
Vol.12 (2022) No. 5

ISSN: 2088-5334

Adoption of Visual Programming Environments in Programming

Learning

Qais Batiha a,*, Noraidah Sahari a, Nazatul Aini a, Noorazean Mohd a

a Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 3600, Malaysia

Corresponding author: *P93243@siswa.ukm.edu.my

Abstract— Programming education is gradually integrated into the school and university curricula. Accordingly, studies in the

Computer Science education field have highlighted issues such as high failure rate, memorizing, bugs, the complexity of concepts,

motivation, and uconfidence faced by students when learning a programming language, specifically object-oriented programming.

These issues require specific learning environments to reach the target audience. Therefore, the objectives of this article are to identify

the issues based on previous work and to verify those issues by interview feedback conducted with lecturers in the Department of

Computer Science and Information Technology at the Faculty of Information Science and Technology, Universiti Kebangsaan

Malaysia. Following that, the theoretical principles underpinning environments were studied to explore the suitability of these

environments for university education based on the identified issues. The investigated environments included Turtle Graphics, Alice,

BlueJ, Greenfoot, Snap!, and NetsBlox, a co-located collaborative block-based programming, and OOPP were studied and used to teach

and learn object-oriented programming. Based on the interviews with experts, we found that students still had issues when learning

programming, which involved memorizing, bugs, the complexity of concepts, unconfidence, communicating with students during a

calamity (distance learning), and a number of students in labs. We conclude that these environments focus on some issues and ignore

others, and no single environment satisfies all these issues, which causes students to be demotivated. In a further study, all these issues

will be addressed by developing a learning environment, and its effectiveness shall be tested.

Keywords—Block-based programming; collaborative learning; object-oriented programming (OOP); syntax error; visual

programming languages (VPLs).

Manuscript received 11 Jun. 2021; revised 14 Apr. 2022; accepted 13 May 2022. Date of publication 31 Oct. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Programming has been seen as an obligatory course in

secondary schools and the first year of Computer Science

degrees for the past 20 years. Therefore, many challenges

should be addressed, such as the high failure rate in

programming courses that has been a subject of extensive

scrutiny [1]–[4]. This situation indicates the incompatibility

of traditional learning methods, including the programming

for novice students, which is possibly due to the difficulty of

object-oriented concepts, demotivation, and students' lack of

confidence in the inadequately developed novice solutions.
Similarly, the Covid-19 crisis spreading worldwide at the end

of 2019 has greatly affected education and hampered the

educational process. Subsequently, students and lecturers are

isolated, while the students' access to new knowledge from

lecturers has become challenging [5].

Learning programming involves computing principles,

which include memorizing, algorithms, logic, patterns,

decomposition, abstraction, computational thinking, and

evaluation. Hence, students' problems in this programming
could be resolved using these principles [6]. It was argued in

some studies [4], [7] that first-year students generally had

insufficient time, no programming experience, or were

unfamiliar with programming concepts. Besides, the

requirements [6] for developing better programming skills

(e.g., object, inheritance, selection, and repetition) in

individuals and the production of future citizens with

sufficient skills have been inadequate [8]. Additionally,

several issues have emerged in the teaching and learning

programming courses for students and instructors.

Programming concepts such as syntax error, language syntax,
code quality, and code tracking may impede the students from

effectively learning a programming language and maintaining

their motivation. Programming courses normally recorded a

1921

high drop-out rate, implying the considerable challenges

faced by students in learning programming [9], [10].

In a typical traditional programming class, students are

encouraged to participate in learning activities through

program development using specific languages. This

phenomenon normally occurs after introducing a related

textbook [11]. However, it should be emphasized that learning

programming goes beyond reading educational books and

understanding programming concepts [12]. Students must

also master programming concepts and computational

thinking, the primary foundations of developing an
individual's programming skills. Additionally, customary

programming courses solely provide text programming, given

that students today are more acclimatized to computer-based

(graphical) environments such as visualization tools, program

development, or debugging. Thus, textual programming and

command lines would appear foreign and unattractive [13].

