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Abstract— Requirements engineering is an important aspect of the software development methodology because it is the first phase in 

every software development. The usefulness of formal language in requirements is well-established to ensure consistency. However, the 

conversion from informal requirements to the formal specification phase is still challenging because it requires advanced skills and 

much practice. Due to this challenge, we improve the conversion and relationship of these two phases by capturing requirements using 

KAOS approach and writing the formal specification using Event-B language. KAOS approach allows modeling the requirements 

through goal hierarchies, whereas Event-B is a formal system-level modeling and analysis method. This work proposes model 

transformation rules from KAOS model to Event-B model, along with implementing the rules, and evaluates the proposed rules using 

Mine Pump Controller case study. We used a model-driven approach, specifically model-to-model transformation, to transform KAOS 

model to Event-B model. We modeled the case study into the KAOS model to obtain the source model for our model transformation 

and extend the existing KAOS meta-model by adding four new meta-classes to ensure the KAOS model can accommodate all Event-B 

components. Our proposed rules manage to generate an abstract Event-B model, and a set of proof obligations have been used to verify 

the correctness of the model. However, the designers must manually perform the transition between the generated outputs to the Event-

B platform. 
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I. INTRODUCTION

Software development methodology consists of some 

phases, and each of these phases produces a number of 

artifacts that will be used in a later phase, such as 

requirements documents, architecture documents, test plans, 

and so forth. The first phase of every development process is 

the requirements phase, where the aim is to capture user’s 

need, and later, its document will be used for generating other 
artifacts for later phases. Therefore, the requirements phase is 

a crucial step in every development [1], [2]. Requirements 

engineering focuses on eliciting, analyzing, specifying, and 

validating requirements related to a system that will be 

implemented [3]. If failures occur during requirements 

engineering phases, they can cause bad consequences. In 

order to overcome this problem, adopt a formal method during 

the specification and design phase. The specification is 

usually derived from requirements, and the derivation chain 

already exists partially [4], [5].  

Using the formal method in establishing specification can 
prove the correctness of specification since formal methods 

contain proof theory that defines rules for deducing useful 

information. Formal methods have been used continuously in 

building complex system specifications [6]. The idea of the 

formal method is to refine an initial mathematical model until 

the final refinement model has sufficient information to be 

executed. Usually, we construct the initial model based on the 

requirements. However, there is a gap between textual 

requirements and initial formal specification [7]-[9]. Using 

initial formal specifications is not easy for the customers due 

to their lack of understanding of formal models. It is also 
difficult for the designers to link the formal models with the 

requirements. Because of this, the gap between requirements 

and formal specification phases grew larger, making the 

transition between them more difficult. Since formal methods 

are mainly used in complex systems, this problem can get 

worse because of many requirements. During this situation, 

the designers will try to perform pseudo-programming 

directly instead of building an abstract model [10]. 
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Thus, we need to have an uninterrupted chain between 

requirements and specifications. The objective of this paper is 

to combine the requirements and specification phases by 

using KAOS [11], [12] and Event-B [13], [14] methods in 

order to explore the interconnection of the requirements 

model and formal method representation. KAOS is a goal-

oriented approach in requirements engineering that allows the 

analyst to construct requirements models through goal 

hierarchies and derive requirements documents. It contains 

two refinement tactics, milestone-driven refinement, and 

decomposition-by-case refinement, and the goals can be 
refined using and/or refinements [15]. On the other hand, 

Event-B is a model-based formal method that provides formal 

semantics and availability of a toolset called Rodin [16], [17]. 

Similar to KAOS, it also contains a refinement feature and the 

process consist of evolving the abstract model into a concrete 

model [18]. 

Many works have been conducted to bridge the gap 

between requirements and specification phases using KAOS 

and Event-B. The approach proposed by Bicarregui et al. [19] 

used the KAOS goal model for analysis and elaboration of 

requirements, and their transformation focused on the leaf 
goals from the goal model. The leaf goal refers to a goal with 

no children or sub-goals. They introduced the notion of 

triggers in the event component.  

