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Abstract— Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava 

flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to 

detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a 

convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-

70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained 

convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers 

(SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The 

results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and 

learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no 

fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and 

validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-

time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.  
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I. INTRODUCTION

One of the efforts to increase food diversification is by 

developing the technology of modified cassava flour 
(MOCAF) made from cassava. MOCAF is an alternative 

cassava flour to replace wheat flour [1]. MOCAF is distinct 

from the common cassava flour, especially regarding the 

viscosity degree, gelling ability, rehydration power, and better 

solubility [2]. MOCAF is flour made from cassava that is 

fermented with microbes [3]. The use of MOCAF as an 

alternative flour to substitute wheat flour has also been proven 

to be a raw material for various food products such as cakes, 

biscuits, macaroni, noodles, bread, and analog rice [4].  

The initial processing of cassava chips strongly influences 

MOCAF products as the main ingredient of MOCAF. High-
quality cassava chips are greatly influenced by the drying 

process [5]. For this reason, it is necessary to build a system 

that can monitor and control the critical water content of 

cassava chips in real-time during the drying process to obtain 

end-products of cassava chips with optimal water content and 

can be used as high quality MOCAF raw materials.  

The drying process of foodstuffs can affect their external 

appearance in terms of texture, morphology, and color. The 

drying process also directly affects the reduction of the water 

content of foodstuffs. Tegenaw [6] proved that the drying 
process affects changes in water content, which linearly 

affects the shrinkage process of the dried material. The 

shrinkage process directly affects the physical parameters of 

the dried material, such as the area, perimeter, major and 

minor diameter, roundness, and elongation.  

Hosseinpour [7] has also proven in his research that by 

using a quadratic regression model, changes in the water 

content during the drying process have a significant effect on 

changes in the color of the dried material, such as lightness, 

redness, yellowness, browning index, hue angle, total color 

difference, and chroma. Jahromi [8] has observed a high 

correlation between color change and the water content of 
date-fruits chips during the drying process. The built model 
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shows a close relationship between color change and water 

content of date-fruits chips with a R2 value of 0.976 on the 

testing data set. Therefore, it can be concluded that the process 

of decreasing the water content of foodstuffs during the 

drying process can be identified by changes in their external 

appearance.  

Computer vision is one of the fields of artificial intelligence 

that can be applied in food drying and to measure external 

physical parameters such as texture, size, shape, and color, 

which are related to measuring product quality [9]. Computer 

vision has been proven to be successful and effective in 
detecting the water content of foodstuffs as non-invasive 

sensing by utilizing changes in the external appearance of 

foodstuffs during the drying process. Li [10] have 

successfully developed a computer vision online 

measurement to measure the surface wrinkling of shiitake 

mushroom during hot air drying. This research proved that 

morphological changes had a linear effect on the water 

content of shiitake mushrooms during the drying process. 

Hosseinpour [11] has researched computer vision to monitor 

changes in the appearance of texture on shrimp during the 

drying process. In this research, computer vision was 
combined with Radon transform, Pseudo-Fourier-Mellin 

transforms, and Fourier spectrum-based fractal dimension to 

model the appearance of shrimp texture during the drying 

process.  

The combination of air-drying and computer vision has 

been successfully applied by Raponi [12] to detect the 

moisture changes in the apple drying process. Sampson's use 

of a tray dryer with dual-view computer vision has also 

successfully implemented [13] to detect changes in external 

appearance by using the texture analysis method in the drying 

process of apple slices. Research on drying apple slices has 
also been carried out by Wang [14] and has succeeded in 

predicting changes in the volume of apple slices during the 

drying process using a combination of air-drying and 

computer vision. An automatic computer vision technology 

has also been applied for the in-line monitoring of freeze-

drying processes in real-time within research by Colucci [15]. 

Udomkun [16] has also made a model predict color changes 

in papaya fruit during the drying process to control the 

product quality using a combination of hot-air drying and 

computer vision. Computer vision is one of the best 

alternatives to detect the water content of foodstuffs during 

the drying process because it has real-time, rapid, low-cost, 
non-destructive, and precise advantages.  

An artificially intelligent system has been tested to 

effectively improve computer vision performance for 

detecting the water content of materials during the drying 

process. In a review study conducted by Chen [17], it can be 

proven that food drying to achieve optimal quality can be 

modeled and controlled with precision using artificial 

intelligence technology. Artificial intelligence can optimize 

and control the drying process and improve the quality of fried 

products, where these advantages are not found in 

conventional drying systems. Nadian [18] developed an 
intelligent integrated control on a hybrid hot-air dryer using 

computer vision to dry kiwi fruit. This intelligent system can 

significantly reduce drying load/time and balance energy 

consumption with product quality. Using a combination of 

computer vision and Bayesian extreme learning machine, Liu 

[19] has successfully predicted color changes in mushroom 

slices during the drying process.  

Artificial neural network (ANN), as one of the fields of 

science in artificial intelligence, has been proven to be 

effective for predicting the water content of materials. 

Hendrawan and Al Riza [20] have proven the effectiveness of 

the combination of ANN and computer vision in modeling 

and predicting the water content of agricultural materials. 

Hendrawan [21] has also tested the performance of computer 

vision and ANN in modeling and predicting the water content 

of cassava chips during the drying process. This combination 
of computer vision and ANN has high accuracy. The ANN 

model has been tested successfully in describing the 

relationship between image features and water content of 

cassava chips during the drying process, with an R2 value 

between the actual value and the predicted value of 0.9. 

