
Vol.12 (2022) No. 6

ISSN: 2088-5334

Keep All Objectives Satisfied (KAOS) to Event-B Models

Transformation

Syahana Nur’Ain Saharudin a,*, Mar Yah Said a
a Department of Software Engineering and Information System, University Putra Malaysia (UPM), Serdang, 43400, Malaysia

Corresponding author: *syahana.saharudin@gmail.com

Abstract— Requirements engineering is an important aspect of the software development methodology because it is the first phase in

every software development. The usefulness of formal language in requirements is well-established to ensure consistency. However, the

conversion from informal requirements to the formal specification phase is still challenging because it requires advanced skills and

much practice. Due to this challenge, we improve the conversion and relationship of these two phases by capturing requirements using

KAOS approach and writing the formal specification using Event-B language. KAOS approach allows modeling the requirements

through goal hierarchies, whereas Event-B is a formal system-level modeling and analysis method. This work proposes model

transformation rules from KAOS model to Event-B model, along with implementing the rules, and evaluates the proposed rules using

Mine Pump Controller case study. We used a model-driven approach, specifically model-to-model transformation, to transform KAOS

model to Event-B model. We modeled the case study into the KAOS model to obtain the source model for our model transformation

and extend the existing KAOS meta-model by adding four new meta-classes to ensure the KAOS model can accommodate all Event-B

components. Our proposed rules manage to generate an abstract Event-B model, and a set of proof obligations have been used to verify

the correctness of the model. However, the designers must manually perform the transition between the generated outputs to the Event-

B platform.

Keywords— KAOS method; Event-B; goal-oriented requirements engineering; model-driven engineering; formal specification.

Manuscript received 26 Jul. 2021; revised 24 Sep. 2021; accepted 30 Jun. 2022. Date of publication 31 Dec. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Software development methodology consists of some

phases, and each of these phases produces a number of

artifacts that will be used in a later phase, such as

requirements documents, architecture documents, test plans,

and so forth. The first phase of every development process is

the requirements phase, where the aim is to capture user’s

need, and later, its document will be used for generating other
artifacts for later phases. Therefore, the requirements phase is

a crucial step in every development [1], [2]. Requirements

engineering focuses on eliciting, analyzing, specifying, and

validating requirements related to a system that will be

implemented [3]. If failures occur during requirements

engineering phases, they can cause bad consequences. In

order to overcome this problem, adopt a formal method during

the specification and design phase. The specification is

usually derived from requirements, and the derivation chain

already exists partially [4], [5].

Using the formal method in establishing specification can
prove the correctness of specification since formal methods

contain proof theory that defines rules for deducing useful

information. Formal methods have been used continuously in

building complex system specifications [6]. The idea of the

formal method is to refine an initial mathematical model until

the final refinement model has sufficient information to be

executed. Usually, we construct the initial model based on the

requirements. However, there is a gap between textual

requirements and initial formal specification [7]-[9]. Using

initial formal specifications is not easy for the customers due

to their lack of understanding of formal models. It is also
difficult for the designers to link the formal models with the

requirements. Because of this, the gap between requirements

and formal specification phases grew larger, making the

transition between them more difficult. Since formal methods

are mainly used in complex systems, this problem can get

worse because of many requirements. During this situation,

the designers will try to perform pseudo-programming

directly instead of building an abstract model [10].

2443

Thus, we need to have an uninterrupted chain between

requirements and specifications. The objective of this paper is

to combine the requirements and specification phases by

using KAOS [11], [12] and Event-B [13], [14] methods in

order to explore the interconnection of the requirements

model and formal method representation. KAOS is a goal-

oriented approach in requirements engineering that allows the

analyst to construct requirements models through goal

hierarchies and derive requirements documents. It contains

two refinement tactics, milestone-driven refinement, and

decomposition-by-case refinement, and the goals can be
refined using and/or refinements [15]. On the other hand,

Event-B is a model-based formal method that provides formal

semantics and availability of a toolset called Rodin [16], [17].

Similar to KAOS, it also contains a refinement feature and the

process consist of evolving the abstract model into a concrete

model [18].

Many works have been conducted to bridge the gap

between requirements and specification phases using KAOS

and Event-B. The approach proposed by Bicarregui et al. [19]

used the KAOS goal model for analysis and elaboration of

requirements, and their transformation focused on the leaf
goals from the goal model. The leaf goal refers to a goal with

no children or sub-goals. They introduced the notion of

triggers in the event component.

