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Abstract— Accuracy of cancerous gene classification is a central challenge in clinical cancer research. Microarray-based gene 
biomarkers have proved the performance and its ability over traditional clinical parameters. However, gene biomarkers of an 
individual are less robustness due to litter reproducibility between different cohorts of patients. Several methods incorporating 
pathway information such as directed random walk have been proposed to infer the pathway activity. This paper discusses the 
implementation of group specific tuning parameter in directed random walk algorithm. In this experiment, gene expression data and 
pathway data are used as input data. Throughout this experiment, more significant pathway activities can be identified which 
increases the accuracy of cancer classification. The lung cancer gene is used as the experimental dataset, with which, the sDRW is 
used in determining significant pathways. More risk-active pathways are identified throughout this experiment. 
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I. INTRODUCTION 

The human genome contains tens of thousands of genes. 
Throughout studying the genes, biologists and researchers 
can understand more about human beings, especially the 
causes of formation of cancer [1]. The study and analysis of 
these genes are done by using microarray experiment. Genes 
are playing important roles in the classification of cancer and 
for prognosis or diagnosis of cancer at early stage. The 
analysis and study of genes are complete by using 
deoxyribonucleic acid (DNA) microarray analysis. DNA 
microarray analysis is a technology used by scientists to 
measure the gene expression level changes in gene 
expression data. The microarray analysis involves the 
breaking of a cell to isolate its genetic contents to identify all 
the genes that are turned on in that cell, and generating a list 
of those genes (DNA Microarray). Various experiments and 
approaches are triggered to identify informative genes and 
pathways that contribute to the certain cellular process [2]. 
Even though the gene expression data contain genetic 
information, it is not sufficient to classify cancer accurately 
due to the small sample size of data. Hence, the integration 
between pathway data and gene expression data can provide 
a better understanding of the biological processes for cancer 
classification [3]. Biologists and researchers need accurate 
classification tools and lists of cancerous genes, which can 
contribute to the diagnosis process.   

The Directed Random Walk (DRW) was proposed by Liu 
in 2013. It was developed to infer reproducible pathway 
activities and robust disease classification [4]. Its’ 
computational complexity and existing algorithm identify 
genes within pathways, which led to over-fitting and poor 
discriminating power. The discriminating power reflects the 
reproducible power and the robustness of pathways, whether 
the pathways are significantly differentially expressed or not 
[4]. Global directed pathway network is constructed in a 
directed random walk. In directed random walk, reverse 
direction of genes is allowed in global directed network 
pathway, and this can increase the probability for the edges 
to connect the next genes [4].   

The group specific tuning parameter is introduced to be 
implemented in the directed random walk algorithm to 
identify cancerous genes for higher accuracy in cancer 
classification of the gene expression data. The directed 
random walk algorithm identifies genes within pathways, 
leading to over-fitting. The genes identified by the existing 
algorithm within pathways are performed in a fixed direction 
with specific conditional independencies probability at 
discrete times [5]. The existing algorithm starts a new 
random walker to generate reproducible pathways for 
cancerous genes, which then, continue to the neighbouring 
sites of the genes until no neighbouring sites of the genes 
exist within the pathways. When the tuning parameter is too 
small, it can lead to over-fitting for the classifier model.  
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Besides that, the existing algorithm that identifies the 
genes within pathways also produces poor discriminating 
power. The discriminating power denotes the reproducible 
power and the robustness of pathways, whether the pathways 
are significantly differentially expressed or not [6]. When the 
tuning parameter is too large, it can lead to the production of 
poor discriminating power. 

II. MATERIAL AND METHOD 

Genes are the fundamental unit of heredity and the basic 
structure of DNA. Gene expression data is extracted from 
human DNA through microarray analysis. Gene expression 
data is used as input data for the experiment, while the 
method that applied in this experiment is specific directed 
random walk which enhances from directed random walk. 