Nadian [22] has tested the effectiveness of a continuous real-

time monitoring system using a combination of ANN and 

computer vision on hot-air drying for drying apple slices. The 

results show that the combination of ANN with computer 

vision has satisfactorily modeled and predicted the water 

content of apple slices based on color input with a correlation 
coefficient value higher than 0.92. Fabani [23] has also built 

an ANN model to predict the water content of watermelon 

rind during the drying process. Onwude [24] has successfully 

monitored the shrinkage of sweet potatoes during the drying 

process using the ANN model and computer vision. In their 

research, Taheri [25] successfully predicted any changes in 

the water content of banana slices during the drying process 

in a forced convective dryer using the ANN hybrid method. 

Rezaei's [26] research has successfully modeled the shrinkage 

of potato slices due to changes in the water content of the 

material during the drying process in thin layer drying using 
ANN. The ANN 1-3-1 structure produces high prediction 

accuracy until the R-value attained 96.87 on the testing data 

set. Khazaei [27] combined computer vision with ANN to 

model material shrinkage due to changes in the water content 

of grapes during the drying process in a thin-layer dryer. The 

resulting model has an accuracy with a mean square error 

(MSE) of 0.00003 and R2 of 0.99952 on the testing data set. 

Therefore, it can be concluded that the combination of 

computer vision supported by ANN modeling can be used to 

measure the water content of agricultural materials during the 

drying process as a non-invasive, low-cost, and precise 

system.  
However, research has never specifically predicted 

foodstuff's water content during the drying process using deep 

learning based on a convolutional neural network (CNN). 

Unlike conventional machine learning methods, CNN does 

not require feature extraction and selection processes; thus, 

this method becomes more efficient, effective, and accurate 

[28]. In the research of Koklu [29], the superiority of CNN 

compared to ANN in classifying food products was proven. 

The classification accuracy achieved by ANN is 99.87%, 

while CNN achieves 100% accuracy. Jahanbakhshi [30] has 

proven that CNN has better performance in terms of food 
product classification compared to other classifier methods 

such as k-nearest neighbor (KNN), ANN, fuzzy, support 

vector machine (SVM), and decision tree. In his research, the 

accuracy obtained by CNN is 100%. In another study, the 

CNN method was also proven effective for classifying food 
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products (cherries) with an accuracy of 99.4% [31]. Several 

CNN methods that have been widely used in the research of 

food product classification include SqueezeNet [32], AlexNet 

[33], GoogLeNet [34], and ResNet-50 [35]. In the research of 

Hendrawan [36], it was proven that pre-trained CNN using 

SqueezeNet, AlexNet, GoogLeNet, and ResNet-50 had a high 

performance for modeling and classifying the water content 

of agricultural materials with the highest accuracy value 

reaching 94.15% on the testing data set.  

This study aimed to detect the optimal water content of 

cassava chips during the drying process in a hybrid tray dryer 
and computer vision using CNN-based deep learning. This 

study used a hot air tray dryer system equipped with a real-

time computer vision system to observe changes in the water 

content of cassava chips during the drying process. This study 

used four pre-trained CNNs, namely SqueezeNet, AlexNet, 

GoogLeNet, and ResNet-50, tested in other studies [37]. CNN 

is used to classify three types of water content conditions of 

cassava chips during drying: wet, semi-dry, and optimal dry. 

II. MATERIALS AND METHODS 

The material used in this research was cassava chips made 

from cassava sweet potato harvested from agricultural land in 

the area of Malang city, East Java province, Indonesia. The 

material preparation process included washing cassava, 

peeling cassava skin, then slicing cassava into thin strips with 

a thickness of 1 mm using a mechanical slicing machine. For 

the drying process, this study used a lab-scale hot-air tray 

dryer system (shown in Fig. 1) which was equipped with a 

computer vision system in real-time to observe any changes 

in external appearances that were affected by the shrinkage of 
water content during the drying process. This dryer was also 

equipped with a blower, electrical heating element, control 

unit, digital scale with an accuracy of ±0.001 g, and a drying 

tray. 

In general, computer vision consists of digital cameras, 

lighting systems, computer hardware, and software. A digital 

camera (Logitec HD Webcam C270, Japan) was used in this 

study as a computer vision device placed at the height of 300 

mm above the surface of the cassava chips. The digital camera 

was connected via a USB port connected to a computer with 

an Intel Core i7 processor specification. The digital camera 
captured digital images of cassava chips during the drying 

process with a resolution of 1280 × 720 and then saved them 

to a computer in a BMP format. The lighting factor is also 

crucial in computer vision. The lighting system was set 

equally and distributed evenly over the entire surface of the 

cassava chips object by using two 22W lamps (EFD25N / 22 

National Corporation, Japan). The light intensity was set at 

300 lux on the surface of the cassava chips. The drying 

process was carried out at 50-70 °C. Visual Basic 6.0-based 

software was used to take images automatically and save them 

on a computer whose time interval can be set by the user as 
needed.  

Detailed explanation on Fig. 1 were as follows: (1) nine 

slices of cassava chips were placed on a tray connected to a 

digital scale to measure the initial weight of cassava chips; (2) 

cassava chips weight data was taken every 5 minutes during 

the drying process; (3) the digital camera took pictures of the 

cassava chips from the top view, along with the digital scale 

took the actual weight data of the cassava chips; (4) cassava 

chips digital image data that had been taken using a digital 

camera was then sent to a computer via a USB port 

connection; (5) CNN software in the personal computer was 

set to classify the water content category of cassava chips into 

three classes, specifically, wet (water content of 55-70% wb), 

semi-dry (20-40% wb), and optimal dry (water content of 15-

18% wb); (6) digital image data of cassava chips with water 

content less than 15% were then discarded and exempted in 

the CNN modeling process; (7) if the results of the 

classification of the water content of the cassava chips had 

reached the optimal dry condition, then the system gave an 
order to the microcontroller to turn off the dryer.  