Visual Programming Languages (VPLs) encompass

languages based on graphical elements where the text is

eliminated or used only to some extent. For instance, the first

VPL encompasses the graphical system, Seymour Papert,

which was introduced in the 1960s [14]. This was followed
by the VPLs' introduction of various iterations and variants,

as shown through the puzzle blocks, including Google

Blockly [15]. These VPLs are not text-based but employ drag-

and-drop and other spatial actions. For the programmers,

VPLs increase programming availability for a specific

audience.

The use of VPLs enhances the precision of the execution

of programming tasks and enables faster execution of

programming tasks [16]. Besides, it contributes to more

opportunities for programmers to write programs based on

four common strategies embraced by VPLs: concreteness,
directness, explicitness, and immediate visual feedback [17].

To develop an interactive environment capable of enhancing

student learning, the issues faced by students in learning

object-oriented programming (OOP) must be identified, and

the methods of improving learning programming must be

determined. This research addressed the expert's perspectives

on the issues of learning OOP. Based on the determined issues,

this research offered a comparative analysis of the freely

available teaching/learning programming environments. The

study results then presented the features important to the

environment to enhance students' motivation.

Based on previous studies, this study approached the issues
students face in learning programming. Following that, open-

ended questions were developed to verify these issues from

the perspective of experts. The study also focused on several

freely available environments that focused on learning OOP.

The theoretical principles underlying these environments

were examined to qualitatively assess the environments and

explore their suitability within the setting of secondary and

university based on the problems identified in previous

studies and interviews with experts. This paper attempts to

answer the following research question: RQ1) What are the

experts' perspectives on the issues (concept difficulty,
memorizing, bugs, number of students, and unconfident)

leading to the demotivation of OOP learners?, and RQ2) Did

the seven object-oriented learning programming

environments tackle motivation issues?

A. Literature review

Many works of research have been conducted to study

issues faced by students in learning OOP. Alternatives to

teaching methods about OOP topics were determined as OOP

is a complex and compulsory subject for students. According
to Hnin and Zaw [18], students are faced with issues in

memorizing reserved words and syntax errors in writing code.

Additionally, the slow pace of problem-solving and

production of lower-quality software leads to less confidence

in learning programming [19]. During the Coronavirus

pandemic, students' difficulty in communicating with teachers

during curfews and distance learning leads to slow learning

progress and frustration [20], [21].

The problems faced by students in programming courses

have been addressed in numerous studies, such as the

success/failure rates, the complexity of the programming
material, syntax error, error messages, individual learning

(solo programming), and the number of students per lab [2]–

[4], [10], [22], [23]. Nonetheless, efficient and innovative

methods for learning basic programming skills are present.

These methods motivate students to learn while being

valuable additions to the teaching methodology. Many

environments for graphical programming with high

educational value are available and more attractive compared

to textual programming. Some of these environments have

been suggested as elements of school learning methodology

for problem-solving development [24].

For novice learners, this entire procedure may appear
extremely advanced to integrate. The most important part of

the process is logic, which is the initial step in developing a

comprehensive program. Notably, given that many high-level

languages (e.g., Java and C++) contain comparable semantic

and syntax rules, writing statements using a particular

programming language requires sufficient knowledge of the

programmer regarding language structure, the solution to

coding errors, and the ability to memorize certain concepts.

Hence, the complex structure of programming languages has

value to professionals, although it is not a pedagogical value.

Consequently, many learners are faced with difficulties in
understanding the fundamental concepts, including those

related to data structure management or the generation of an

algorithm to resolve an issue. Besides, teachers further

emphasize the difficulties in programming laboratory

sessions due to various factors, including large numbers of

students per laboratory and communicating with students

during a calamity such as Covid-19.

Visual programming language solves issues novices face

through a focus on the programming language logic while

removing the need to learn the programming language syntax

beforehand or write many code lines [24]. These tools allow

novices to master programmatic concepts before
understanding the goal language's syntax and focusing on

problem logic before syntax. Notably, VPLs are an innovative

and increasingly popular solution for programming novices in

the classroom due to their high enjoyability and motivation

[25], [26].