Ponsard and Devroey [20] introduced a new approach by

relying on KAOS agents and Event-B machines using UML-

B and the decomposition technique in Event-B. Their

approach involves creating the abstract machine and context

to represent the entire KAOS object and agent models. They

constructed several initial machines, where each initial

machine represents one agent in the goal model.

The approach proposed by Matoussi et al. [10] concerned
with the integration of Event-B model into KAOS goal model,

where they expressed Event-B model using the concept of

goal model. They proposed a model that could support the

refinement mechanism of Event-B, but their model cannot

support all Event-B components. In addition, this approach

only focused on the event component of Event-B and did not

consider other components of Event-B.

The latest approach by Fotso et al. [21] introduced the use

of ontologies to enhance the SysML/KAOS model and more

concerned with the translation of ontologies, or domain model,

into B specification. They did not translate the model into

Event-B specification. Their approach is different with ours
because they emphasized the use of ontology in their

transformation rules, which we did not use in our approach

For this project, we adopted an approach introduced by

Matoussi et al. [10] and extend it to ensure all Event-B

components are covered by proposing model transformation

rules. In order to ensure the derivation from KAOS model to

Event-B, we used a case study of Mine Pump Controller,

which was taken from Ponsard and Devroey [20].

The contributions or specific objectives of our project are

listed as follows:

 Model transformations rules for KAOS model to Event-
B model are proposed.

 We implemented the model transformation rules using

a model transformation language.

 We evaluated the correctness of the model

transformation rules using a case study.

The content of this paper is organized as follows. Material

and methods are described in Section II. We described the

results of the transformation rules using the case study in

Section III. In the last section, Section IV, is the conclusion

for this project.

II. MATERIAL AND METHOD

In this section, we present the rules that we used for the
transformation of KAOS model to Event-B model. We also

describe the technologies used to implement the

transformation rules. In addition, we present the KAOS

modelling for the case study that we used for evaluation

purposes. Figure 1 shows the conceptual framework for our

research.

Fig. 1 Conceptual Framework of the Project

Our approach aims to bridge the gap between the

requirements phase and formal specification by using KAOS

and Event-B, where we want to derive the Event-B model

from KAOS model. KAOS requirements model consists of

four sub-models: goal, object, responsibility, and operating.

Thus, for this approach, we used KAOS goal model to derive

event component of Event-B while other components, such as

context, variables and invariants, used KAOS object and
responsibility model.

In the preliminary studies stage, we discover the recent

methods or approaches we can use to define our model

transformation rules. The work that has been chosen as the

main reference for this project is Matoussi et al. [10], where

they used KAOS goal model as the link to bridge the gap

between requirements and formal specification. Thus, we

used their concept, where each goal consists of target and

current conditions. Matoussi et al. [10] used the current

condition to represent guard component of Event-B event and

the target condition to represent the action component of
Event-B event.

The first contribution of this project is defining the

transformation rules of KAOS model to Event-B model,

which is the second phase in the conceptual framework. We

used KAOS object model and responsibility model to enhance

the approach proposed by Matoussi et al. [10] to

2444

accommodate the Event-B components that they did not cater

to. Thus, we made some adjustments on the existing meta-

model by adding new meta-classes to assist us in deriving the

Event-B context, and variable and invariant component of

Event-B.

The second contribution is to implement the transformation

rules using model transformation language, which is the third

phase of our project methodology. Our project has chosen a

model-driven engineering approach [22], [23]. We adopted

model-to-model method to ensure the translation of KAOS

model to Event-B model, and we used ATL language [24],
[25] as the model transformation language.

Evaluating our transformation rules is our third

contribution for this project. For this phase, we evaluated the

rules using Mine Pump Controller case study [20]. First, we

modelled the case study into KAOS model, and then we used

the KAOS model to transform into Event-B model using our

proposed transformation rules. We used the proof obligations

of Event-B to verify the correctness of our output model.

Event-B proof obligations are provided in Rodin toolset.

A. Rule Definition

The first objective of this project is to propose model

transformation rules that can perform the translation of KAOS

model to Event-B model. Thus, we took advantage of

Eclipse's model management technologies, Eclipse Modelling

Framework (EMF). We used model-to-model approach [26],

and therefore, we used two meta-models, where one meta-

model represents KAOS method and the other represents

Event-B method.

For KAOS meta-model, we used the one introduced by

Matoussi et al. [10] with new addition of meta-classes that are
denoted by yellow in Figure 2. The four new meta-classes are

needed to generate the Event-B context elements: sets, axioms

and constants, and invariants and variable of Event-B

machine. As for Event-B meta-model, we took the existing

meta-model that had been provided by Rodin toolset.