 

 
 

Fig. 1  Modified cassava chips tray dryer using computer vision and 

convolutional neural network 

 
Fig. 2 shows the differences in external appearances on 

cassava chips at different water content conditions due to the 

drying process. On cassava chips with wet conditions, the 

surface was still smooth, and no shrinkage and diminution 

occurred; thus, the surface texture tended to look 

homogeneous and smooth. Visually, the color of cassava 

chips in wet conditions still seemed whiter. In terms of 

morphology, the level of roundness and perimeter still seemed 

round with an irregular shape. On cassava chips with semi-

dry conditions, a slight shrinkage and volume shrinkage 

began to appear due to the reduced water content of the 
material. The surface texture looked inhomogeneous and 

coarser than cassava chips in wet conditions. In semi-dry 

conditions, the color started to look yellowish, which resulted 

in an increase in the browning index, while in terms of shape, 

roundness and perimeter began to change and became 

irregular. Cassava chips in optimal-dry conditions showed 

significant changes in texture, color, and shape. The texture 

appeared coarser and inhomogeneous, the color started to 

experience browning, and the shape started to become 

irregular.  
The amount of data used in the training and validation 

process on CNN was 750, divided into 250 image data for the 
wet class, 250 for the semi-dry class, and 250 for the optimal 

dry class. The distribution for training and validation data was 

70% training data and 30% validation data which was divided 

randomly [38]. In addition to the training and validation data, 

this study also used testing data for a total of 150 image data 

which were then categorized into 50 image data for the wet 

class, 50 image data for the semi-dry class, and 50 image data 

for the optimal dry class [36] [39].  
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(b) 

 
(c) 

 

Fig. 2  The appearance of cassava chips during the drying process in 

various conditions of water content, such as (a) wet; (b) semi-dry; (c) 

optimum dryness 

 

In general, the CNN structure used in this study is shown 

in Fig. 3. The CNN architecture consists of several stages: 

image acquisition, convolutional layer, pooling layer, and 

fully connected layer. Three outputs were used at the end of 

the CNN structure to classify the water content of cassava 

chips during the drying process into the wet, semi-dry, and 

optimal dry classes. This study used four types of pre-trained 

CNN, namely SqueezeNet [40], GoogLeNet [41], ResNet-50 

[42], and AlexNet [33] provided in the Matlab R2020b 

program.  

 

 

Fig. 3  CNN structure to classify the water content of cassava chips during 

the drying process 

 

SqueezeNet is a pre-trained CNN consisting of 18 deep 

layers. The process started with resizing the image resolution 

to 227×227, followed by the initial convolutional layer and 8 

fire modules. The initial convolutional layer in this study used 

was stride [2 2] and padding [0 0 0 0], while the fire modules 

used was stride [1 1] and padding [0 0 0 0]. The process ended 

with a final convolutional layer with stride [1 1] and padding 
[0 0 0 0]. The number of filters in each fire module always 

gradually increased from the beginning to the end of the 

network. GoogLeNet is a pre-trained CNN consisting of 22 

deep layers and is a type of inception network.  

The architecture of GoogLeNet uses a 1×1 convolution 

layer in the middle and global average pooling. The process 

starts by resizing the image resolution to 224×224, followed 

by three convolutional layers. The first convolutional layer 

used stride [2 2] and padding [3 3 3 3], while the second 

convolutional layer used stride [1 1] and padding [0 0 0 0], 

and the third convolutional layer used stride [1 1] and padding 

[ 1 1 1 1]. The process continued with nine inception modules 

and ended with a fully connected layer using three outputs. 
Between the inception modules and the fully connected layer, 

GoogLeNet implemented a drop-out layer to solve the over-

fitting problem.  

ResNet-50 is a pre-trained CNN consisting of 50 deep 

layers. The main difference between the ResNet-50 method 

with other pre-trained CNNs is the repeated use of residual 

blocks throughout the entire network. The process started by 

resizing the image resolution to 224×224, which was then 

followed by a convolutional layer using stride [2 2] and 

padding [3 3 3 3]. The process was continued with four 

residual blocks using stride [1 1] and padding [0 0 0 0]. The 
process ended with a fully connected layer with three outputs.  

AlexNet is a pre-trained CNN consisting of 8 deep layers. 

The network consists of 5 convolutional layers and 3 fully 

connected layers. The activation function uses a rectified 

linear unit (ReLU). AlexNet solves the problem of over-

fitting by implementing drop-out layers. The process started 

by resizing the image resolution to 227×227, which was then 

continued with convolutional layer 1 using stride [4 4] and 

padding [0 0 0 0]. The process continued to convolutional 

layer 2 using stride [1 1] and padding [0 0 0 0]. Convolutional 

layer 3 to convolutional layer 5 used stride [1 1] and padding 
[1 1 1 1]. The process continued with three stages of fully 

connected layers which were equipped with drop-out layers. 

The last fully connected layer used three outputs.  

Settings on pre-trained CNN included random rotation min 

= 0 and max = 90 degrees; random rescaling min = 1 and max 

= 2; sequence padding value = 0; sequence padding direction 

= right; L2 Regularization = 0.00001; learn rate drop factor = 

0.1; learn rate drop period = 10; and momentum = 0.9. In the 

training process, the maximum epoch was set at 20, the mini-

batch size was 20, and the loss function used binary cross-

entropy. Sensitivity analysis was carried out by varying the 

type of optimization method (optimizer) that referred to the 
research of Manninen [43]. The optimizers used include 

stochastic gradient descent with momentum (SGDm), 

adaptive moment estimation (Adam), and root means square 

propagation (RMSProp). Sensitivity analysis was also carried 

out by setting different learning rate values, namely 0.00005 

and 0.0001. In the research of Thenmozhi and Reddy [44], it 

was shown that the learning rates of 0.0001 and 0.00005 

provided the best results to be used in the CNN training 

process.  