Tsai [27] studied using VPL (block-based) to teach

students about problem-solving and found a significant

improvement. Meanwhile, the second research test explored

the association between fun and programming, which

recorded that enjoyability was a good motivator to practice

1922

and program new things. By introducing students to

programming, VPL was an excellent motivator for novices

who wished to learn to program, as recorded across several

programming environments [28], [29].

A comparative study recorded that students obtained higher

scores in concept assessments at the high school level after

five weeks of studying using VPL (block-based) compared to

similar text-based alternatives [30]. Notably, the VPL to

programming successfully engaged novice programmers

from historically underrepresented groups [31], [32]. Also,

Weintrop [30] demonstrated that students who were learning
using a VPL curriculum were properly prepared for future

learning using a text-based approach.

Failure to adapt to diverse learning styles leads to

unsuccessful traditional learning programming methodology,

followed by a lack of motivation with the traditional teacher-

centered pedagogy approach. In contrast, the notion of

constructivism assumes that student activities and social

interactions amongst peers (e.g., virtual pair programming

[33], [34] and discussion forums [35]) have the same effect

on learning and knowledge.
Virtual pair programming is a form of collaborative

learning where the programmers are located in separate places

without the need for in-class face-to-face interaction via

synchronous or asynchronous interactions (video call, voice

call, or shared desktop) [36]. Computer programming courses

may be challenging, besides the significant falling grades

among students due to the lack of time and motivation.

According to Adeliyi et al. [19], pair programming improved

programming and computer practice learning. Several studies

performed empirical research on pair programming effects in

the computer field. Subsequently, Adeliyi et al. [19] and

Hughes et al. [37] indicated that pair programming led to
seven positive outcomes, including mutual encouragement,

reciprocal supervision, correction, re-examination, mutual

trust, self-confidence, and sharing of expertise.

The collaboration technology could improve students'

programming, minimize programming errors and design

efficiency, enhance students' happiness and skills, team

cooperation morale, self-confidence, and students' learning

activities. Besides, social interactions lead to the students'

reliance on sources other than the teachers instead of

perceiving the teachers as the only source for acquiring skills

and seeking suggestions, which reduces the tutors' work

burden. Hsu et al. [38] and Tsompanoudi et al. [39] found that
encouraging students to pair in a programming course was

more effective for students engaging in high-level languages,

leading to a higher percentage of students completing the

course. Similarly, the distinctions between the learners who

work "solo" and those working in pairs were made in a 2018

paper, contributing to the conclusion that programming

knowledge, collaboration, and technical skills were further

improved with a partnership [40]. According to Cheng and

Lei [41] and Hughes et al. [37], discussions between students

allow them to gain more insights, play a role in

communication with others, and increase their confidence.
Additionally, this phenomenon reduces communication

problems between students and lecturers while increasing

students' achievements and the lecturer's adequate supervision.

To address the issues stated in previous studies related to

learning OOP, the features of a programming environment

could be identified to enhance students' learning. According

to Xinogalos et al. [22], the main features of a programming

environment that would improve the motivation to learn OOP

are user-friendliness with a simple design, visualization of

OOP concepts, easy understanding of error messages with a

recommendation to solve the issue, puzzle-like statements

(editor), and execution. Meanwhile, de Oliveira et al. [40],

and Brown and Wilson [12] suggested that pair programming

as a "student-student" was the most powerful feature in

increasing students' confidence and code solution quality.

Laurel [42] suggested that learning programming should
include group interaction (e.g., forums), modularity (e.g.,

variety of a puzzle piece), and expressiveness, which would

motivate students to a complex programming process and

enhance communication.

II. MATERIALS AND METHOD

An interview with five experts is sufficient to discover the

presence of an issue. Having more than five participants
would have the analysis too complicated and would have

generated an excessive amount of data [43]. Three

interviewees were male, while the other two were female and

were selected based on their reputation and experience as

lecturers for several years (ranging from 5 to 18 years) in

Computer Science and Information Technology faculty. Each

specialist published on programming challenges and had

tough bachelor's programming courses. A total of 30

publications were published by three of the participants. The

interviews were conducted with individuals who strongly

relate to learning OOP. They were invited to share their

perspective on the questions obtained from previous work.
The interview started with an explanation about the purpose

of the research and the reason for using the interview method.