A. Gene Expression Data 

The Microarray dataset used in this experiment was 
downloaded from the National Centre for Biotechnology 
Information (NCBI). It is GSE10072 for lung 
adenocarcinoma [7] with 107 samples where 58 samples are 
cancer samples while 49 are normal samples. These 107 
samples are constructed from GSM254625 until 
GSM254731.  This dataset contains 13788 genes and was 
used to compare with a group of metabolic pathways, which 
were obtained from the Kyoto Encyclopaedia of Genes and 
Genomes Databases [8, 9] and further developed into a 
global pathway network [4]. Pathways obtained and used are 
listed in Table 1. They are top 20 frequently selected 
pathway for lung cancer. The frequency of pathway markers 
for lung cancer classification is listed in Table 2. Global 
pathway network was formed by 300 graphs which cover 
4113 nodes and 40 875 directed edge where the nodes 
represent the genes and directed edge represents how genes 
interact and regulate among each other [4].  

The lung adenocarcinoma cancer dataset is chosen as the 
experimental dataset. Two classes of the lung datasets are 
employed for the sake of comparison. They are the tumour 
class and normal class. Overall, in the gene expression data, 
there are 107 samples and 13788 genes [8]. Out of the 13788 
genes, 7948 genes have a p-value of less than 0.05, which 
means 7948 genes are used in the final experiment after 
filtering process in specific directed random walk (sDRW). 

TABLE I 
TOP 20 OF PATHWAYS DATA SELECTED FOR LUNG CANCER 

CLASSIFICATION 

No. Name of Pathways No. of genes in 
pathways 
activity 

1 Tight junction 63 
2 ECM-receptor interaction 49 
3 Focal adhesion 118 
4 Leukocyte transendothelial 

migration 
63 

5 Pancreatic secretion 45 
6 Neuroactive ligand-receptor 

interaction 
41 

7 Calcium signaling pathway 75 
8 PPAR signaling pathway 34 
9 Amoebiasis 60 
10 Hepatitis C 63 

11 Melanogenesis 47 
12 Regulation of actin cytroskeleton 115 
13 Bacterial invasion of epithelial cells 47 
14 Cardiac muscle contraction 15 
15 Neurotrophin signaling pathway 69 
16 Chemokine signaling pathway 91 
17 Adipocytokine signaling pathway 37 
18 Vascular smooth muscle contraction 64 
19 Adherens junction 43 
20 Ether lipid metabolism 20 

TABLE II 
FREQUENTLY SELECTED PATHWAYS MARKERS (TOP 20) FOR CANCER 

CLASSIFICATION 

No. Name of Pathways Frequency of 
selected 
pathway 
markers 

1 ECM-receptor interaction 360/1500 
2 Pancreatic secretion 230/1500 
3 Focal adhesion 225/1500 
4 Calcium signaling pathway 131/1500 
5 Neuroactive ligand-receptor 

interaction 
114/1500 

6 Leukocyte transendothelial 
migration 

109/1500 

7 Tight junction 88/1500 
8 PPAR signaling pathway 69/1500 
9 Amoebiasis 63/1500 
10 Hepatitis C 45/1500 
11 Melanogenesis 29/1500 
12 Regulation of actin cytoskeleton 24/1500 
13 Bacterial invasion of epithelial cells 20/1500 
14 Cardiac muscle contraction 16/1500 
15 Neurotrophin signaling pathway 13/1500 
16 Chemokine signaling pathway 12/1500 
17 Adipocytokine signaling pathway 12/1500 
18 Vascular smooth muscle 

contraction 
6/1500 

19 Adherens junction 6/1500 
20 Ether lipid metabolism 5/1500 

B. Directed Random Walk Algorithm (DRW) 

The directed random walk (DRW)-based method was 
initially proposed by Liu et al. (2013).  The DRW-based 
method aimed to mine the topological information of the 
protein-protein interaction network [4]. To capture the 
topological information in directed network and infer a more 
robust pathway activity, a pathway topological information 
mining method is required [4]. The major challenge for 
inferring the pathway activity is to identify active pathways 
that have stronger discriminative power and robustness [4].    