The training, validation, and testing processes to produce 

the CNN model were carried out by using a computer with 
specifications of Intel Core i3-4150 CPU @ 3.50GHz (4 

CPUs) 10 GB of RAM. The performance of the 24 CNN 

models that have been built was then evaluated for the level 

of validation accuracy. The model with the highest validation 

accuracy was then tested for its performance using data 
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testing. The data testing results were displayed using a 

confusion matrix [45][46]. 

III. RESULTS AND DISCUSSION 

Table 1 shows the classification results of cassava chips 

during the drying process that has been carried out by four 

CNN pre-trained methods, namely AlexNet, GoogLeNet, 

ResNet-50, and SqueezeNet. Four pre-trained CNN models 

were run on three types of optimizers (SGDm, Adam, and 

RMSProp) and two types of learning rates (0.00055 and 

0.0001). Thus, 24 experimental designs were obtained. The 

mini-batch size configuration was 20, and the maximum 

epoch was 20, resulting in a maximum iteration of 520 

iterations.  

 

TABLE I 
RESEARCH AND PARAMETERS USED IN PRE-TRAINED CNN 

Pre-trained CNN Optimizer Initial learning rate max iteration Validation Accuracy (%) Training Time (min) 

AlexNet SGDm 0.00005 520 100 32 

 Adam 0.00005 520 99.56 33 

 RMSProp 0.00005 520 100 35 

 SGDm 0.0001 520 100 42 

 Adam 0.0001 520 100 41 

 RMSProp 0.0001 520 99.11 41 

GoogLeNet SGDm 0.00005 520 99.56 88 

 Adam 0.00005 520 100 92 

 RMSProp 0.00005 520 99.56 91 

 SGDm 0.0001 520 100 81 

 Adam 0.0001 520 99.56 66 

 RMSProp 0.0001 520 100 69 

Resnet-50 SGDm 0.00005 520 100 167 

 Adam 0.00005 520 100 170 

 RMSProp 0.00005 520 100 174 

 SGDm 0.0001 520 100 173 

 Adam 0.0001 520 99.56 173 

 RMSProp 0.0001 520 99.11 181 

SquezeeNet SGDm 0.00005 520 100 36 

 Adam 0.00005 520 99.56 39 

 RMSProp 0.00005 520 99.56 49 

 SGDm 0.0001 520 99.56 35 

 Adam 0.0001 520 98.67 40 

 RMSProp 0.0001 520 99.56 72 

 

Based on the results of the 24 experimental designs, 

excellent training and validation results were obtained with a 

validation accuracy ranging from 99.11% to 100% with a 

training time range of 32 minutes to 181 minutes. The lowest 
validation accuracy (99.11%) was achieved when using 

AlexNet with the RMSProp optimizer and a learning rate of 

0.0001. From the research results, it can be seen that there are 

12 CNN models with perfect validation accuracy, namely 

100%. The best CNN models were including AlexNet (SGDm 

optimizer and learning rate 0.0005), AlexNet (RMSProp 

optimizer and learning rate 0.0005), AlexNet (SGDm 

optimizer and learning rate 0.0001), AlexNet (Adam 

optimizer and learning rate 0.0001), GoogLeNet (Adam 

optimizer and learning rate 0.0001), learning rate 0.0005), 

GoogLeNet (SGDm optimizer and learning rate 0.0001), 
GoogLeNet (RMSProp optimizer and learning rate 0.0001), 

ResNet-50 (SGDm optimizer and learning rate 0.0005), 

ResNet-50 (Adam optimizer and learning rate 0.0005), 

ResNet -50 (RMSProp optimizer and learning rate 0.0005), 

ResNet-50 (SGDm optimizer and learning rate 0.0001), and 

SqueezeNet (SGDm optimizer and learning rate 0.0005).  

Pre-trained CNN using AlexNet and ResNet-50 produced 

the most models with 100% accuracy, namely 4 CNN models 

each. However, in terms of training time, AlexNet was still 

superior to ResNet-50, GoogLeNet, and SqueezeNet, with an 

average AlexNet training time of 37 minutes, while ResNet's 

average training time was the longest at 173 minutes 

compared to AlexNet., GoogLeNet, or SqueezeNet. In 
general, the CNN GoogLeNet pre-trained model has the 

highest average validation accuracy of 99.78%, followed by 

AlexNet and ResNet-50 with an average validation accuracy 

of 99.77%, and the lowest is SqueezeNet with an average 

validation accuracy an average of 99.48%.  

The choice of the optimizer type also affects CNN's 

performance. From the analysis of the 24 CNN experimental 

designs, the SGDm optimizer has the highest performance 

with an average validation accuracy of 99.93%, followed by 

the Adam optimizer with an average validation accuracy of 

99.89%, and the last is the RMSProp optimizer with the 
average validation accuracy is 99.73%. The use of learning 

rate values also resulted in different accuracy, although not 

too significant. The learning rate of 0.00005 produced an 

average validation accuracy of 99.87%, where this accuracy 

value was higher than the learning rate of 0.0001, which 

produced an average validation accuracy of 99.85%.  