The interviews were conducted at the Faculty of Information

Science and Technology, UKM, each lasting for a maximum

of one to two hours.

Following that, we present an assessment of seven

educational learning environments that were criticized based

on literature review and issues raised by experts. In this

context, relevant literature has been studied and carried out an

assignment in each one of the following environments: the

well-known IDE "objects-first" by BlueJ [44]; OOPP [45]
hybrid environment; Greenfoot [44] learning and microworld

environment; Turtle graphics [14] physically oriented

environment; Snap! [46] game-oriented environment, and the

collaboration extension environment of NetsBlox [47]; Alice

[48] 3D storytelling and animation environment, and AliCe-

ViLlagE [49] virtual pair programming environment; Multi-

Device Grace [50] touch-screen block-based programming. A

comparative analysis of seven educational programming

environments was performed. Specific educational

programming environments were selected from a wide range

of environments based on four main criteria. This research
used interactive programming environments that focused on

OOP learning, incorporated a wide variety of features to assist

novices in various methods, implemented free availability,

and influenced student practice. A description of each

environment technological and historical created a context for

this study.

Seymour Papert introduced Turtle graphics in the late

1960s as parts of the Logo programming language [14]. The

1923

project was logo-based and created to support Papert's notion

of mathematical education. Turtle graphics can be applied in

many different languages and are commonly used in basic

programming education concepts for novices. The

environment of the turtle graphics was fashioned from the

MIT project of a robot that resembled a turtle, while its library

encompassed the concept of a "turtle", which could move

across a 2D plane. A pen driving with the turtle could be

positioned on or off the ground, which led to the tracking of

the turtle's movement (see Fig. 1). The turtle graphics design

was inspired by a physical and graphical model, which was
similar to the act of drawing on paper with a pen. This concept

would be simple to grasp for students.

Fig. 1 Turtle Graphics environment

Alice is a block-based storytelling approach that depends

on the objects-first approach. Alice was introduced to female

students in middle school as a computer program grounded on

interactive 3D animated stories [51]. The program was

introduced in 2005 by a group of researchers at Carnegie
Mellon University, led by Randy Pausch when American

students' interest in Computer Science dropped by 50%–70%

[48]. Therefore, Alice was introduced as an environment to

improve the ability of at-risk undergraduate computing

students to achieve success in Computer Science 1 and

beyond [52]. In 2014, Alice had an extension called AliCe-

ViLlagE to enhance students' confidence and communication

skills by adding the pair programming feature to the Alice

environment [49]. Alice and AliCe-ViLlagE allowed students

to observe the progress of animated programs promptly.

Furthermore, the outstanding visual feedback offered by Alice
allowed students to relate the program "piece" to the action

they observed in animations (see Fig. 2).

Fig. 2 Alice environment

Besides, Alice provided many features presented as

Actions (two categories: an object to execute motion and

transform the physical nature of an object), functions, titled

instructions, decisions, recursion/looping, and events/

interactions [48].

Initially introduced in 1999, BlueJ entails the re-

implementation of the Blue environment (applied using a C++

programming language) for Java language [44]. BlueJ was

particularly created to introduce the teaching of a

programming language in a Computer Science course at

Sydney University using a 2D environment platform. It also
enables the identification of classes and the relationship

between them. In this case, the UML-like notation is used

(refer to Fig. 3B). When the classes are compiled (see Fig.

3A), students could interactively instantiate objects (refer to

Fig. 3D) to obtain a simple representation of objects created

on the bench objects (refer to Fig. 3C). Accordingly, these

objects could be checked, while their methods could be

executed. The main advantage of BlueJ is the apparent

separation of the concepts of objects and classes, which could

be inspected and interacted with [44].

Fig. 3 BlueJ environment

The Greenfoot environment is an education-incorporated

development for teaching and learning programming among

novice learners [44]. Its operation in a 2D environment allows

the development of interactive projects. Greenfoot blends

programming in Java with graphical and interactive outputs

as the standards and a text-based OOP language. This
environment was designed for users aged 14 years and above,

including users in college and university. The Greenfoot

interface was designed to encourage novices to modify the

behavior and visualization of objects, which could be

performed through the scripting of new functions or the

alteration of Java code from the editor.