The directed random walk was applied to evaluate the 
topological importance of each gene based on the 
aforementioned topological information, and this method is 
performed on a merged global pathway network [4]. Fig. 1 
illustrates the overview of the DRW-based method proposed 
by Liu et al. (2013) to infer pathway activity.  Based on Fig. 
1, the samples used by the directed random walk based 
method include the gene expression data and disease related 
pathway data. Besides that, the directed random walk based 
method also continues to analyse the samples for inferring 
pathway activity through the global pathway network (as 
shown in Fig. 1). 
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Fig. 1 Overview of directed random walk (DRW)-based method to infer 
pathway activity [4] 

The directed random walk will restart the stimulation of 
random walker that starts on a source node, s. The walker 
transits from its current node to a random neighbouring node 
or goes back to the source node s with probability, r. 
Formally, the DRW is written as: 

 
           (1) 

 
 is a vector where the Z-th element holds the 

probability of being at node z at time t, and M is the row-
normalized adjacency matrix of the graph G. 

The initial probability  was constructed by assigning 
data to each node by using their t-test score, after 
normalizing to a unit vector. The restart probability, r is set 
as 0.7, and it will be tuned and further described in the next 
sub-chapter. Due to the usage of t-test scores as the initial 
probability, the magnitude of the t-test scores also 
contributed to weight adjustments [4]. Thus, the genes that 
are both topologically important and significantly 
differentially expressed will obtain higher weights.  

20 Pathway markers are selected to be specific for the 
cancer classification. This will further discuss in next section, 
materials. 
 

C. Specific Directed Random Walk Algorithm (sDRW) 

By using directed random walk algorithm, some 
informative genes may exclude from the pathways, and some 
uninformative genes may include within the pathways since 
some of the pathway data are usually gathered from the 
biological literature [10]. Hence tuning parameter selection 
method is proposed to integrate into directed random walk 
algorithm. The tuning parameter selection method is aimed 
to estimate the nearly optimal parameter for pathways; it is 
also important to identify an effective predictive model and 
the significant cancerous genes [9], [6]. Therefore, the tuning 
parameter selection method can lead to better performance of 
the directed random walk. 

In the directed random walk algorithm, there is 1 tuning 
parameter, restart probability (r), also known as gamma that 
plays an important role in determining an effective predictive 

model [4]. The tuning parameter, r is applied to estimate the 
probability of the node to move into the neighbouring nodes 
or going back to the previous node. With different numbers 
of restart probability, the specific directed random walk 
algorithm (sDRW) can list all pathways that are 
topologically important and significant to cancerous genes. 
This can lead to reduced miss up of significant pathways and 
reduce the consumed time by avoiding from using all 
pathways in the classification [4]. 

Instead of the general restart probability that implements 
in the directed random walk, 0.7 [4], additional of 8 different 
restart probabilities are applied in the specific directed 
random walk, which are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 
0.9. The significant genes within pathways can be selected 
and classified more accurately by using different restart 
probability.  

The procedure consists of three main steps. In Step 1, the 
genes in microarray data are selected and grouped based on 
their prior pathway information from the pathway data. This 
process repeats for each pathway in the pathway data, and 
there is a possibility that some genes are not involved in any 
pathways at all. The P-value of genes is calculated, and the 
significant level of genes is differentiated accordingly. From 
this step, the new sets of gene expression data are produced 
to be evaluated by the sDRW.  

After this, the weight, t-score and reproducible power of 
pathways are calculated. Table 3 illustrates the procedure of 
sDRW in pseudo-code. If the reproducibility of a gene is big, 
this indicates that it has more robustness and more 
significance to cancer. With this, the pathway that contains 
the genes will proceed to be evaluated by the restart 
probability, r that is also known as the tuning parameter. In 
the end, specific cancerous genes are identified and being 
classified accordingly. 5-fold cross validation is used to 
calculate the classification error [9] while the area under the 
curve is used to evaluate the performance of the classifier 
[11], [12]. Higher AUC indicates better accuracy of 
classification. 