The performance of the 12 best CNN models can be seen 

in Fig. 4. Fig. 4 shows a comparison graph between accuracy 

and loss. Fig. 4 displays data on training and validation values 
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development in each iteration. Overall, the training and 

validation graphs shown in Fig. 4 shows a relatively similar 

performance pattern, e.g., there is a continuous increase in 

performance along with increasing iterations, where the 

accuracy value is increasing towards 100%, and the loss value 

is decreasing towards a value of 0. The performance increased 

very significantly at the beginning of the iteration, specifically 

in the range between iterations 1 to 10, which then the value 

increased little by little in the next iteration until it converged 

on the 100% accuracy value, and the loss value was 0 at the 

end of the iteration.  
In more detail, not all training graphs listed in Fig. 4 have 

stable training results. In Fig. 4b, Fig. 4d, and Fig. 4g, it can 

be seen that the AlexNet (RMSProp optimizer and learning 

rate 0.0005), AlexNet (Adam optimizer and learning rate 

0.0001), and GoogLeNet (RMSProp optimizer and learning 

rate 0.0001), have training performance that fluctuates 

slightly (oscillates) and is less stable. This fluctuation can be 

potentially caused by various factors, such as over-fitting 

training and validation data, insufficient datasets, noisy data, 

network structures that are too large, or batch size values that 

are too small. However, as long as this fluctuation occurred at 
the beginning of the iteration and this fluctuation did not occur 

in the other 9 best models, then this condition did not 

significantly affect the training performance and CNN 

validation for classifying the water content of cassava chips 

during the drying process. According to Takase [47], 

fluctuations in validation loss during the training process are 

normal in the machine learning field as long as the training 

pattern shows a steady increase in performance during 

iterations.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 
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(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 

Fig. 4  Training and validation: (a) AlexNet with SGDm optimizer and 

learning rate 0.00005; (b) AlexNet with RMSProp optimizer and learning 

rate 0.00005; (c) AlexNet with SGDm optimizer and learning rate 0.0001; 

(d) AlexNet with Adam optimizer and learning rate 0.0001; (e) 

GoogLeNet with Adam optimizer and learning rate 0.00005; (f) 

GoogLeNet with SGDm optimizer and learning rate 0.0001; (g) 

GoogLeNet with RMSProp optimizer and learning rate 0.0001; (h) 

ResNet-50 with SGDm optimizer and learning rate 0.00005; (i) ResNet-

50 with Adam optimizer and learning rate 0.00005; (j) ResNet-50 with 

RMSProp optimizer and learning rate 0.00005; (k) ResNet-50 with SGDm 

optimizer and learning rate 0.0001; (l) SqueezeNet with SGDm optimizer 

and learning rate 0.00005 

The next stage is to test the 12 best CNN pre-trained 

models using testing data sets. The result is shown in Fig. 5 

using a confusion matrix. The level of classification accuracy 

in each class of water content levels of cassava chips was 

described by comparing the predicted value (abscissa) and the 

actual value (ordinate). Testing data in this test was taken 

from different samples and drying times from the data used in 

the training and validation process. Although the test samples 

used were different, the results showed high accuracy in the 

12 best pre-trained CNN models. Almost all CNN models 

showed test accuracy that reached 100%, except for one CNN 
model when using GoogLeNet (SGDm optimizer and 

learning rate 0.0001).  

On the CNN model (Fig. 5f), the test accuracy for the wet 

class is 100%, the semi-dry is 96%, and the optimal dry is 

100%. Of the 50 samples of testing data that should have been 

included in the semi-dry water content category, 2 samples 

were predicted to be included in the wet water content class, 

so there was an error of 4%. This could be because the 

external appearance of cassava chips in the wet and semi-dry 

classes has similar appearances. The surface texture between 

cassava chips at wet and semi-dry water content was rather 
difficult to identify because they have a smooth surface 

texture and are bright white in color. In terms of color 

appearance, cassava chips in the semi-dry water content class 

still did not show much browning. However, this error rate 

was not too significant, as long as the CNN model could still 

perfectly identify (100%) cassava chips in the optimal dry 

water content category. Thus, the CNN GoogLeNet model 

(SGDm optimizer and learning rate 0.0001) could still be used 

and be recommended to build a hybrid hot-air tray dryer with 

computer vision for drying cassava chips as raw material for 

MOCAF.  
From the training, validation, and testing results, it can be 

concluded that the 12 best CNN models produced in this study 

can be used effectively to classify the water content of cassava 

chips during the drying process using a hybrid hot-air tray 

dryer with computer vision. However, if we examine further 

than the 12 pre-trained CNN models, even though they have 

the same high level of accuracy, AlexNet is highly 

recommended to be used as a CNN pre-trained model to 

classify the water content of cassava chips because of its 

simpler CNN structure. Therefore, the data processing time 

can be faster than other CNN pre-trained models such as 

GoogLeNet, ResNet-50, and SqueezeNet. The recommended 
AlexNet model in this study was AlexNet with an SGDm 

optimizer and a learning rate of 0.00005 for several reasons, 

namely a steady and stable training iteration process without 

any fluctuations, perfect validation accuracy of 100%, perfect 

testing accuracy of 100%, and the fastest training and 

validation process time that was 32 minutes.  

By using the best CNN model from AlexNet, a rapid, real-

time, and precise drying control system can be built. Thus, the 

quality of cassava chips as raw material for MOCAF can be 

maintained. This research can still be further developed to 

detect and classify the water content of other food products 
during the drying process to improve their quality and 

productivity. 
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Fig. 5  Confusion matrix on testing set data: (a) AlexNet with SGDm 

optimizer and learning rate 0.00005; (b) AlexNet with RMSProp 

optimizer and learning rate 0.00005; (c) AlexNet with SGDm optimizer 

and learning rate 0.0001; (d) AlexNet with Adam optimizer and learning 

rate 0.0001; (e) GoogLeNet with Adam optimizer and learning rate 

0.00005; (f) GoogLeNet with SGDm optimizer and learning rate 0.0001; 

(g) GoogLeNet with RMSProp optimizer and learning rate 0.0001; (h) 