1924

As observed in Fig. 4, the GUI in Greenfoot consists of a

staging area, which primarily presents the Greenfoot world

with one actor at the minimum (see Fig. 4A), while the stage

area is where the program is executed. The second section is

located on the right (see Fig. 4B) based on BlueJ and presents

the tree of all the available classes and their relationship with

inheritance. These elements could be edited by clicking on the

respective tabs. Additionally, World and Actor (Object)

encompass the two visible upper classes of the system, which

are neither modifiable nor removable. Java compiler and an

integrated debugger are included in Greenfoot [44]. Notably,
the structural syntax error could be a challenge to individuals

who are still unfamiliar with the environment and faced with

issues in diagnosing and fixing it.

Fig. 4 Greenfoot environment

A co-located collaborative block-based programming,

Multi-Device Grace, was constructed to explore Block-

programming on all touch-screen devices developed in 2019

by Selwyn-Smith, et al. [50], which also utilized a 2D

environment platform. Multi-Device Grace comprises four

sections (see Fig. 5), specifically the toolbox (see Fig. 5B) that

comprises the programming commands. The workspace (see

Fig. 5A) is the place where students could execute these

dragged commands by clicking on Run commands. The

system could further create the target code by clicking on the
code view command from the command menu (see Fig. 5D).

Fig. 5C presents the frame of the application, which is

identified in the output area.

Fig. 5 Multi-Device Grace

Known in the early versions as BYOB (Build Your Own

Blocks), Snap! is a Block-based programming language that

also includes natural objects, specifically the sprites. It allows

students to define new blocks to expand the language. The

power of language focuses on children, high schools, and

university students. Given that Snap! is implemented in

JavaScript and operates within a browser, it does not require

local installation procedures. As an extension of Snap!,

NetsBlox (see Fig. 6) is a visual programming paradigm, with

the environment providing networking features that enable

students to create distributed applications to enhance the
students' confidence. According to Google Docs collaboration

style, the environment allows students to work together from

different computers on the same project.

The development of OOPP was as the support for OOP,

which was introduced by Alberto Ferrari in 2017 [45]. It is

also a part of Google Blockly as an open-source developer

library that allows the addition of block-based coding into an

application [15]. This environment is specifically targeted to

facilitate learning Java programming courses for both school

students and the university.

Fig. 6 NetsBlox environment

In an educational environment, OOPP contains three

sections (see Fig. 7). Specifically, with the OOPP toolbox (see

Fig. 7A) comprising the object-oriented commands, including
Classes, Interface, Methods Fields, and Values, students

could execute these commands through the drag-and-drop of

Blocks in the workspace (Fig. 7B). Besides, the students could

also design and generate simple object-oriented code,

therefore the system could further create the target code

automatically. Fig. 7C is the textbox area of the environment,

which is identified in the text code output.

Fig. 7 OOPP environment

1925

The lecturers were interviewed for their opinions about

student learning in this study. Besides, their suggestions could

be in an interactive programming environment to improve

learning programming motivation. Following that, we present

an assessment of seven educational learning environments

that were criticized based on literature review and issues

raised by experts. In this context, relevant literature has been

studied and assigned in each of the following environments:

the well-known IDE "objects-first" by BlueJ; OOPP hybrid

environment; Greenfoot learning and microworld

environment; Turtle graphics physically oriented
environment; Snap! Game-oriented environment, and the

collaboration extension environment of NetsBlox; Alice 3D

storytelling and animation environment, and AliCe-ViLlagE

virtual pair programming environment.

A. Data collection

The interview was developed to address research questions

assessing the issues encountered in previous works and

present suggestions to enhance students learning (see Table I).
Interviews assist researchers in " getting information about

research participants' feelings, thoughts, attitudes, beliefs,

attitudes, perceptions, values, personality and behavioral

intentions" [53]. The interview consisted of six open-ended

questions extracted from previous work to determine the

issues faced by the students while learning OOP, including

two multiple-choice questions to decide the methods of

improving learning programming.

