 

expected standards. Processing tobacco leaves is a process 

that requires controlled environmental conditions and takes a 

relatively long time to several months. For example, 

processing tobacco leaves for cigar material.  

Several factors can affect the quality of tobacco leaves. 
Pests and diseases can reduce the quality significantly. Leaves 

attacked by pests and diseases require to be separated from 

healthy leaves. Usually, the sorting process is done manually 

by human labor. 

Manual sorting can lead to subjective results where 

different experts can rate the same object differently. Manual 

sorting is also prone to errors due to internal and external 

human factors. Internal factors, for example, are due to fatigue 

and external factors such as environmental lighting factors. 
Therefore, this study proposes a method of automatically 

sorting/classifying tobacco plant pests using computer vision. 

Several previous studies have related pests and diseases 

and the quality of tobacco leaves. Marzan et al. [1] used a 

CNN classifier for grading tobacco leaves using segmented 

images. Harjoko et al. [2] used image preprocessing and color 

extraction for grading tobacco leaves using a threshold for the 

local color category and majority voting for the global color 

category. Guru et al. [3] detect the maturity level of tobacco 

leaves to be harvested using GLTP (Gray Level Local Texture 

Patterns). Sun et al. [4] identified tobacco leaf pests using 
multiple-attention modules and InceptionV3 transfer learning. 

Swasono et al. [5] classified tobacco leaf pests using VGG16 
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transfer learning with complete architecture or without 

pruning.  

The object of this study is pest and diseases of air-cured 

tobacco leaves that have distinctive characteristics, i.e., glassy, 

green spot, frog skin, and thrip. For example, Glassy is 

marked by a rather wide area with blackish color and vague 

boundaries. Green Spot is a greenish area on the leaves that 

vary in size from small to rather large. The Frog Skin is black 

dots at certain adjacent distances and often becomes faint 

when photographed. Thrips are white dots clustered around 

the midrib that varies in numbers. In general, the base color 
of the leaves is tawny and usually larger than attacked area, 

but even small emergence of pests and diseases attacking the 

leaves is considered unacceptable. Several traditional 

methods for enhancement, segmentation, and feature 

extraction have tried to identify pests and diseases of tobacco 

plants. For example, color extraction using RGB (red green 

blue) and HSV (hue saturation value). For texture extraction 

using GLCM (Gray Level Co-occurrence Matrices) and LBP 

(Local Binary Pattern). Those methods gave an unsatisfactory 

level of accuracy to detect all types of pest and diseases attack. 

Different sizes, colors, textures between types of disease 
make extraction difficult enough to require integrated feature 

extraction and classification methods. 

CNN has been chosen because it has many advantages over 

traditional image recognition methods. CNN, known as 

LeCun et al. [6], could train CNN to recognize handwritten 

characters. The architecture of CNN is growing to get better 

results. Some CNN architectures that are enough popular and 

widely developed are Googlenet/Inception [7] and Residual 

network [8]. We combine Resnet50 (for transfer learning and 

pruning) and use a part of the Inception module to build a 

CNN with high accuracy and reduce the number of 
parameters.  

CNN training with high depth and an enormous number of 

parameters can take a long time to several days even though 

it uses Graphics Processor Unit (GPU) with thousands of 

parallel processor cores. It will be much longer if using a 

single core or a few CPU cores. In the course of the training, 

results can be transferred to recognize other objects that are 

different. Moving the learning result is known as transfer 

learning or fine-tuning. Using transfer learning can be done 

quickly because it uses the previous training results that are 

already convergent. The previous training result is a model 

used to initialize the initial network weight to be trained. It 
only needs a little extra layer that requires to be trained to 

match the number of the classes in the new datasets that will 

make convergence is very fast. Another advantage of transfer 

learning is an easy design because it does not need to redesign 

the overall CNN architecture but with little adaptation to the 

new dataset. The accuracy of the training results follows a 

well-used architecture. 