ResNet-50 with SGDm optimizer and learning rate 0.00005; (i) ResNet-

50 with Adam optimizer and learning rate 0.00005; (j) ResNet-50 with 

RMSProp optimizer and learning rate 0.00005; (k) ResNet-50 with 

SGDm optimizer and learning rate 0.0001; (l) SqueezeNet with SGDm 

optimizer and learning rate 0.00005 

IV. CONCLUSION 

This study aims to build a hybrid hot-air tray dryer with 

computer vision for drying cassava chips as raw material for 

MOCAF. Meanwhile, the specific objective of this study is to 

detect and classify the water content of cassava chips during 

the drying process into three classes water content: in 

particular wet (water content 55-70% wb), semi-dry (20-40% 

wb), and optimal dry (water content of 15-18% wb) using 

CNN. In this study, 4 pre-trained CNNs, namely AlexNet, 

GoogLeNet, ResNet-50, and SqueezeNet, were varied with 

different optimizers (SGDm, Adam, and RMSProp) different 

learning rate values, 0.00005 and 0.0001, resulting in 24 types 
of experimental designs. The results showed 12 CNN models 

with a perfect validation accuracy of 100%. The 12 CNN 

models were then tested using data testing. The results 

showed that 11 CNN models produced testing accuracy that 

reached 100%. However, from the 11 best CNN models, 

AlexNet with SGDm optimizer and learning rate of 0.00005 

was chosen to be recommended in this study because of the 

steady and stable training iteration process without any 

fluctuations, 100% perfect validation accuracy, 100% perfect 

testing accuracy, and the fastest training and validation 

process time, which was 32 minutes. This best CNN model 

will later be used in developing a rapid, real-time, and 
accurate hybrid hot-air tray dryer with computer vision to 

maintain the quality of cassava chips as raw material for 

MOCAF.  

REFERENCES 

[1] T. Sigüenza-Andrés, C. Gallego, and M. Gómez, “Can cassava 

improve the quality of gluten free breads?,” LWT, vol. 149, p. 111923, 

Sep. 2021, doi: 10.1016/J.LWT.2021.111923. 

[2] S. A. Oyeyinka, A. A. Adeloye, O. O. Olaomo, and E. Kayitesi, "Effect 

of fermentation time on physicochemical properties of starch extracted 

from cassava root," Food Biosci., vol. 33, p. 100485, Feb. 2020, doi: 

10.1016/J.FBIO.2019.100485. 

[3] O. E. Dudu, Y. Ma, A. Adelekan, A. B. Oyedeji, S. A. Oyeyinka, and 

J. W. Ogungbemi, "Bread-making potential of heat-moisture treated 

cassava flour-additive complexes," LWT, vol. 130, Aug. 2020, doi: 

10.1016/J.LWT.2020.109477. 

[4] B. S. Adesina and O. T. Bolaji, "Effect of milling machines and sieve 

sizes on cooked cassava flour quality," Niger. Food J., vol. 31, no. 1, 

pp. 115–119, Jan. 2013, doi: 10.1016/S0189-7241(15)30065-5. 

[5] P. Pornpraipech, M. Khusakul, R. Singklin, P. Sarabhorn, and C. 

Areeprasert, "Effect of temperature and shape on drying performance 

of cassava chips," Agric. Nat. Resour., vol. 51, no. 5, pp. 402–409, Oct. 

2017, doi: 10.1016/J.ANRES.2017.12.004. 

[6] P. D. Tegenaw, P. Verboven, and M. Vanierschot, "Numerical and 

experimental study of airflow resistance across an array of sliced food 

items during drying," J. Food Eng., vol. 312, p. 110739, Jan. 2022, doi: 

10.1016/J.JFOODENG.2021.110739. 

[7] S. Hosseinpour, S. Rafiee, S. S. Mohtasebi, and M. Aghbashlo, 

"Application of computer vision technique for online monitoring of 

shrimp color changes during drying," J. Food Eng., vol. 115, no. 1, pp. 

99–114, Mar. 2013, doi: 10.1016/J.JFOODENG.2012.10.003. 

[8] M. Keramat-Jahromi, S. S. Mohtasebi, H. Mousazadeh, M. Ghasemi-

Varnamkhasti, and M. Rahimi-Movassagh, "Real-time moisture ratio 

study of drying date fruit chips based on online image attributes using 

kNN and random forest regression methods," measurement, vol. 172, 

p. 108899, Feb. 2021, doi: 10.1016/J.MEASUREMENT.2020.108899. 

[9] Y. Su, M. Zhang, and A. S. Mujumdar, "Recent developments in smart 

drying technology," Dry. Technol., vol. 33, no. 3, pp. 260–276, Feb. 

2014, doi: 10.1080/07373937.2014.985382. 

[10] X. Li, Y. Liu, Z. Gao, Y. Xie, and H. Wang, "Computer vision online 

measurement of shiitake mushroom (Lentinus edodes) surface 

wrinkling and shrinkage during hot air drying with humidity control," 

J. Food Eng., vol. 292, p. 110253, Mar. 2021, doi: 

10.1016/J.JFOODENG.2020.110253. 

[11] S. Hosseinpour, S. Rafiee, M. Aghbashlo, and S. S. Mohtasebi, "A 

novel image processing approach for in-line monitoring of visual 

texture during shrimp drying," J. Food Eng., vol. Complete, no. 143, 

pp. 154–166, 2014, doi: 10.1016/J.JFOODENG.2014.07.003. 

[12] F. Raponi, R. Moscetti, S. S. Nallan Chakravartula, M. Fidaleo, and R. 

Massantini, "Monitoring the hot-air drying process of organically 

grown apples (cv. Gala) using computer vision," Biosyst. Eng., Jul. 

2021, doi: 10.1016/J.BIOSYSTEMSENG.2021.07.005. 

[13] D. J. Sampson, Y. K. Chang, H. P. V. Rupasinghe, and Q. U. Zaman, 

"A dual-view computer-vision system for volume and image texture 

analysis in multiple apple slices drying," J. Food Eng., vol. 127, pp. 