TABLE I
INTERVIEW QUESTIONS

No. Interview Questions

1 What are the problems faced by the students when learning

object-oriented programming?

2 Does the issue of the syllabus place excessive focus on syntax?

3 Is the issue of the syllabus per semester overly broad?

4 Do you agree that several items must be memorized for the

reserved word, and students sometimes are faced with difficulty

remembering the reserved concepts in the writing program?

5 Do the following issues make object-oriented programming

difficult/boring in learning?

 The complexity of programming concepts

 The debugging (e.g., find bugs)

 Insufficient time

 Absence of interactive media

 Uncertainty in their solutions

 Understanding graphics programming (e.g., GUI)

 Number of students per class/lab

6 Based on your experience, what other issues make object-

oriented programming difficult/boring for students?

7 In your opinion, do you agree that the following materials

would help in learning object-oriented programming?

 Interactive visualizations tool

 Interactive environment

 Lecture note

 Programming coursebook

8 In your opinion, do you agree that any of these situations would

help in learning object-oriented programming more effectively?

 In practical

 Consultation or discussion with lecturers, tutors, seniors, or

friends

 In group exercise sessions

 While working alone on programming coursework

 In lectures

B. Data analysis

To address the first research question (RQ1), this study

employed the qualitative method via an interview approach to

obtain feedback from the interviewees (teachers and lecturers).

With an average experience of 10-20 years in learning

programming, the interviews were conducted via mobile or

face-to-face, recorded, and transcribed under each question.

In addressing the second research question (RQ2) and

identifying whether the visual programming environments

addressed the issues faced by students in learning OOP, some

freely available educational environments were presented and

focused on teaching and learning OOP. Particularly, the

qualitative criteria of environments were evaluated to define

educational suitability as knowledge support for the
environments in programming courses.

Before the popularity of the environments of educational

programming in the learning and teaching of OOP, the

educational systems had existed for a long time. In contrast to

today, only a few systems were available in the last century.

Accordingly, older systems were straightforward and

normally comprised compilers or libraries instead of

comprehensive programming environments. However, some

changes have occurred in the last decade; educational

programming environments are now vital in teaching and

learning. Educational programming environments are now
more common as they are now considered more acceptable.

Similarly, environments have increased further compared to

the past. As a result, the design of educational environments

has become a topic of great interest.

The turtle graphics environment resembles a turtle; the

turtle's pen drives and could be positioned on or off the ground,

which leads to the tracking of the turtle's movements. Turtle

graphics have been proven highly useful in the teaching of

mathematics, particularly the topic of geometry. The basic

commands in turtle graphics are easy and simple to learn.

Additionally, the actor becomes a virtual turtle in turtle
graphics, indicating that it is programmed to relocate and

leave "traces" to create various types of drawings. The use of

turtle graphics in programming offers fundamental principles

of procedural programming, including iteration or recursion

[14].

Alice allows students to observe the progress of animated

programs immediately. Students could relate the program

"piece" to the action seen in animations. In the context of

teaching, Alice is an educational interactive programming

platform. Alice involves several concepts of programming,

including conditional, looping, methods, arrays, parameters,

recursion, variables, and basic concepts behind OOP [52].
The environment output is an animated scenario, which is

easily understandable among novices. Another extension of

Alice is AliCe-ViLlagE, which improves students' confidence

in programming by allowing the use of the virtual pair

programming approach to solve programming tasks. The

result of an empirical investigation [54] proved environmental

effectiveness. Despite the advantage of narrative development,

the main disadvantages could be seen from the reduced

flexibility in the problem-solving domain, absence in a user-

friendly interface, and complex environment of the beginner

[22].
BlueJ enables the identification of classes and the

relationship between them. After the compilation of classes,

students could interactively instantiate objects. The main

advantage of BlueJ is the apparent separation of the concepts

of objects and classes. Although novice students could write

1926

code with BlueJ and draw the hierarchy of the object-oriented

solution program, error handling and reporting remain a

challenge for the students. Nonetheless, the environment does

not offer any visualization representation that assists students'

understanding of the concepts of classes and objects. Hence,

a teacher still needs to understand the concept of behavior.