Ponsard and Devroey [20] introduced a new approach by 

relying on KAOS agents and Event-B machines using UML-

B and the decomposition technique in Event-B. Their 

approach involves creating the abstract machine and context 

to represent the entire KAOS object and agent models. They 

constructed several initial machines, where each initial 

machine represents one agent in the goal model. 

The approach proposed by Matoussi et al. [10] concerned 
with the integration of Event-B model into KAOS goal model, 

where they expressed Event-B model using the concept of 

goal model. They proposed a model that could support the 

refinement mechanism of Event-B, but their model cannot 

support all Event-B components. In addition, this approach 

only focused on the event component of Event-B and did not 

consider other components of Event-B. 

The latest approach by Fotso et al. [21] introduced the use 

of ontologies to enhance the SysML/KAOS model and more 

concerned with the translation of ontologies, or domain model, 

into B specification. They did not translate the model into 

Event-B specification. Their approach is different with ours 
because they emphasized the use of ontology in their 

transformation rules, which we did not use in our approach 

For this project, we adopted an approach introduced by 

Matoussi et al. [10] and extend it to ensure all Event-B 

components are covered by proposing model transformation 

rules. In order to ensure the derivation from KAOS model to 

Event-B, we used a case study of Mine Pump Controller, 

which was taken from Ponsard and Devroey [20].  

The contributions or specific objectives of our project are 

listed as follows: 

 Model transformations rules for KAOS model to Event-
B model are proposed. 

 We implemented the model transformation rules using 

a model transformation language.  

 We evaluated the correctness of the model 

transformation rules using a case study. 

The content of this paper is organized as follows. Material 

and methods are described in Section II. We described the 

results of the transformation rules using the case study in 

Section III. In the last section, Section IV, is the conclusion 

for this project. 

II. MATERIAL AND METHOD 

In this section, we present the rules that we used for the 
transformation of KAOS model to Event-B model. We also 

describe the technologies used to implement the 

transformation rules. In addition, we present the KAOS 

modelling for the case study that we used for evaluation 

purposes. Figure 1 shows the conceptual framework for our 

research. 

 
Fig. 1  Conceptual Framework of the Project 

 

Our approach aims to bridge the gap between the 

requirements phase and formal specification by using KAOS 

and Event-B, where we want to derive the Event-B model 

from KAOS model. KAOS requirements model consists of 

four sub-models: goal, object, responsibility, and operating. 

Thus, for this approach, we used KAOS goal model to derive 

event component of Event-B while other components, such as 

context, variables and invariants, used KAOS object and 
responsibility model.  

In the preliminary studies stage, we discover the recent 

methods or approaches we can use to define our model 

transformation rules. The work that has been chosen as the 

main reference for this project is Matoussi et al. [10], where 

they used KAOS goal model as the link to bridge the gap 

between requirements and formal specification. Thus, we 

used their concept, where each goal consists of target and 

current conditions. Matoussi et al. [10] used the current 

condition to represent guard component of Event-B event and 

the target condition to represent the action component of 
Event-B event. 

The first contribution of this project is defining the 

transformation rules of KAOS model to Event-B model, 

which is the second phase in the conceptual framework. We 

used KAOS object model and responsibility model to enhance 

the approach proposed by Matoussi et al. [10] to 
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accommodate the Event-B components that they did not cater 

to. Thus, we made some adjustments on the existing meta-

model by adding new meta-classes to assist us in deriving the 

Event-B context, and variable and invariant component of 

Event-B. 

The second contribution is to implement the transformation 

rules using model transformation language, which is the third 

phase of our project methodology. Our project has chosen a 

model-driven engineering approach [22], [23]. We adopted 

model-to-model method to ensure the translation of KAOS 

model to Event-B model, and we used ATL language [24], 
[25] as the model transformation language. 

Evaluating our transformation rules is our third 

contribution for this project. For this phase, we evaluated the 

rules using Mine Pump Controller case study [20]. First, we 

modelled the case study into KAOS model, and then we used 

the KAOS model to transform into Event-B model using our 

proposed transformation rules. We used the proof obligations 

of Event-B to verify the correctness of our output model. 