As we can see, the meta-class PackagedElement composed

of meta-class Relationship, meta-class Goal and meta-class

Object. For meta-class relationship, it represents the goal

refinement in the KAOS goal model and can be classified into

three types: meta-classes And, Or and Milestone. As for meta-

class Goal, it can be classified into two types: meta-class
AbstractGoal and meta-class ElementaryGoal. Meta-class

AbstractGoal concerns the most abstract goal in the goal

model whereas meta-class ElementaryGoal concerns the sub-

goals or children of the abstract goal.

The new meta-class Object represents the entity of the goal

model that had been identified in the informal requirement.

The bi-directional reference, such as central and sub, concerns

with linking the object to its central object. If an object is a

containment of the main object as the central object. Meta-

class Object contains two new meta-classes. The first meta-

class is meta-class attribute, which represents the properties
of the object in the KAOS object model, whereas the new

meta-class agent represents the agent responsible for the goal.

Both meta-class attributes and meta-class agents consist of

meta-class enumeration, representing the value in the object

and responsibility models.

Based on the two meta-models, the mapping of the

transformation model from source model, which is KAOS

model, to target model, which is Event-B model, is shown in

Table 1. As shown in the table, we can derive the variable and

invariant components of Event-B machine using KAOS

object model. The set, constant and axiom components, which

are the components in Event-B context, are derived from the

attributes in KAOS object model. We can also use KAOS

agent model to derive Event-B context. The event component

of Event-B can be obtained using the goals in KAOS goal

model, and the variable component of Event-B machine can
also be obtained from KAOS goal model.

TABLE I

MAPPING OF SOURCE MODEL TO TARGET MODEL

KAOS Meta-Model Event-B Meta-Model

Object Variable

Invariant
Attribute Set

Constant

Axiom
Agent Set

Constant

Axiom
Goal Event

Variable

Table 2 describes the transformation rules we formulated

for the translation of the two methods. We defined the rules

based on the mapping of the two meta-models. Rule 1 with

transforming meta-class Object into variable and invariant of

Event-B machine. Rules 2 and 3 concern with the meta-class

Attribute and Agent respectively are used to generate the

Event-B context component. Rule 4 is used order to

transforms the properties of meta-class Goal into event and

variable of Event-B machine.

TABLE II
TRANSFORMATION RULES

Rule Description

1(a) Name of the object represents variable for Event-B
machine

1(b) Translating the object, its central object and its attributes

into invariant of Event-B machine
2(a) Name of the attribute represents the set of Event-B

context
2(b) The enumeration of attribute represents the constant of

Event-B context
2(c) Translating the name of attribute and its value into axiom

of Event-B context
3(a) Name of agent represents the set of Event-B context
3(b) The enumeration of agent represents the constant of

Event-B context
4(a) Translating the name of the goal and taking the

information obtained from Rule 4(b) and 4(c) in order to
complete the event component in Event-B machine, and
use the name of the parent goal to show the event
refinement

4(b) The target condition of goal represents the action of event
4(c) The current condition of goal represents the guard of

event
4(d) The target condition of goal represents the variable of

Event-B machine

2445

Fig. 2 Extension of KAOS Meta-Model

B. Rule Implementation

Model-driven engineering approach has been adopted in

this project in order to transform one model to another model,

where in this case we want to transform KAOS model to

Event-B model. Our proposed rules were implemented using

Eclipse platform based on model-to-model transformation.

Atlas Transformation Language (ATL) has been chosen as the

model transformation language since it has been widely used
in model-driven engineering.

The basic concept of model transformation for our

approach is shown in Figure 3. The transformation starts by

taking a source model in the XML file and producing another

XML model, the target model. The transformation is

conducted by a transformation program, where, in this case,

the rules that have been written in ATL language. The

transformation program is also known as a model. Thus, the

source, target, and transformation models must conform to

their respective meta-models. Subsequently, these meta-

models must conform to the meta-meta-model, which is the
Meta-Object Facility (MOF).

Fig. 3 Basic Concept of ATL Transformation

The transformation process occurred through declarative

rules, which can call on auxiliary functions, also known as

helpers in the syntax of ATL language. Based on the rules that

have been explained in Table 2, we have derived four

declarative rules. We used auxiliary functions to assist in

extracting the information from the KAOS model, and we

used declarative rules to transform the models.