This research proposes a classification of air-curing 

tobacco leaf pests using CNN with some modification in 

pruning and adding some layers. The used CNN architecture 

for transfer learning is the Residual network (Resnet), a state-
of-the-art CNN architecture from 2015. Resnet has proven to 

outperform several architectures from Alexnet, VGGNet, to 

Inception on ILSVRC 2015 with the Imagenet dataset. Resnet 

has several variants. Resnet50 is a variant of Resnet, which 

has 50 convolutional layers. Other variants of Resnet that are 

commonly used are Resnet101 and Resnet152, which have 

convolutional layers and a higher total number of parameters. 

Resnet50 was chosen because it was considered sufficient to 

handle the tobacco leaf pest dataset, which was far smaller 

than the Imagenet dataset having 1.2 million image data and 

1000 classes. With Resnet50 the resulting accuracy is very 

high and gives hope of CNN implementation on tobacco 

agroindustry in real terms. 

However, the number of Resnet50 parameters is still quite 

high that above 23 million parameters. With such a large 

number of parameters, it is quite difficult to implement on 
mobile devices or computers with limited resources. Some 

research on CNN pruning has been done at feature maps or 

kernel level. For example, Zou et al. [9] pruned the low 

discriminability magnitude feature map on the VGGNet 

architecture. Li et al. [10] pruned convolutional filters 

considering the importance of interactive filters based on 

instability and sensitivity. Ayinde et al. pruned redundant 

features based on the relative cosine distance in the feature 

space [11]. Yang et al. [12] pruned redundant filters based on 

regularization and removed unimportant filters or made 

values to zero and some other studies [13]–[15], [23]. 
Generally, these studies perform pruning on redundant, 

sparsity, irrelevant, or unimportant filters/channels or feature 

maps in convolutional or fully connected layers using their 

knowledge method. 

This study proposed pruning on the depth of Resnet50 

transfer learning. The depth pruning of the Resnet50 network 

is possible to conduct because the Resnet50 network has a 

deep layer with approximately 50 for the convolutional layer. 

We add a dimensionality reduction layer between the pruning 

point and the FC layer. We use a 1x1 kernel convolutional 

layer in the Inception module [7]. It means that we reduce the 
number of features entering the FC layer. Depth pruning and 

reducing the number of features will significantly decrease 

the number of parameters. It makes the cost of computation 

much lower and more efficient. In addition, the network is 

smaller, so it is more suitable for computers with limited 

resources. We retrain the pruned network using the tobacco 

leaf pest dataset. This approach proves to keep the accuracy 

as high as the unpruned network method. 

II. MATERIAL AND METHOD. 

A. Image Data Acquisition 

Image data acquisition will determine the success of 

image recognition for the next. The image captured must be 

able to represent the information contained in it. The data 

acquisition of tobacco leaf images must be made carefully. 

The intensity of room light and the angle of taking can easily 

affect the image color leaf. Some features of the tobacco leaf 

pests can be lost/not visible if data acquisition fails. Often the 

image results are too dark even though the light used is bright 

enough. The image results were often not uniform in color and 

brightness if angles and lighting were not set correctly. 
Therefore, this research tries to adjust the light intensity of 

the room and the angle of shooting to get the desired image. 

Lighting is done by using a 10Watt LED light and covered 

with a cloudy white plastic to scatter light. We expect to 

produce a more natural and gentler image using scattering 

light. Light scattering works like a softbox component in 
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photography techniques. The camera used is a Nikon series 

Coolpix S2500 with 4608x3456 pixels resolution. Fig. 1(a) 

shows the composition of the camera and equipment for data 

acquisition image and the image of the tobacco leaf on the 

curing stage, and Fig. 1(b) exemplifies some examples of 

tobacco leaf images. 

 

 
(a) 

 

 
(b) 

Fig. 1  Data acquisition: (a) the construction of camera, lights, and leaves (b) 

examples of air curing tobacco leaf images 

 

Training and validation data do not use the whole leaves 

but use 224x224 pixel sub-images containing certain pest 

diseases with 2000 data. We divide the dataset into 1600 

training data and 400 validation data. Sub-images on one leaf 

pest object are taken 9-times starting from the center of the 

object and shifting 20 pixels to the 8 positions at an angle of 

0, 45, 90, up to 315 degrees. This way has the advantage 

because the number of images generated has more variations, 

such as the data augmentation process. Augmentation data is 

important for CNN to recognize objects that change due to 
translation, rotation, etc. The examples of sub-images with 

20-pixels translations performed in 8-angle directions are 

shown in Fig. 2(a). 