Event-B proof obligations are provided in Rodin toolset. 

A. Rule Definition 

The first objective of this project is to propose model 

transformation rules that can perform the translation of KAOS 

model to Event-B model. Thus, we took advantage of 

Eclipse's model management technologies, Eclipse Modelling 

Framework (EMF). We used model-to-model approach [26], 

and therefore, we used two meta-models, where one meta-

model represents KAOS method and the other represents 

Event-B method. 

For KAOS meta-model, we used the one introduced by 

Matoussi et al. [10] with new addition of meta-classes that are 
denoted by yellow in Figure 2. The four new meta-classes are 

needed to generate the Event-B context elements: sets, axioms 

and constants, and invariants and variable of Event-B 

machine. As for Event-B meta-model, we took the existing 

meta-model that had been provided by Rodin toolset.  

As we can see, the meta-class PackagedElement composed 

of meta-class Relationship, meta-class Goal and meta-class 

Object. For meta-class relationship, it represents the goal 

refinement in the KAOS goal model and can be classified into 

three types: meta-classes And, Or and Milestone. As for meta-

class Goal, it can be classified into two types: meta-class 
AbstractGoal and meta-class ElementaryGoal. Meta-class 

AbstractGoal concerns the most abstract goal in the goal 

model whereas meta-class ElementaryGoal concerns the sub-

goals or children of the abstract goal. 

The new meta-class Object represents the entity of the goal 

model that had been identified in the informal requirement. 

The bi-directional reference, such as central and sub, concerns 

with linking the object to its central object. If an object is a 

containment of the main object as the central object. Meta-

class Object contains two new meta-classes. The first meta-

class is meta-class attribute, which represents the properties 
of the object in the KAOS object model, whereas the new 

meta-class agent represents the agent responsible for the goal. 

Both meta-class attributes and meta-class agents consist of 

meta-class enumeration, representing the value in the object 

and responsibility models. 

Based on the two meta-models, the mapping of the 

transformation model from source model, which is KAOS 

model, to target model, which is Event-B model, is shown in 

Table 1. As shown in the table, we can derive the variable and 

invariant components of Event-B machine using KAOS 

object model. The set, constant and axiom components, which 

are the components in Event-B context, are derived from the 

attributes in KAOS object model. We can also use KAOS 

agent model to derive Event-B context. The event component 

of Event-B can be obtained using the goals in KAOS goal 

model, and the variable component of Event-B machine can 
also be obtained from KAOS goal model. 

TABLE I 

MAPPING OF SOURCE MODEL TO TARGET MODEL 

KAOS Meta-Model Event-B Meta-Model 

Object Variable 

Invariant 
Attribute Set 

Constant 

Axiom 
Agent Set 

Constant 

Axiom 
Goal Event 

Variable 

 
Table 2 describes the transformation rules we formulated 

for the translation of the two methods. We defined the rules 

based on the mapping of the two meta-models. Rule 1 with 

transforming meta-class Object into variable and invariant of 

Event-B machine. Rules 2 and 3 concern with the meta-class 

Attribute and Agent respectively are used to generate the 

Event-B context component. Rule 4 is used order to 

transforms the properties of meta-class Goal into event and 

variable of Event-B machine. 

TABLE II 
TRANSFORMATION RULES 

Rule Description 

1(a) Name of the object represents variable for Event-B 
machine 

1(b) Translating the object, its central object and its attributes 

into invariant of Event-B machine 
2(a) Name of the attribute represents the set of Event-B 

context 
2(b) The enumeration of attribute represents the constant of 

Event-B context 
2(c) Translating the name of attribute and its value into axiom 

of Event-B context 
3(a) Name of agent represents the set of Event-B context 
3(b) The enumeration of agent represents the constant of 

Event-B context 
4(a) Translating the name of the goal and taking the 

information obtained from Rule 4(b) and 4(c) in order to 
complete the event component in Event-B machine, and 
use the name of the parent goal to show the event 
refinement 

4(b) The target condition of goal represents the action of event 
4(c) The current condition of goal represents the guard of 

event 
4(d) The target condition of goal represents the variable of 

Event-B machine 
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Fig. 2  Extension of KAOS Meta-Model 

 

B. Rule Implementation 

Model-driven engineering approach has been adopted in 

this project in order to transform one model to another model, 

where in this case we want to transform KAOS model to 

Event-B model. Our proposed rules were implemented using 

Eclipse platform based on model-to-model transformation. 