C. KAOS Modelling

For evaluation purposes, we used a case study of Mine

Pump Controller, which had been taken from Ponsard and

Devroey [20]. It is a case study on the sump that is used to

control the draining of water inside a mine. A sump is an area

that collects the water entering the mine. The level of water is

kept within bounds by a pump controller. Inside the mine are

three sensors and two controllers that monitor the safety of the

mine. The sensors are methane, high water, and low water,

whereas the controllers are pump and alarm controllers. The

requirements of the system are listed as follows:

 The pump should be switched on when water reaches
high level to keep the mine dry and avoid flooding.

 The pump should be switched off when water reaches

low level to avoid pump burning and damage.

 The pump should be switched off, and an alarm must

be sounded when methane gas is detected inside the

mine to avoid the explosion risk.

We construct the goal model for this case study using the

goal-oriented requirements elaboration method, and Figure 4

illustrates the KAOS model for this case study. Based on the

requirements listed above, we identify the preliminary goals,

and from there, we elicit the requirements by asking WHY

and HOW questions. Asking WHY questions assist in
identifying high-level goals, and this process can be known as

a bottom-up process. Meanwhile, asking HOW questions

allow us to identify the sub-goals for the parent goal. Asking

the two questions allow us to refine the goals until enough

detail is acquired.

2446

Fig. 4 KAOS Model of Mine Pump Controller Case Study

After the completion of refining the goals, we can assign

an agent to the goals. In order to find the agents responsible

for the goals, we asked WHO questions, where we want to

identify the entity that plays the role of achieving the goal and

is capable of monitoring and controlling the objects in the goal.

We identified five agents interacting with the goals based on

the problem statement mentioned in the first paragraph. The

pump controller is responsible for controlling the pump by

turning on/off according to water level. Alarm controller is

responsible in controlling the alarm by switching on/off based
on the presence of methane gas. Low water sensor is

responsible in detecting the low water level inside the mine.

High water sensor is responsible in detecting the high-water

level inside the mine. Methane sensor is responsible in

detecting the methane gas inside the mine. We also derived

the objects and their attributes from the requirements to

construct the object model. For this case study, we identified

five objects or entities: mine, pump, alarm, methane, and

water level. We can also assign agents to these identified

objects.

III. RESULT AND DISCUSSION

This section describes the evaluation of our proposed

translation rules using the Mine Pump Controller case study,

along with the limitation of our approach.

A. Event-B Context Component

With the introduction of four new meta-classes, we can

obtain Event-B context, which is missing from Matoussi et al.
[10], our rules managed to generate the components for Event-

B context. However, to ensure the transformation's

correctness, the designer has to transfer the generated output

into the Event-B platform manually. The Event-B context that

our rules have transformed is shown in Figure 5.

Using Rule 2 and Rule 3, we obtain the sets, axioms and

constants based on the meta-class Attribute and meta-class

Agent. The designer manually adds the set MINE so that the

variables can be declared as the subset of the set. As for other

sets, we followed Rule 2(a), which took the name value in

meta-class attribute and represented it as sets in Event-B

context. Then, we followed Rule 2(b) to obtain the constants
component. For example, in the object model, object Pump

contains attribute operation, and the values for operation are

start and stop. Using Rule 2(a) and Rule 2(b), the attribute

operation becomes the set, and the value starts and stop

become the constant in Event-B context. Subsequently, we

used Rule 2(c), to obtain the axiom component, where it took

the name and value of meta-class attribute. Using the same

example, the axiom obtains from object Pump is partition

(OPERATION, {start}, {stop}).

Rule 3 follows the same principle as Rule 2. The difference

is Rule 3 takes the information from meta-class agent. Let us

take the agent Pump Controller as an example. Following
Rule 3(a), the name of the agent becomes the set component.

However, for this case, we did not use its agent to represent

the set component because all of the agents contain the same

operation, which is on and off. Therefore, we took their

enumeration to derive the constant component based on Rule

3(b).

Since Event-B does not allow duplication in terms of

constant, we decided to combine the agents into one, leading

to a new set STATUS that represents the operation of the

2447

agents. For example, status refers to the state of the pump

controller, whether it is turned on or off. Currently, there is no

rule to assist us in deriving the set component regarding the

agent that contains the same enumeration. Due to this, it is

based on how the designer derives this component.

Fig. 5 Event-B Context

B. Event-B Abstract Machine

The addition of new meta-classes can also derive the

variable and invariant component of Event-B machine as

shown in Figure 6(a), following Rule 1 and Rule 4(d). Rule

1(a) is related to meta-class Object, where it took the object’s

name as the variable (pump, alarm, methane, water level and

mine) while Rule 4(d) concerns with taking target condition

of a goal as the variable (mine_cond). In order to obtain the
invariant, we used Rule 1(b), where it used the name of the

object, its central object and its attributes to represent the

invariant.