The size of 224x224 pixels is to adjust the image size used 

in Resnet-50. Fig. 2(b) shows examples of four types of pests 

of diseases used in this study, those are Glassy, Green Spot, 

Frog Skin, and Thrips. Glassy is characterized by more glossy 

leaf surface features than normal leaf surfaces. Green Spot is 

shown by the characteristics of a green stripe with a certain 

shape and size. Frog Skin is shown in the presence of black 

bits of darkness that often seem a little faint. Thrips are white 

dots around the leaf bone with a random pattern. These pests 

appear after the first fermentation stage and are unseen at the 

fresh leaf and after the curing stage.  

 

 
(a) 

 
(b) 

Fig. 2  Training images: (a) data augmentation with 20-pixel translations (b) 

samples of tobacco leaf disease 

B. Pruning Method 

The proposed architectural block diagram of the training 

process is shown in Fig. 3 below. The Resnet50 Pretrained 

model has been trained with the Imagenet dataset. Resnet50 

is suitable for transfer learning for a smaller dataset (such as 

the tobacco leaf pest dataset). The pruned network acts like 

feature extraction, and we add feature downsampling for 
feature reduction and FC layer as a classifier. The training 

process for this new network using training and validation of 

the tobacco leaf pest’s dataset will produce a model that we 

can use for classification then. 
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Fig. 3  Proposed training steps 

 

The proposed pruning steps were performed by cutting the 

Resnet50 network on a particular layer. Several fundamental 

layers in Resnet50 can be selected as pruning points, namely 

convolution layers, batch normalization, and ReLU (Rectified 
Linear Unit) activation. The activation layer is selected 

because it is usually the final layer of a convolution layer unit, 

batch normalization, and activation (Fig. 4). In Resnet50 there 

are 49 activation layers with the ReLU activation function that 

are possibly chosen as pruning points. The ReLU activation 

function was signed by the number index that shows where it 

lied in the network, for example, activation_1, activation_2, 

up to activation_49. The number also shows the depth of the 

network. From the 49 pruning points, only some points were 

chosen as pruning points to accelerate training in new pruned 

networks. The training is tested at some point samples, for 
example is activation_9, activation_15, activation_24, 

activation_33, activation_42, and activation_49. Fig. 4 shows 

the number of parameters in each pruned network result for 

every pruning point index. The smaller index will prune more 

networks, and it will produce a lesser number of parameters.  

 

 

Fig. 4  Number of parameters from 49 pruning points  

The ReLU layer chosen, lied in every residual block in 
Resnet50. There are 16 residual blocks in the Resnet50 

network. Each residual block contains about 2 ReLU layers, 

3 Convolutional (Conv) layers, and 2 Batch Normalization 

(BN) layers. A residual block also has a skip connection that 

sums the input and output layer of the residual block. This 

makes the Resnet network solves the vanishing gradient 

problem on a very deep network [8]. The pruning makes the 

skip connection disconnected at that residual layer. Fig. 5(a), 

5(b), and 5(c) show the illustration of the process. 

 

 
(a) (b) (c) 

Fig. 5  The pruning illustration (a) A simplified Resnet50 architecture (b) An example of a Resnet50 residual block (c) The pruning result on a residual block 
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We simplify Resnet50 architecture in Fig. 5(a) because of 

its large size. In the real Resnet50, some residual blocks do 

not use skip-connection directly but use the Conv and BN 

layer, but we do not show them in simplified architecture.  

We take one residual block, for example, which is the third 

residual block in Resnet50 (Fig. 5(b)). The third residual 

block starts with Activation_7 and add_3 at the end. It 

consists of eight layers that are 3 Conv2D layers, 3 

BatchNorm layers, and 2 Activation layers. If we prune this 

residual block at Activation_9 layer, we will get the result that 

the residual block will be opened and become a straight layer 
(Fig 5(c)). We lost one residual block, but we still have some 

residual blocks at the previous layer. 