TABLE III 
THE PROCESS OF SDRW 

Algorithm: sDRW  
Input: GE, PD, r   
Output: SP: Significant pathways 
 IG: Informative genes           
 
Begin  
           
   For j=1 to the max no. of pathways in PD do        
   Select genes that are significant (p < 0.05); and        
   remove genes that are not significant (p > 0.05); 
     
For i = 1 to all genes in GE do          
      Assign the initial weight of genes                               
      with r = (0.1 – 0.9),           
      abs (t-test score), 
      normalized vector;  
End-for 
  

Calculate the weight of genes;   
 Sign function for t-test scores of genes; 
 Calculate the reproducible power for PA; 
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If the reproducible power of PA j > Pa j+1 

 More robustness PA for j; 
End if 
  

   Evaluate pathways; 
   Estimation of r;   

For r = 0.1 to 0.9 do 
 ; 

Calculate the error rate with r; 
End-for 
 

Identify genes within PA; 
Classify the genes based on cancer types; 
Calculate the classification error with 5-fold CV’ 
Evaluate the classifier by AUC; 

End For 
End 
 
Legend 
GE = Gene Expression Data 
PD = Pathway Data 
r = restart probability / tuning parameter 
abs = absolute 
i = number of genes 
j = number of pathways 
PA = Pathway activity 
CV = Cross Validation 
AUC = Area Under Curve 

III.  RESULTS AND DISCUSSION  

A. Results 

The tuning parameter is built based on the constant restart 
probability. To tune the probability and seek for a different 
result that may be missed, 0.1 – 0.9 of restart probability is 
used. The usage of this tuning parameter is to specific select 
the risk-active pathway that significant to lung cancer. 
Instead of the general restart probability, 0.7 [4], 9 different 
restart probabilities are applied in the sDRW, which are 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. With this, the 
significant genes within pathways can be selected and 
classified more accurately. “ √ ”  indicates that the 
significant pathways are shown after running the tuning 
parameter in the DRW algorithm. 

 

TABLE IV 
PATHWAY DETERMINED BY SPCIFIC DIRECTED RANDOM WALK  

Pathways Specific Directed Random Walk (sDRW) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Tight junction √ 
ECM-receptor 
interaction √ √ √ √ 

Focal adhesion √ √ √ √ 
Leukocyte 
transendothelial 
migration √ 
Pancreatic 
secretion √ 
Calcium 
signaling 
pathway          

Neuroactive 
ligand-receptor 
interaction                   
PPAR 
signaling 
pathway                   

Amoebiasis                   

Hepatitis C                   

Melanogenesis                   
Regulation of 
actin 
cytoskeleton                   
Bacterial 
invasion of 
epithelial cells                   
Cardiac muscle 
contraction                   
Neurotrophin 
signaling 
pathway                   
Chemokine 
signaling 
pathway                   
Adipocytokine 
signaling 
pathway                   
Vascular 
smooth muscle 
contraction                   
Adherens 
junction                   
Ether lipid 
metabolism                   
 
 
TABLE IV  

PATHWAY DETERMINED BY SPCIFIC DIRECTED RANDOM WALK  

 and Error! Not a valid bookmark self-reference. show 
the results of identified risk-active pathway with the Specific 
Directed Random Walk and Directed Random Walk. Results 
in TABLE IV  

PATHWAY DETERMINED BY SPCIFIC DIRECTED RANDOM WALK  

 show five risk-active pathways that are significant to the 
lung cancer genes where the restart probability is 0.1 to 0.9 
while the directed random walk only can identify 1 risk-
active pathway. The five significant pathways that identified 
by specific directed random walk are a tight junction, ECM-
receptor interaction, focal adhesion, leukocyte 
transendothelial migration, and pancreatic secretion while 
the only pathway that identified by directed random walk are 
focal adhesion.  