Let us take object WaterLevel as an example. The central

object for this object is object Mine and its attribute is Level.

Therefore, we combine this three information and eventually

create inv0_5, where it indicates that there is water level

inside the mine and attribute Level indicates the type of water

level (high, low). But it is different for the first invariant

(inv0_1) because it is derived manually. For object mine,

there is no central object, and this is because the object mine

is the central object for other objects. Thus, we defined a user-
defined type to give a type to mine, which is set MINE, and

this process is done manually by the designer.

Rule 4 is used to transform the goal into event component

in Event-B. Rule 4(a) used the goal's name to obtain the

event's name. Let us take the goal SafeMine as an example.

This goal is the abstract event in the abstract machine. Thus,

the name of the abstract event is SafeMine, following Rule

4(a). The following rules in Rule 4, such as Rule 4(b) and Rule

4(c), are used to complete the event component. Rule 4(b)

concerns taking the target condition as action of an event,

whereas Rule 4(c) concerns taking the current condition as
guard of an event. In order to obtain the guard and action for

the event, the information is obtained through properties of

the goal model. Table 3 shows the properties of goal SafeMine

in the KAOS model.

Fig. 6 Event-B Abstract Machine: (a) Variable and Invariant Component

(b) Abstract Event Component

TABLE III
PROPERTIES OF GOAL SAFEMINE

Properties Value

Name SafeMine
Parent

Children NoFlooding;
NoPumpDamaged;
NoExplosion

TargetCond mine_cond = safe
CurrentCond

Following Rule 4(b), the target condition (mine_cond =

safe) represents the action of the event. As for current

condition, there is no current condition for abstract goal

because the abstract goal is the most abstract goal and general

goal in the goal model. Therefore, the goal consists of target

condition only. As for the parameter (a), we manually added

the parameter in order to represent that the parameter is the

type of central object. Figure 6(b) shows the abstract event
SafeMine in Event-B specification

C. Event-B First Machine Refinement

Next is for the first machine refinement (m_1). Goal

SafeMine consist of three sub-goals, which are goal

NoFlooding, NoPumpDamaged and NoExplosion. Therefore,

for the first machine refinement, it consists of three events.

For example, the name of the sub-goal is NoFlooding.

Therefore, NoFlooding is also the name of the event,

2448

following Rule 4(a). This rule also completes the event

component, where it calls the information obtained from Rule

4(b) and Rule 4(c) to get the guard and action of an event.

Table 4 below shows the properties of goal model in our

KAOS editor.

Rule 4(b) refers to the transformation of the target

condition to action in an event. As shown in Table 4, the target

condition for NoFlooding is the safe condition of flood

(flood_cond = safe); thus, it represents the event's action. Rule

4(c) refers to transforming the current condition to guard of

an event. For example, the current condition for NoFlooding
is the operation of the pump, where the pump has to start

operating (pump = start) to ensure no flooding occurs in the

mine. As for event refinement, Rule 4(a) is used to obtain the

parent goal. The rule takes the name of the parent goal, for

example the parent goal for NoFlooding is SafeMine, and later

show that the event NoFlooding is refining the abstract event

SafeMine. The first guard (grd1) and first action (act1) of this

event is kept from the abstract event because this event refines

and extends the abstract event. Figure 7 shows the event in

Event-B specification for the sub-goal NoFlooding.

TABLE IV
PROPERTIES OF GOAL NOFLOODING

Properties Value

Name NoFlooding
Parent SafeMine

Children HighWaterDetected;
PumpTurnOn

TargetCond flood_cond = safe

CurrentCond pump = start

Fig. 7 Excerpt of Event in First Machine Refinement

D. Event-B Second Machine Refinement

For the second machine refinement (m_2), the derivation of

event also used Rule 4. For example, the sub-goals or children

for goal NoFlooding are goal HighWaterDetected and

PumpTurnOn. Let us take goal PumpTurnOn as an example.