Atlas Transformation Language (ATL) has been chosen as the 

model transformation language since it has been widely used 
in model-driven engineering. 

The basic concept of model transformation for our 

approach is shown in Figure 3. The transformation starts by 

taking a source model in the XML file and producing another 

XML model, the target model. The transformation is 

conducted by a transformation program, where, in this case, 

the rules that have been written in ATL language. The 

transformation program is also known as a model. Thus, the 

source, target, and transformation models must conform to 

their respective meta-models. Subsequently, these meta-

models must conform to the meta-meta-model, which is the 
Meta-Object Facility (MOF). 

 

Fig. 3  Basic Concept of ATL Transformation 

The transformation process occurred through declarative 

rules, which can call on auxiliary functions, also known as 

helpers in the syntax of ATL language. Based on the rules that 

have been explained in Table 2, we have derived four 

declarative rules. We used auxiliary functions to assist in 

extracting the information from the KAOS model, and we 

used declarative rules to transform the models. 

C. KAOS Modelling 

For evaluation purposes, we used a case study of Mine 

Pump Controller, which had been taken from Ponsard and 

Devroey [20]. It is a case study on the sump that is used to 

control the draining of water inside a mine. A sump is an area 

that collects the water entering the mine. The level of water is 

kept within bounds by a pump controller. Inside the mine are 

three sensors and two controllers that monitor the safety of the 

mine. The sensors are methane, high water, and low water, 

whereas the controllers are pump and alarm controllers. The 

requirements of the system are listed as follows: 

 The pump should be switched on when water reaches 
high level to keep the mine dry and avoid flooding. 

 The pump should be switched off when water reaches 

low level to avoid pump burning and damage. 

 The pump should be switched off, and an alarm must 

be sounded when methane gas is detected inside the 

mine to avoid the explosion risk. 

We construct the goal model for this case study using the 

goal-oriented requirements elaboration method, and Figure 4 

illustrates the KAOS model for this case study. Based on the 

requirements listed above, we identify the preliminary goals, 

and from there, we elicit the requirements by asking WHY 

and HOW questions. Asking WHY questions assist in 
identifying high-level goals, and this process can be known as 

a bottom-up process. Meanwhile, asking HOW questions 

allow us to identify the sub-goals for the parent goal. Asking 

the two questions allow us to refine the goals until enough 

detail is acquired. 
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Fig. 4  KAOS Model of Mine Pump Controller Case Study 

 

After the completion of refining the goals, we can assign 

an agent to the goals. In order to find the agents responsible 

for the goals, we asked WHO questions, where we want to 

identify the entity that plays the role of achieving the goal and 

is capable of monitoring and controlling the objects in the goal. 

We identified five agents interacting with the goals based on 

the problem statement mentioned in the first paragraph. The 

pump controller is responsible for controlling the pump by 

turning on/off according to water level. Alarm controller is 

responsible in controlling the alarm by switching on/off based 
on the presence of methane gas. Low water sensor is 

responsible in detecting the low water level inside the mine. 

High water sensor is responsible in detecting the high-water 

level inside the mine. Methane sensor is responsible in 

detecting the methane gas inside the mine. We also derived 

the objects and their attributes from the requirements to 

construct the object model. For this case study, we identified 

five objects or entities: mine, pump, alarm, methane, and 

water level. We can also assign agents to these identified 

objects. 

III. RESULT AND DISCUSSION 

This section describes the evaluation of our proposed 

translation rules using the Mine Pump Controller case study, 

along with the limitation of our approach. 

A. Event-B Context Component 

With the introduction of four new meta-classes, we can 

obtain Event-B context, which is missing from Matoussi et al. 
[10], our rules managed to generate the components for Event-

B context. However, to ensure the transformation's 

correctness, the designer has to transfer the generated output 

into the Event-B platform manually. The Event-B context that 

our rules have transformed is shown in Figure 5. 