The pruned network needs more layers to be able to 

classify data. Usually, an FC layer adds to the end of the 

network as a classifier and makes it suitable for the number of 

classes of the new dataset. From Fig. 5(c), activation_9 is a 

ReLU layer with a flattened output size is 193600. This layer 

will be flattened before entering the FC layer and produce a 

large number of parameters because it will be multiplied with 

the output FC layer directly.  

For reducing this value, a Conv 1x1 kernel layer was added 

before the FC layer. A 1x1 Conv layer can downsampling the 

input feature map [7]. The formula to calculate the number of 

parameters in a Conv or FC layer is: 

 �� � ��1 ∗ �2 ∗ �	
 ∗ ��� ���	��_��� (1) 

For the Conv layer, k1 and k2 are the kernel size, and for 

the FC layer, these values for both were 1 due to flattening. 

For the Conv layer, Nin was the number of feature maps (FM) 

at the previous layer, but for the FC layer, Nin was the flattened 

all input FM at the previous layer. If the size of FM were large 

enough, flattening would produce a large number of 

parameters. This is why fewer 1x1 Conv filters will reduce 
the flattened feature map. For the Conv layer, Nout was the 

number of FM at the output, and for the FC layer, Nout was the 

number of the output. Nbias_ouput was the number of the bias at 

the output for both layers.  

 

 

Table I shows the model created and the number of 

parameters for 6-pruning points (Act9, Act15, Act24, Act33, 

Act42, Act49). It describes that pruning can reduce the 

number of parameters from more than 23 million to less than 

one million. This research uses two filters for downsampling 

the FM. We choose the number of filters close to the four 

classes of tobacco leaf pest. We decided 32 and 64 filters that 

considered can represent another number of filters. Thus, 

there are three types of architecture to be tested: without a 
filter, 32 filters, and 64 filters for downsampling. Table I 

shows that using 32 filters will have the least number of 

parameters, followed by 64 filters, and without the filter. After 

the filter, we add a flatten layer to change the dimension of 

the feature map to be 1x1 and the depth size according to the 

size and number of FM in the previous filter. The flatten layer 

makes sure the output is suitable for the FC layer. FC_4 was 

the fully connected layer with 4-outputs to handle 4-classes. 

III. RESULT AND DISCUSSION 

A. Training Results 

We use the Keras framework (TensorFlow as backend) 

with 30 epochs, 0.0001 for learning rate, stochastic gradient 

descent for the optimizer, and categorical cross-entropy for 

loss calculation.  

 

 

(a) 

 

(b) 

Fig. 6  The validation loss (a) and accuracy (b) using FC_4 

 

 

TABLE I 

THE THREE TYPES OF NETWORKS TESTED AND THE NUMBER OF PARAMETERS FOR EACH PRUNING POINT  

No  
Number of Filter 

for downsampling 

Flatten and 

Classifier 

Number of parameters (x106) 

Act9 Act15 Act24 Act33 Act42 Act49 

1 Pruned network - Flatten + FC_4 0.99 1.23 2.38 6.28 11.58 23.9 
2 Pruned network 32 Filters  Flatten + FC_4 0.60 0.93 2.22 6.11 11.50 23.7 
3 Pruned network 64 Filters  Flatten + FC_4 0.99 1.04 2.25 6.14 11.52 23.7 
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TABLE II 

THE RESULT OF THREE TYPES NETWORKS TESTED ON VALIDATION DATASET 

 

 

 

 

 

 

 
 

 

 

Fig. 6, 7, and 8 present the training results graph for the 

validation data on 6-pruning points. We expose only the 

validation data, not the training data, because validation data 

generally show the success of the training. Usually, using a 

training dataset will get better results than validation data 

during the training process for loss and accuracy. The network 

updates its weight based on the training dataset, not the 

validation dataset. The validation dataset is used to check if 
the training can adapt to the variation of the dataset well or 

not. 

 

  

(a) 

  

(b) 

Fig. 7  The validation loss (a) and accuracy (b) using 32-filters and FC_4 

Fig. 6, 7, and 8 show that the training process can converge. 