Following Rule 4(a), the goal's name becomes the event's

name. Rule 4(a) is also used for event refinement, where it

takes the name of the parent goal to show the refinement. The

parent goal for this goal is goal NoFlooding. Thus, the rule

will show that event PumpTurnOn is refining the event
NoFlooding. The target condition for this goal is to turn on the

pump controller (pump_ctrl = on) and the current conditions

for the goal are high water level (water_level = high) and the

initial state of pump controller (pump_ctrl = off). Using Rule

4(b), the target condition becomes the event's action, and

using Rule 4(c), the current conditions become the guard of

event. Similar to event NoFlooding, the first guard (grd1),

second guard (grd2), first action (act1) and second action

(act2) are kept from the first refinement event. Table 5 shows

the properties for goal PumpTurnOn whereas Figure 9 shows

the event component in second machine refinement.

TABLE V
PROPERTIES OF GOAL PUMPTURNON

Properties Value

Name PumpTurnOn

Parent NoFlooding
Children

TargetCond pump_ctrl = on
CurrentCond water_level = high;

pump_ctrl = off;
methane = false

Fig. 8 Excerpt of Event in Second Machine Refinement

E. Event-B Proof Obligations

After the generation of Event-B components using KAOS

model, we verified the correctness of the Event-B model. The

model is proved using a set of proof obligations (POs) that had
been generated by Rodin platform. Proof obligations are used

to ensure the consistency of a certain property in formal

specification [26]. If we can prove the proof obligations, then

that property in the specification is consistent. The main

properties for checking the correctness of Event-B model are

refinement between models, well-definedness of expressions

and invariant preservation [27].

The statistics of proof obligations for our Event-B model is

described in Table 6. The total refers to the total number of

POs that had been performed on the model. Auto PO refers to

the number of proof obligations that are automatically

discharged by the provers whereas manual PO refers to the
number of PO that are manually discharged. Two proof

obligations are done manually, and these POs are done by re-

running the proof obligation using external prover.

TABLE VI
STATISTICS OF PROOF OBLIGATIONS

Machine Auto PO Manual PO Total PO

m_0 1 1 2
m_1 12 1 13
m_2 26 0 26

2449

F. Limitations

Even though our rules managed to transform KAOS model

to Event-B model, there are still some limitations because the

implementation of our rules can only generate the XML file

for Event-B model and therefore need the help of the designer
to manually convert the XML file into Event-B specification

in order to verify the correctness of the model. We did not

manage to develop a tool that could support our proposed

rules due to time constraints. In addition, our approach

focused only on functional requirements, unlike Matoussi et

al. [10], whose approach covered both functional and non-

functional requirements.

Currently, the generated output from the model

transformation rules can only give the designers the general

layout for constructing the system's Event-B specification.

The output can assist the designer in classifying the
information from the goal model and object model into Event-

B components. However, the designer might need to double-

check the translation and do some editing on the translation

done by the rules to accommodate the Event-B specification

and ensure the model's correctness.

In addition, our rules did not cater to machine refinement.

Our rules only consist of two machines: abstract machine and

first machine refinement. Therefore, for the subsequent

machine refinement, the designer must perform manually per

the goal model. Our proposed rules are still in an early stage

of development and require some improvements, especially

on ensuring the machine refinement and integration of ATL
codes with the Rodin platform to make the model

transformation automatic.

IV. CONCLUSION

Our approach focused on the transition from the

requirements phase to the specification phase, where the main

objective is to bridge the gap between the two phases, and we

used a model-driven method to achieve the objective. The
literature review that we performed to facilitate the transition

gave some insight into the limitation of the existing

approaches. The translation concept proposed by Matoussi et

al. [10] was adopted in our approach, where we mapped the

Achieve goal of KAOS model with event of Event-B machine.

Then, we used the current and target condition in the goal to

represent the guard and action in Event-B event component.

We made some adjustments to the existing meta-model by

adding four new meta-classes so that we can accommodate

other components of Event-B, such as Event-B context. We

used model-to-model transformation to perform the

translation of two models using model transformation
technologies, such as EMF and ATL. We chose Mine Pump

Controller case study to model its requirements into KAOS

model and evaluate the correctness of our proposed model

transformation rules.

Currently, our approach is semi-automated because we

need the help of Event-B designer to transform the generated

output into Event-B specification manually. This process can

be simple for small systems, but it can be tiresome when it

involves large numbers of requirements. Thus, it is beneficial

to have an automated tool for transforming the KAOS model

to Event-B.

Since our rules did not cater to machine refinement, the

ATL rules only defined the two machines using an entry point

rule, which did not use any information from the source model.

There is no specific rule for machine refinement. In order to

cater to the limitation of machine refinement, we can use

meta-class relationships using the goal’s relationship. Not

only that, by using this meta-class, we can make our event

refinement more systematic.