Using Rule 2 and Rule 3, we obtain the sets, axioms and 

constants based on the meta-class Attribute and meta-class 

Agent. The designer manually adds the set MINE so that the 

variables can be declared as the subset of the set. As for other 

sets, we followed Rule 2(a), which took the name value in 

meta-class attribute and represented it as sets in Event-B 

context. Then, we followed Rule 2(b) to obtain the constants 
component. For example, in the object model, object Pump 

contains attribute operation, and the values for operation are 

start and stop. Using Rule 2(a) and Rule 2(b), the attribute 

operation becomes the set, and the value starts and stop 

become the constant in Event-B context. Subsequently, we 

used Rule 2(c), to obtain the axiom component, where it took 

the name and value of meta-class attribute. Using the same 

example, the axiom obtains from object Pump is partition 

(OPERATION, {start}, {stop}). 

Rule 3 follows the same principle as Rule 2. The difference 

is Rule 3 takes the information from meta-class agent. Let us 

take the agent Pump Controller as an example. Following 
Rule 3(a), the name of the agent becomes the set component. 

However, for this case, we did not use its agent to represent 

the set component because all of the agents contain the same 

operation, which is on and off. Therefore, we took their 

enumeration to derive the constant component based on Rule 

3(b).  

Since Event-B does not allow duplication in terms of 

constant, we decided to combine the agents into one, leading 

to a new set STATUS that represents the operation of the 
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agents. For example, status refers to the state of the pump 

controller, whether it is turned on or off. Currently, there is no 

rule to assist us in deriving the set component regarding the 

agent that contains the same enumeration. Due to this, it is 

based on how the designer derives this component. 

 

 
Fig. 5  Event-B Context 

B. Event-B Abstract Machine 

The addition of new meta-classes can also derive the 

variable and invariant component of Event-B machine as 

shown in Figure 6(a), following Rule 1 and Rule 4(d). Rule 

1(a) is related to meta-class Object, where it took the object’s 

name as the variable (pump, alarm, methane, water level and 

mine) while Rule 4(d) concerns with taking target condition 

of a goal as the variable (mine_cond). In order to obtain the 
invariant, we used Rule 1(b), where it used the name of the 

object, its central object and its attributes to represent the 

invariant. 

Let us take object WaterLevel as an example. The central 

object for this object is object Mine and its attribute is Level. 

Therefore, we combine this three information and eventually 

create inv0_5, where it indicates that there is water level 

inside the mine and attribute Level indicates the type of water 

level (high, low). But it is different for the first invariant 

(inv0_1) because it is derived manually. For object mine, 

there is no central object, and this is because the object mine 

is the central object for other objects. Thus, we defined a user-
defined type to give a type to mine, which is set MINE, and 

this process is done manually by the designer. 

Rule 4 is used to transform the goal into event component 

in Event-B. Rule 4(a) used the goal's name to obtain the 

event's name. Let us take the goal SafeMine as an example. 

This goal is the abstract event in the abstract machine. Thus, 

the name of the abstract event is SafeMine, following Rule 

4(a). The following rules in Rule 4, such as Rule 4(b) and Rule 

4(c), are used to complete the event component. Rule 4(b) 

concerns taking the target condition as action of an event, 

whereas Rule 4(c) concerns taking the current condition as 
guard of an event. In order to obtain the guard and action for 

the event, the information is obtained through properties of 

the goal model. Table 3 shows the properties of goal SafeMine 

in the KAOS model. 