The tight junction displayed positive results at 0.1, the 
lowest restart probability. Pathway ECM-receptor interaction 
has shown positive results at the restart probability of 0.2 to 
0.5, whereas the Focal adhesion produced positive results are 
0.4, 0.5, 0.7 and 0.8 of the restart probability. The Leukocyte 
transendothelial migration displayed encouraging feedback 
at the restart probability 0.6 while the Pancreatic section 
responded to the restart probability of 0.9. This indicates that 
the ECM-receptor interaction and focal adhesion have the 
most frequent results generated by the restart probability. 
This displays that they are much more significant compared 
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to the other significant. However, this does not mean that 
they contain more significant genes compared to other 
significant pathways. 

 
 

TABLE V 
PATHWAY DETERMINED BY DIRECTED RANDOM WALK  

Pathways 
Directed 
Random Walk 

0.7 

Tight junction  

ECM-receptor interaction  

Focal adhesion √ 

Leukocyte transendothelial migration  

Pancreatic secretion  

Calcium signaling pathway  

Neuroactive ligand-receptor interaction  

PPAR signaling pathway  

Amoebiasis  

Hepatitis C  

Melanogenesis  

Regulation of actin cytoskeleton  

Bacterial invasion of epithelial cells  

Cardiac muscle contraction  

Neurotrophin signaling pathway  

Chemokine signaling pathway  

Adipocytokine signaling pathway  

Vascular smooth muscle contraction  

Adherens junction  

Ether lipid metabolism  

 
 
Pathways that showed negative feedback with the restart 

probability of 0.1 to 0.9 are calcium signaling pathway, 
neuroactive ligand-receptor interaction, PPAR signaling 
pathway, Amoebiasis Hepatitis C, melanogenesis, regulation 
of actin cytoskeleton, bacterial invasion of epithelial cells, 
cardiac muscle contraction, neurotrophin signaling pathway, 
chemokine signaling pathway, adipocytokine signaling 
pathway, vascular smooth muscle contraction, adherens 
junction, and ether lipid metabolism.  

To further demonstrate the restart probability, restart 
probability is applied in inter-validation. For a fair and 
effective comparison with other methods, within dataset 
five-fold cross validation is carried out. To reduce the effect 
of sensitivity in feature selection while comparing different 
pathway, only top 50 pathway activities are used [4]. The top 
50 pathway activities are ranked by P-values in increasing 
order as the candidate feature for feature selection [4]. The 
classifier was built based on logistic regression.  

Table 6 shows the average area under the curve (AUC) of 
each restart probability. Within the dataset, validation is 
attempted to perform five-fold cross validation. Five-fold 

splits of samples in each dataset, four-fifths of the samples 
were used as the training set to build the classifier, and the 
remaining one-fifth was used as the test set. 
 
 
 

TABLE VI 
CLASSIFICATION PERFORMANCE COMPARISON ON DIFFERENT RESTART 

PROBABILITY  

Restart Probability Mean AUC 

0.1 0.9687 

0.2 0.9759 

0.3 0.9704 

0.4 0.9692 

0.5 0.9883 

0.6 0.9939 

0.7 0.9706 

0.8 0.9881 

0.9 0.9761 
 

 
Fig. 2 Classification performances of different restart probability within 
datasets using logistic regression 

Fig. 2 presents a summary of the AUC of the inter-
validation experiments. The proposed sDRW method 
obtained AUCs of restart probability 0.1 (0.9687), 0.2 
(0.9759), 0.3 (0.9704), 0.4 (0.9692), 0.5 (0.9883), 0.6 
(0.9939), 0.7 (0.9706), 0.8 (0.9881), and 0.9 (0.9761).  

The highest accuracy of classification is 0.9939 where 
restart probability dropped at 0.6. The experiment proved 0.7 
is not the best restart probability. This indicates that tuning 
parameter is needed to define the best restart probability for 
the datasets. The second and third higher accuracies are 
0.9883 (0.5 restart probability) and 0.9881 (0.8 restart 
probability). Hence, 0.6 will be set as major restart 
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probability for lung adenocarcinoma cancer, while 0.5 and 
0.8 can be uses as references restart probability.  