The evaluation of our proposed rules is currently done

using one case study. We might use other case studies to

ensure the correctness of our transformation model. Also, the
modeling tool for KAOS, such as Objectiver [28], is not an

open-source tool. It is hard to obtain the XML file for our

source model. Thus, we made our KAOS editor using EMF to

gain the input file. Due to time constraints, we could not

construct an open source KAOS editor; therefore, we can

consider this as our future work. An open-source KAOS editor

can ensure the possibility of making an automatic version of

the model transformation.

ACKNOWLEDGMENT

We thank the Faculty of Computer Science and

Information Technology (FCSIT) of the University Putra

Malaysia (UPM) for financial assistance.

REFERENCES

[1] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Mate, E. Paja, M.

Salnitri, L. Piras, J. Mylopoulous and P. Giorgini, “Goal-oriented

requirements engineering: An extended systematic mapping study,”

Req. Eng., vol. 4, no. 2, pp. 133-160. June. 2019, doi: 10.1007/s00766-

017-0280-z.

[2] R. Kasauli, E. Knauss, J. Horkoff, G. Liebel and F. G. de Oliveira,

“Requirements engineering challenges and practices in large-scale

agile system development,” J. Sys. Soft., vol. 172. Elsevier Ltd, p.

110851, Feb. 2021, doi: 10.1016/j.jss.2020.110851.

[3] M. Tukur, S. Umar and J. Hassine, “Requirement engineering

challenges: A systematic mapping study on the academic and the

industrial perspective,” Arabian J. Sci. Eng., vol. 46, no. 4, pp. 3723-

3748, Apr. 2021, doi: 10.1007/s13369-020-05159.

[4] H. Kaiya, N. Yoshioka, H. Washizaki, T. Okubo, A. Hazeyama, S.

Ogata and T. Tanaka, “Eliciting requirements for improving users’

behavior using transparency,” in Comm. Comp. Inf. Sci., 2018, vol.

809, pp. 41-56, doi: 10.1007/978-981-10-7796-8_4.

[5] M. M. Awan, F. Azam, M. W. Anwar and Y. Rasheed, “Formal

requirements specification: Z notation meta model facilitating model

to model transformation,” in ICSIE 2020 – Proc. 2020 9th Int. Conf.

Soft. Info. Eng., Nov. 2020, pp. 61-66, doi: 10.1145/3436829.3436845.

[6] M. Gleirscher, S. Foster and J. Woodcock, “New opportunities for

integrated formal methods,” ACM Computing Surveys, vol. 52, no. 6,

pp. 1-36, Oct. 2019, doi: 10.1145/3357231.

[7] M. Ozkaya, “Do the informal and formal software modelling notations

satisfy practitioners for software architecture modelling?” Info. Soft.

Tech., vol. 95, pp. 15-33, March. 2018, doi:

10.1016/j.infsof.2017.10.008.

[8] E. Alkhammash, “Formal modelling of OWL ontologies-based

requirements for the development of safe and secure smart city

systems,” Soft Computing, vol. 24, no. 15, pp. 11095-11108, Feb. 2020,

doi: 10.1007/s00500-020-04688-z.

[9] E. Osama, M. Abdelsalam and A. Khedr, “The effect of requirements

quality and requirements volatility on the success of information

systems projects,” Int. J. Adv. Comp. Sci. App., vol. 11, no. 9, Oct.

2020, doi: 10.14569/IJACSA.2020.0110950.

[10] A. Matoussi, F. Gervais and R. Laleau, “A goal-based approach to

guide the design of an abstract Event-B specification,” in 16th IEEE Int.

Conf. Eng. Complex Comp. Sys., 2011, pp. 139-148, doi:

10.1109/ICECCS.2011.21.

[11] E. Souza and A. Moreira, “Deriving services from KAOS models,” In

Proc. ACM Symposium on Applied Computing, 2018, pp. 1308-1315,

doi: 10.1145/3167132.3167273.

2450

[12] A. Cailliau and A. van Lamsweerde, “Runtime monitoring and

resolution of probabilistic obstacles to system goals,” ACM

Transactions on Autonomous and Adaptive Systems, vol. 14, no. 1, pp.

1-40, Sept. 2019, doi: 10.1145/3337800.

[13] J. R. Abrial, Modelling in Event-B – System and software engineering,

1st ed. Cambridge: Cambridge University Press, 2010, pp. 1-586, doi:

10.1017/CBO9781139195881.