 
Fig. 6  Event-B Abstract Machine: (a) Variable and Invariant Component  

(b) Abstract Event Component 

TABLE III 
PROPERTIES OF GOAL SAFEMINE 

Properties Value 

Name SafeMine 
Parent  

Children NoFlooding; 
NoPumpDamaged;  
NoExplosion 

TargetCond mine_cond = safe 
CurrentCond  

 

Following Rule 4(b), the target condition (mine_cond = 

safe) represents the action of the event. As for current 

condition, there is no current condition for abstract goal 

because the abstract goal is the most abstract goal and general 

goal in the goal model. Therefore, the goal consists of target 

condition only. As for the parameter (a), we manually added 

the parameter in order to represent that the parameter is the 

type of central object. Figure 6(b) shows the abstract event 
SafeMine in Event-B specification 

C. Event-B First Machine Refinement 

Next is for the first machine refinement (m_1). Goal 

SafeMine consist of three sub-goals, which are goal 

NoFlooding, NoPumpDamaged and NoExplosion. Therefore, 

for the first machine refinement, it consists of three events. 

For example, the name of the sub-goal is NoFlooding. 

Therefore, NoFlooding is also the name of the event, 
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following Rule 4(a). This rule also completes the event 

component, where it calls the information obtained from Rule 

4(b) and Rule 4(c) to get the guard and action of an event. 

Table 4 below shows the properties of goal model in our 

KAOS editor. 

Rule 4(b) refers to the transformation of the target 

condition to action in an event. As shown in Table 4, the target 

condition for NoFlooding is the safe condition of flood 

(flood_cond = safe); thus, it represents the event's action. Rule 

4(c) refers to transforming the current condition to guard of 

an event. For example, the current condition for NoFlooding 
is the operation of the pump, where the pump has to start 

operating (pump = start) to ensure no flooding occurs in the 

mine. As for event refinement, Rule 4(a) is used to obtain the 

parent goal. The rule takes the name of the parent goal, for 

example the parent goal for NoFlooding is SafeMine, and later 

show that the event NoFlooding is refining the abstract event 

SafeMine. The first guard (grd1) and first action (act1) of this 

event is kept from the abstract event because this event refines 

and extends the abstract event. Figure 7 shows the event in 

Event-B specification for the sub-goal NoFlooding. 

TABLE IV 
PROPERTIES OF GOAL NOFLOODING 

Properties Value 

Name NoFlooding 
Parent SafeMine 

Children HighWaterDetected;  
PumpTurnOn 

TargetCond flood_cond = safe 

CurrentCond pump = start 

 

 
Fig. 7  Excerpt of Event in First Machine Refinement 

D. Event-B Second Machine Refinement 

For the second machine refinement (m_2), the derivation of 

event also used Rule 4. For example, the sub-goals or children 

for goal NoFlooding are goal HighWaterDetected and 

PumpTurnOn. Let us take goal PumpTurnOn as an example. 

Following Rule 4(a), the goal's name becomes the event's 

name. Rule 4(a) is also used for event refinement, where it 

takes the name of the parent goal to show the refinement. The 

parent goal for this goal is goal NoFlooding. Thus, the rule 

will show that event PumpTurnOn is refining the event 
NoFlooding. The target condition for this goal is to turn on the 

pump controller (pump_ctrl = on) and the current conditions 

for the goal are high water level (water_level = high) and the 

initial state of pump controller (pump_ctrl = off). Using Rule 

4(b), the target condition becomes the event's action, and 

using Rule 4(c), the current conditions become the guard of 

event. Similar to event NoFlooding, the first guard (grd1), 

second guard (grd2), first action (act1) and second action 

(act2) are kept from the first refinement event. Table 5 shows 

the properties for goal PumpTurnOn whereas Figure 9 shows 

the event component in second machine refinement. 

TABLE V 
PROPERTIES OF GOAL PUMPTURNON 

Properties Value 

Name PumpTurnOn 

Parent NoFlooding 
Children  

TargetCond pump_ctrl = on 
CurrentCond water_level = high;  

pump_ctrl = off;  
methane = false 

 

 
Fig. 8  Excerpt of Event in Second Machine Refinement 

E. Event-B Proof Obligations 

After the generation of Event-B components using KAOS 

model, we verified the correctness of the Event-B model. The 

model is proved using a set of proof obligations (POs) that had 
been generated by Rodin platform. Proof obligations are used 

to ensure the consistency of a certain property in formal 

specification [26]. If we can prove the proof obligations, then 

that property in the specification is consistent. The main 

properties for checking the correctness of Event-B model are 

refinement between models, well-definedness of expressions 

and invariant preservation [27]. 

