












accuracy values are 93.41, 95.96, and 96.42, respectively. 

Also, it shows that the addition of 64 filters is better than the 

others according to the average validation accuracy value.  

We are going to see how the pruning maintains the 

accuracy. Firstly, for the addition just of FC_4 with pruning 

point at activation-24, we can see that pruning reduces the 

number of parameters up to 90.06% (from an almost not 

pruning network) can maintain accuracy up to 98.5%. For the 

addition of 32 and 64 filters, the reduction rates are 90.76% 

and 90.62%, maintaining up to 99.0 and 99.3%, respectively. 

The addition of 64 filters can maintain accuracy up to 100% 
for the reduction rate of 74.38% at the pruning point of 

activation-33. 

The best result was the network that can maintain accuracy 

up to 100% like the unpruned network. It could be reached 

using the pruning point at Act33 (activation-33) layer and 64 

filters for dimensionality reduction. In this case, the reduction 

rate was 74.38%, which means it reduced from 23.7 million 

to 6.14 million in the number of parameters (see Table I). We 

also got a higher reduction rate for some pruning points, but 

the accuracy decreases slightly (99.0% and 99.3%), for 

example, at activation-24 pruning points with 32 and 64 filters. 

IV. CONCLUSION 

The implementation of the depth pruning of Resnet50 

could work pretty well in the tobacco leaf pest dataset. The 

depth pruning often produces many feature maps at the end of 

the network. They need to be reduced to decrease the number 

of parameters. We applied a 1x1 kernel convolutional layer as 

a downsampling or dimensional reduction for the number of 

feature maps. We used the validation dataset to show the 
performance. We got the best performance as an unpruned 

network using pruning point at Activation-33 layer and 64 

filters for downsampling. At the best performance, we 

accuracy up to 100% like the unpruned network. It reduces 

the number of parameters from 23.7 million (unpruned 

network) reduced up to 6.14 million, or about a 74.38% 

reduction rate. 
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