The loss validation value (at Fig. 6(a), 7(a), and 8(a)) 

decreases as the epoch increases. In the early epochs, the 

validation loss decreased fast, and after about the 10th epoch, 

the decrease in validation loss started to slow down and 

stabilize. Validation accuracy also increases rapidly in the 

early epoch (at Fig. 6(b), 7(b), and 8(b)). It also needs around 

the 10th epoch upwards to start to be a steady slope. Transfer 

learning makes it convergence fast for just a few epochs 

applied. 

 

  
(a) 

  
(b) 

Fig. 8 The validation loss (a) and accuracy (b) using 64-filters and FC_4 

It looks that the fluctuation value of loss and validation in 

addition to downsampling filter (32 and 64 filters) was higher 
than without downsampling filter. This is because filters make 

more layers added with random weight. It is fine, but it 

usually needs some extra epoch to update the weights and 

make it more stable. 

A more detailed comparison of loss and accuracy 

validation values can be seen in Table II. We choose 

minimum for loss value and maximum for accuracy because 

they represent the best result during training. We also show 

the reduction rate in the tables to show how many parameters 

was removed for each pruning point.  

We can see that the average value of loss validation for 

three network architectures is 75.12, 11.91, and 10.48. This 
explains that the addition of 64 filters is better than the others 

according to the average loss validation value. The average 

Pruning 

point 

Min validation loss (%) Max validation accuracy (%) Reduction rate (%) 

- 32 filters 64 filters - 32 filters 64 filters - 32 filters 64 filters 

Act9 414.16 42.91 37.61 72 83 84.75 95.89 97.49 95.87 

Act15 24.45 16.67 14.43 90.5 95.25 95.5 94.88 96.12 95.68 
Act24 6.45 4.66 4.6 98.5 99 99.3 90.06 90.76 90.62 
Act33 3.43 2.47 2.35 99.75 99.75 100 73.83 74.52 74.38 
Act42 2.05 1.93 1.33 99.75 99.75 100 51.74 52.06 51.96 
Act49 0.19 2.83 2.16 100 99 99.25 0.00 1.37 1.07 

Average 75.12 11.91 10.48 93.41 95.96 96.42    
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accuracy values are 93.41, 95.96, and 96.42, respectively. 

Also, it shows that the addition of 64 filters is better than the 

others according to the average validation accuracy value.  

We are going to see how the pruning maintains the 

accuracy. Firstly, for the addition just of FC_4 with pruning 

point at activation-24, we can see that pruning reduces the 

number of parameters up to 90.06% (from an almost not 

pruning network) can maintain accuracy up to 98.5%. For the 

addition of 32 and 64 filters, the reduction rates are 90.76% 

and 90.62%, maintaining up to 99.0 and 99.3%, respectively. 

The addition of 64 filters can maintain accuracy up to 100% 
for the reduction rate of 74.38% at the pruning point of 

activation-33. 

The best result was the network that can maintain accuracy 

up to 100% like the unpruned network. It could be reached 

using the pruning point at Act33 (activation-33) layer and 64 

filters for dimensionality reduction. In this case, the reduction 

rate was 74.38%, which means it reduced from 23.7 million 

to 6.14 million in the number of parameters (see Table I). We 

also got a higher reduction rate for some pruning points, but 

the accuracy decreases slightly (99.0% and 99.3%), for 

example, at activation-24 pruning points with 32 and 64 filters. 

IV. CONCLUSION 

The implementation of the depth pruning of Resnet50 

could work pretty well in the tobacco leaf pest dataset. The 

depth pruning often produces many feature maps at the end of 

the network. They need to be reduced to decrease the number 

of parameters. We applied a 1x1 kernel convolutional layer as 

a downsampling or dimensional reduction for the number of 

feature maps. We used the validation dataset to show the 
performance. We got the best performance as an unpruned 

network using pruning point at Activation-33 layer and 64 

filters for downsampling. At the best performance, we 

accuracy up to 100% like the unpruned network. It reduces 

the number of parameters from 23.7 million (unpruned 

network) reduced up to 6.14 million, or about a 74.38% 

reduction rate. 
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