[14] C. Zhu, M. Butler, and C. Cirstea, “Trace semantics and refinement

patterns for real-time properties Event-B models,” Science of

Computer Programming, vol. 197. Elsevier Ltd, p. 102513, Oct. 2020,

doi: 10.1016/j.scico.2020.102513.

[15] N. Ulfat-Bunyadi, N. G. Mohammadi, R. Wirtz and M. Heisel,

“Systematic refinement of softgoals using a combination of KAOS

goal models and problem diagrams,” in Comm. Comp. Inf. Sci., 2019,

vol. 1077, pp. 150-172, doi: 10.1007/978-3-030-29157-0_7.

[16] J. R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta and L.

Voisin, “Rodin: An open toolset for modelling and reasoning in Event-

B,” Int. J. Soft. Tools for Tech. Transfer, vol. 12, no. 6, pp. 447-466,

Apr. 2010, doi: 10.1007/s10009-010-0145-y.

[17] P. Andre, C. Attiogbe and A. Lanoix, “A tool-assisted method for the

systematic construction of critical embedded systems using Event-B,”

Comp. Sci. Info. Sys., vol. 17, no. 1, pp. 315-338, Jan. 2020, doi:

10.2298/CSIS190501042A.

[18] A. Mammar, M. Frappier, S. J. T. Fotso, and R. Laleau, “A formal

refinement-based analysis of the hybrid ERTMS/ETCS level 3

standard,” Int. J. Soft. Tools for Tech. Transfer, vol. 22, no. 3, pp. 333-

347, June 2020, doi: 10.1007/s10009-019-00543-1.

[19] J. Bicarregui, A. Arenas, B. Aziz, P. Massonet and C. Ponsard,

“Towards modelling obligations in Event-B,” in Lecture Notes in

Computer Science, vol. 5238, 2008, pp. 181-194, doi: 10.1007/978-3-

540-87603-8_15.

[20] C. Ponsard and X. Devroey, “Generating high-level Event-B system

models from KAOS requirements models,” in XXIXeme Congres

INFORSID 2011 – 29th Conf. INFORSID, 2011, pp. 317-332.

[21] S. J. T. Fotso, M. Frappier, R. Laleau and A. Mammar, “Modelling the

hybrid ERTMS/ETCS level standard using a formal requirement

engineering approach,” Int. J. Soft. Tools for Tech. Transfer, vol. 22,

no. 3, pp. 349-363, June 2020, doi: 10.1007/s10009-019-00542-2.

[22] D. Akdur, V. Garousi, and O. Demirors, “A survey on modelling and

model-driven engineering practices in the embedded software

industry,” J. Sys. Arch., vol. 91, pp. 62-82, Oct. 2018, doi:

10.1016/j.sysarc.2018.09.007.

[23] A. Bucchiarone, J. Cabot, R. F. Paige and A. Pierantonio, “Grand

challenges in model-driven engineering: An analysis of the state of the

research,” Soft. and Sys. Modelling, vol. 19, no. 1, pp. 5-13, Jan. 2020,

doi: 10.1007/s10270-019-00773-6.

[24] E. Richa, E. Borde and L. Pautet, “Translation of ATL to AGT and

application to code generator for Simulink,” Soft. and Sys. Modelling,

vol. 18, no. 1, pp. 321-344, Feb 2019, doi: 10.1007/s10270-017-0607-8.

[25] S. Gotz and M. Tichy, “Investigating the origins of complexity and

expressiveness in ATL transformations,” J. Obj. Tech., vol. 19, no. 2,

pp. 1-21, July 2020, doi: 10.5381/jot.2020.19.2.a12.

[26] A. P. F. Magalhaes, A. M. S. Andrade and R. S. P. Maciel, “Model

driven transformation development (MDTD): An approach for

developing model to model transformation,” Info. Soft. Tech., vol. 114,

pp. 55-76, Oct. 2019, doi: 10.1016/j.infsof.2019.06.004.

[27] A. S. A. Hadad, C. Ma and A. A. O. Ahmed, “Formal verification of

AADL models by Event-B,” IEEE Access, vol. 8, pp. 72814-72834,

Apr. 2020, doi: 10.1109/ACCESS.2020.2987972.

[28] K. Morris, C. Snook, T. S. Hoang, G. Hulette, R. Armstrong and M.

Butler, “Formal verification of run-to-completion style statecharts

using event-b,” in Comm. Comp. Info. Sci., 2020, vol. 1269, pp. 311-

325, doi: 10.1007/978-3-030-59155-7_24.

[29] Objectiver (2007). [Online]. Available: http://www.objectiver.com/

2451