The statistics of proof obligations for our Event-B model is 

described in Table 6. The total refers to the total number of 

POs that had been performed on the model. Auto PO refers to 

the number of proof obligations that are automatically 

discharged by the provers whereas manual PO refers to the 
number of PO that are manually discharged. Two proof 

obligations are done manually, and these POs are done by re-

running the proof obligation using external prover. 

TABLE VI 
STATISTICS OF PROOF OBLIGATIONS 

Machine  Auto PO Manual PO Total PO 

m_0 1 1 2 
m_1 12 1 13 
m_2 26 0 26 
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F. Limitations 

Even though our rules managed to transform KAOS model 

to Event-B model, there are still some limitations because the 

implementation of our rules can only generate the XML file 

for Event-B model and therefore need the help of the designer 
to manually convert the XML file into Event-B specification 

in order to verify the correctness of the model. We did not 

manage to develop a tool that could support our proposed 

rules due to time constraints. In addition, our approach 

focused only on functional requirements, unlike Matoussi et 

al. [10], whose approach covered both functional and non-

functional requirements. 

Currently, the generated output from the model 

transformation rules can only give the designers the general 

layout for constructing the system's Event-B specification. 

The output can assist the designer in classifying the 
information from the goal model and object model into Event-

B components. However, the designer might need to double-

check the translation and do some editing on the translation 

done by the rules to accommodate the Event-B specification 

and ensure the model's correctness.  

In addition, our rules did not cater to machine refinement. 

Our rules only consist of two machines: abstract machine and 

first machine refinement. Therefore, for the subsequent 

machine refinement, the designer must perform manually per 

the goal model. Our proposed rules are still in an early stage 

of development and require some improvements, especially 

on ensuring the machine refinement and integration of ATL 
codes with the Rodin platform to make the model 

transformation automatic.  

IV. CONCLUSION 

Our approach focused on the transition from the 

requirements phase to the specification phase, where the main 

objective is to bridge the gap between the two phases, and we 

used a model-driven method to achieve the objective. The 
literature review that we performed to facilitate the transition 

gave some insight into the limitation of the existing 

approaches. The translation concept proposed by Matoussi et 

al. [10] was adopted in our approach, where we mapped the 

Achieve goal of KAOS model with event of Event-B machine. 

Then, we used the current and target condition in the goal to 

represent the guard and action in Event-B event component. 

We made some adjustments to the existing meta-model by 

adding four new meta-classes so that we can accommodate 

other components of Event-B, such as Event-B context. We 

used model-to-model transformation to perform the 

translation of two models using model transformation 
technologies, such as EMF and ATL. We chose Mine Pump 

Controller case study to model its requirements into KAOS 

model and evaluate the correctness of our proposed model 

transformation rules.  

Currently, our approach is semi-automated because we 

need the help of Event-B designer to transform the generated 

output into Event-B specification manually. This process can 

be simple for small systems, but it can be tiresome when it 

involves large numbers of requirements. Thus, it is beneficial 

to have an automated tool for transforming the KAOS model 

to Event-B.  

Since our rules did not cater to machine refinement, the 

ATL rules only defined the two machines using an entry point 

rule, which did not use any information from the source model. 

There is no specific rule for machine refinement. In order to 

cater to the limitation of machine refinement, we can use 

meta-class relationships using the goal’s relationship. Not 

only that, by using this meta-class, we can make our event 

refinement more systematic.  

The evaluation of our proposed rules is currently done 

using one case study. We might use other case studies to 

ensure the correctness of our transformation model. Also, the 
modeling tool for KAOS, such as Objectiver [28], is not an 

open-source tool. It is hard to obtain the XML file for our 

source model. Thus, we made our KAOS editor using EMF to 

gain the input file. Due to time constraints, we could not 

construct an open source KAOS editor; therefore, we can 

consider this as our future work. An open-source KAOS editor 

can ensure the possibility of making an automatic version of 

the model transformation. 
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