Noted that, restart probability can perform differently per 
the datasets. The experiment shows that 0.1, 0.3, 0.4 and 0.7 
are not suitable to be used as restart probability for lung 
adenocarcinoma cancer. This is because the accuracy of 0.1, 
0.3, 0.4 and 0.7 are between 0.969 to 0.971, which are 
significantly low compare to restart probability of 0.6. 

B. Discussion 

This paper focuses on identifying the significant pathways 
that are related to gene expression data by proposing the 
sDRW. From the experiments and analyses, the sDRW 
shows plenty of pathways that are significant to gene 
expression data. By comparing the resulted significant 
pathways to gene expression data, we can easily locate the 
relevant genes that may be significant to cancerous genes 
[13].  

The sDRW has also shown its ability on resulted 
pathways by tuning the restart probability. Out of the 20 
pathways that are related to lung cancer, only five pathways 
denote positive results from the algorithm where only 2 
major pathways showed higher significance compared to 
most of the results.   

Even with correctly selected pathways, the sDRW may 
select the uninformative pathways. However, it has narrowed 
down the selected pathways whereby out of 20 pathways, 
only five pathways showed higher chances of being 
significant to lung cancer. This can reduce the time for 
researchers to figure out the significant genes by using all 
relevant pathways. This does not mean the other pathways 
are not significant to lung cancer, but it proves that this 
unselected pathway is not significant to the gene expression 
data used in this experiment. The result pathways are used in 
feature selection as they contain common genes that are 
significant to the lung tumour. 

By tuning the restart probability from a fixed probability, 
0.7 to a range of probability, 0.1 – 0.9, the number of 
resulted pathways increases. This resulted to the pathway 
that may contain insignificant genes, and this can lead to a 
low discriminative power. As demonstrated in the results, the 
restart probabilities of 0.1 and 0.9 have no common results 
with other restart probabilities. This is because the range of 
probability from 0.1 to 0.9 is used, and not all are sufficient 
to identify the significant pathways. When the restart 
probability is too small, it can lead to over-fitting of the 
training model and give too little sparse to the produced 
classifier; and if it is too big, it can lead to under-fitting of 
the training model, which again can be very sparse to the 
classifier [14].  

The reliable performance of sDRW could be attributed to 
the strategy of different restart probability. By testing with a 
range of 0.1 to 0.9 restart probability, the sDRW could 
identify the best restart probability to cancer. Thus, the 
implement of specific tuning parameter will increase the 
accuracy of classification. 

Therefore, further research, especially in the tuning 
parameter selection methods, is needed to surmount the 
limitation of the sDRW where a process of identifying the 
useful restart probability is needed as well as other 
algorithms enhancement [15], [16]. A complete library of 

restart probability could help to clarify the suitable restart 
probability for every cancer type. With the rapid 
development of human interaction databases, a complete 
restart probability library will enable a more accurate 
prediction of cancerous genes which covered most of the 
cancer type. 

 
 

IV.  CONCLUSIONS 

Directed random walk algorithm had been succeeding 
improved by implementing tuning parameter selection 
method. By using different restart probability, different 
significant pathways are selected and affected the accuracy 
of classification. Even the accuracy is increased, but the 
restart probability is only suitable for the sample datasets. 
Please note that different datasets required different restart 
probability. Hence, the range of restart probability is 
proposed.   

Therefore, a complete library of restart probability could 
help to clarify the suitable restart probability for every cancer 
type. With the rapid development of human interaction 
databases, a complete restart probability library will enable a 
more accurate prediction of cancerous genes which covered 
most of the cancer type. Besides, further research, especially 
in the tuning parameter selection methods, is needed to 
surmount the limitation of the sDRW where a process of 
identifying the useful restart probability is needed. 
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