49–57, Apr. 2014, doi: 10.1016/J.JFOODENG.2013.11.016. 

[14] D. Wang, A. Martynenko, K. Corscadden, and Q. He, "Computer 

vision for bulk volume estimation of apple slices during drying," 

DryingTechnology, vol. 35, no. 5, pp. 616–624, Apr. 2017, doi: 

10.1080/07373937.2016.1196700. 

[15] D. Colucci, L. Morra, X. Zhang, D. Fissore, and F. Lamberti, "An 

automatic computer vision pipeline for the in-line monitoring of 

freeze-drying processes," Comput. Ind., vol. 115, p. 103184, Feb. 2020, 

doi: 10.1016/J.COMPIND.2019.103184. 

[16] P. Udomkun, M. Nagle, D. Argyropoulos, A. N. Wiredu, B. 

Mahayothee, and J. Müller, "Computer vision coupled with laser 

backscattering for non-destructive colour evaluation of papaya during 

drying," J. Food Meas. Charact., vol. 11, no. 4, pp. 2142–2150, Dec. 

2017, doi: 10.1007/S11694-017-9598-Y. 

[17] J. Chen, M. Zhang, B. Xu, J. Sun, and A. S. Mujumdar, "Artificial 

intelligence assisted technologies for controlling the drying of fruits 

and vegetables using physical fields: A review," Trends Food Sci. 

Technol., vol. 105, pp. 251–260, Nov. 2020, doi: 

10.1016/J.TIFS.2020.08.015. 

[18] M. H. Nadian, M. H. Abbaspour-Fard, A. Martynenko, and M. R. 

Golzarian, "An intelligent integrated control of hybrid hot air-infrared 

2120



dryer based on fuzzy logic and computer vision system," Comput. 

Electron. Agric., vol. 137, pp. 138–149, May 2017, doi: 

10.1016/J.COMPAG.2017.04.001. 

[19] Z. L. Liu et al., "Color prediction of mushroom slices during drying 

using Bayesian extreme learning machine," Dry. Technol., vol. 38, no. 

14, pp. 1869–1881, Oct. 2019, doi: 10.1080/07373937.2019.1675077. 

[20] Y. Hendrawan and D. F. Al Riza, "Machine vision optimization using 

nature-inspired algorithms to model Sunagoke moss water status," Int. 

J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 1, pp. 45–57, Jan. 2016, doi: 

10.18517/IJASEIT.6.1.523. 

[21] Y. Hendrawan, L. C. Hawa, and R. Damayanti, "Fish swarm intelligent 

to optimize real time monitoring of chips drying using machine 

vision," IOP Conf. Ser. Earth Environ. Sci., vol. 131, p. 012020, Mar. 

2018, doi: 10.1088/1755-1315/131/1/012020. 

[22] M. H. Nadian, S. Rafiee, M. Aghbashlo, S. Hosseinpour, and S. S. 

Mohtasebi, "Continuous real-time monitoring and neural network 

modeling of apple slices color changes during hot air drying," Food 

Bioprod. Process., vol. 94, pp. 263–274, Apr. 2015, doi: 

10.1016/J.FBP.2014.03.005. 

[23] M. P. Fabani, J. P. Capossio, M. C. Román, W. Zhu, R. Rodriguez, 

and G. Mazza, "Producing non-traditional flour from watermelon rind 

pomace: Artificial neural network (ANN) modeling of the drying 

process," J. Environ. Manage., vol. 281, p. 111915, Mar. 2021, doi: 

10.1016/J.JENVMAN.2020.111915. 

[24] D. I. Onwude, N. Hashim, K. Abdan, R. Janius, and G. Chen, "The 

potential of computer vision, optical backscattering parameters and 

artificial neural network modelling in monitoring the shrinkage of 

sweet potato (Ipomoea batatas L.) during drying," J. Sci. Food Agric., 

vol. 98, no. 4, pp. 1310–1324, Mar. 2018, doi: 10.1002/JSFA.8595. 

[25] A. Taheri-Garavand, F. Karimi, M. Karimi, V. Lotfi, and G. 

Khoobbakht, "Hybrid response surface methodology-artificial neural 

network optimization of drying process of banana slices in a forced 

convective dryer," Food Sci. Technol. Int., vol. 24, no. 4, pp. 277–291, 

Jun. 2018, doi: 10.1177/1082013217747712. 

[26] S. Rezaei, N. Behroozi-Khazaei, and H. Darvishi, "Microwave power 

adjusting during potato slice drying process using machine vision," 

Comput. Electron. Agric., vol. 160, pp. 40–50, May 2019, doi: 

10.1016/J.COMPAG.2019.03.013. 

[27] N. Behroozi Khazaei, T. Tavakoli, H. Ghassemian, M. H. 

Khoshtaghaza, and A. Banakar, "Applied machine vision and artificial 

neural network for modeling and controlling of the grape drying 

process," Comput. Electron. Agric., vol. 98, pp. 205–213, Oct. 2013, 

doi: 10.1016/J.COMPAG.2013.08.010. 

[28] H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen, 

"Convolutional neural networks for medical image analysis: State-of-

the-art, comparisons, improvement and perspectives," 

Neurocomputing, vol. 444, pp. 92–110, Jul. 2021, doi: 

10.1016/J.NEUCOM.2020.04.157. 

[29] M. Koklu, I. Cinar, and Y. S. Taspinar, "Classification of rice varieties 

with deep learning methods," Comput. Electron. Agric., vol. 187, p. 

106285, Aug. 2021, doi: 10.1016/J.COMPAG.2021.106285. 

[30] A. Jahanbakhshi, M. Momeny, M. Mahmoudi, and Y. D. Zhang, 

"Classification of sour lemons based on apparent defects using 

stochastic pooling mechanism in deep convolutional neural networks," 

Sci. Hortic. (Amsterdam)., vol. 263, p. 109133, Mar. 2020, doi: 

10.1016/J.SCIENTA.2019.109133. 

[31] M. Momeny, A. Jahanbakhshi, K. Jafarnezhad, and Y. D. Zhang, 

"Accurate classification of cherry fruit using deep CNN based on 

hybrid pooling approach," Postharvest Biol. Technol., vol. 166, p. 

111204, Aug. 2020, doi: 10.1016/J.POSTHARVBIO.2020.111204. 

[32] J. Shin, Y. K. Chang, B. Heung, T. Nguyen-Quang, G. W. Price, and 

A. Al-Mallahi, "A deep learning approach for RGB image-based 

powdery mildew disease detection on strawberry leaves," Comput. 

Electron. Agric., vol. 183, p. 106042, Apr. 2021, doi: 

10.1016/J.COMPAG.2021.106042. 

[33] B. Jiang et al., "Fusion of machine vision technology and AlexNet-

CNNs deep learning network for the detection of postharvest apple 

pesticide residues," Artif. Intell. Agric., vol. 1, pp. 1–8, Mar. 2019, doi: 

10.1016/J.AIIA.2019.02.001. 

[34] P. McAllister, H. Zheng, R. Bond, and A. Moorhead, "Combining 

deep residual neural network features with supervised machine 

learning algorithms to classify diverse food image datasets," Comput. 

Biol. Med., vol. 95, pp. 217–233, Apr. 2018, doi: 

10.1016/J.COMPBIOMED.2018.02.008. 

[35] G. Ciocca, P. Napoletano, and R. Schettini, “CNN-based features for 

retrieval and classification of food images,” Comput. Vis. Image 

Underst., vol. 176–177, pp. 70–77, Nov. 2018, doi: 

10.1016/J.CVIU.2018.09.001. 

[36] Y. Hendrawan, R. Damayanti, D. F. Al Riza, and M. B. Hermanto, 

"Classification of water stress in cultured Sunagoke moss using deep 

learning," TELKOMNIKA (Telecommunication Comput. Electron. 

Control., vol. 19, no. 5, pp. 1594–1604, Sep. 2021, doi: 

10.12928/TELKOMNIKA.V19I5.20063. 

[37] S. R. Nayak, D. R. Nayak, U. Sinha, V. Arora, and R. B. Pachori, 

"Application of deep learning techniques for detection of COVID-19 

cases using chest X-ray images: A comprehensive study," Biomed. 

Signal Process. Control, vol. 64, p. 102365, Feb. 2021, doi: 

10.1016/J.BSPC.2020.102365. 

[38] M. Panahi, N. Sadhasivam, H. R. Pourghasemi, F. Rezaie, and S. Lee, 

"Spatial prediction of groundwater potential mapping based on 

convolutional neural network (CNN) and support vector regression 

(SVR)," J. Hydrol., vol. 588, p. 125033, Sep. 2020, doi: 

10.1016/J.JHYDROL.2020.125033. 

[39] L. Bragagnolo, L. R. Rezende, R. V. da Silva, and J. M. V. Grzybowski, 

"Convolutional neural networks applied to semantic segmentation of 

landslide scars," CATENA, vol. 201, p. 105189, Jun. 2021, doi: 

10.1016/J.CATENA.2021.105189. 

[40] F. Ucar and D. Korkmaz, "COVIDiagnosis-Net: Deep Bayes-

SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-

19) from X-ray images," Med. Hypotheses, vol. 140, p. 109761, Jul. 

2020, doi: 10.1016/J.MEHY.2020.109761. 

[41] M. M. Raikar, S. M. Meena, C. Kuchanur, S. Girraddi, and P. Benagi, 

"Classification and grading of okra-ladies finger using deep learning," 

Procedia Comput. Sci., vol. 171, pp. 2380–2389, Jan. 2020, doi: 

10.1016/J.PROCS.2020.04.258. 

[42] L. Mkonyi et al., "Early identification of Tuta absoluta in tomato 

plants using deep learning," Sci. African, vol. 10, p. e00590, Nov. 2020, 

doi: 10.1016/J.SCIAF.2020.E00590. 

[43] H. Manninen, C. J. Ramlal, A. Singh, S. Rocke, J. Kilter, and M. 

Landsberg, "Toward automatic condition assessment of high-voltage 

transmission infrastructure using deep learning techniques," Int. J. 

Electr. Power Energy Syst., vol. 128, p. 106726, Jun. 2021, doi: 

10.1016/J.IJEPES.2020.106726. 

[44] K. Thenmozhi and U. Srinivasulu Reddy, "Crop pest classification 

based on deep convolutional neural network and transfer learning," 

Comput. Electron. Agric., vol. 164, p. 104906, Sep. 2019, doi: 

10.1016/J.COMPAG.2019.104906. 

[45] J. Xu, Y. Zhang, and D. Miao, "Three-way confusion matrix for 

classification: A measure driven view," Inf. Sci. (Ny)., vol. 507, pp. 

772–794, Jan. 2020, doi: 10.1016/J.INS.2019.06.064. 

[46] Y. Hendrawan et al., "Deep learning to detect and classify the purity 

level of luwak coffee green beans," Pertanika J. Sci. Technol., vol. 30, 

no. 1, pp. 1–18, Dec. 2021, doi: 10.47836/PJST.30.1.01. 

[47] T. Takase, "Dynamic batch size tuning based on stopping criterion for 

neural network training," Neurocomputing, vol. 429, pp. 1–11, Mar. 

2021, doi: 10.1016/J.NEUCOM.2020.11.054.  

 

2121