Besides, the tool does not appear to induce good motivation

among learners, thus simply representing the class and object

name. The environment does not display visual hints to the

condition or state of the object (such as a turtle in Turtle

Graphics), which may cause students to become less
interested in learning [55].

Greenfoot blends programming in Java with interactive

outputs. Given that it is based on BlueJ [44], the structural

syntax error could be a challenge to those who are still

unfamiliar with the environment and find it challenging to

diagnose and fix environment errors. In terms of its

motivational linkage, Greenfoot may be more common

among students in this field compared to other programming

environments presented to date. It could support game

creation, as proven by the founders of Greenfoot who have a

good understanding of the appeal of games to certain students.
However, Greenfoot is more of a "micro-world meta-

framework", allowing the generation of diverse micro-worlds,

from games to simulations and visualizations, in several areas.

One of the advantages of using the environment is the

encouragement to increase the difficulty of students' tasks

through examples related to gender, cultural background, and

age [56]. However, given that Greenfoot does not allow

novices to master the concepts of programming languages

conveniently, a teacher must fully understand the code and

allow the novices to address the challenges [56].

Snap! and NetsBlox. The NetsBlox environment does not
allow students to communicate with each other from a

distance to discuss problem-solving because it lacks

communication features, such as video, voice, or text

(appropriate communication). Moreover, given that

collaboration features have only been introduced to the tool

recently, more studies are required to determine the

effectiveness of these features [57].

Multi-Device Grace Co-located collaborative block-based

programming, Multi-Device Grace, was constructed to

explore Block-programming on all touch-screen devices. The

environment allows students to develop and share blocks with

various touch devices, mainly tablets. While the environment
disables collaboration in real-time, it enables students to

operate and distribute a project across devices. Apart from

that, the tool is developed only for touch devices [50], and the

tool does not present a suggested solution for any error that

might occur.

Object-Oriented Puzzle Programming (OOPP) The

development of OOPP is based on Google Blockly to support

OOP with a strength that represents textual language in

Blocks and solves the issues related to writing code using

syntax-based languages [45]. Therefore, it may ease the

transition to text for some students. Also, in this environment,
most Blocks employ standard written sentences while iconic

Blocks depend on shapes instead of text to distribute the

Blocks' information. However, the drawbacks of OOPP are

related to their support of OOP concepts with no basic

programming concepts (e.g., conditional, looping), leading to

a lack of understanding of the object-oriented concept among

students [58]. Another drawback of OOPP is the direct

visualization of object state or behavior (e.g., Karel). Thus,

the students might not be able to test the code output similarly

to BlueJ.

III. RESULT AND DISCUSSION

The results of the research questions are discussed in this
section.

A. RQ1: What are the experts' perspectives on the issues

(concept difficulty, memorizing, bugs, number of students,
and unconfident) leading to the demotivation of OOP

learners?

In this question, the interview approach results, and

analysis are presented. Interview with experts. The results of

the analysis performed with the participants revealed a
negative view of the failure/drop rates for programming

courses and the impacts of some environments on

programming and students' motivation by developing a

program linked to their interests (e.g., game and robot). The

interviews illustrated the issues and suggestions that should

be focused on to avoid the issues encountered by students in

the future, with the examples as follows:

1) Interviewee one: "Students are currently having

difficulty understanding object-oriented concepts. It is not

clear to them; Complexity, remembering the syntax

(memorizing the concepts), syntax errors, insufficient time,

code quality, and many students per lab are fundamental
issues students face while learning programming. Therefore,

these difficulties hinder them from enjoying programming

and motivate them to develop their programming skills. The

essential requirement is to improve their motivation using any

technique such as working as groups, robots, games, or

challenging them."

2) Interviewee two: "Using the Games/Visualization

tools to motivate students in programming a certain period

and then move to textual programming is a good idea because

students have problems with syntax error and make them

more confident. Another problem is the number of students in
the laboratory/class, and communication methods with

students and between them; therefore, an alternative method

is needed."

This section analyses the following information of the

interviewees presented to verify the issues:

 All interview feedback participants generally agreed
with previous issues (concept difficulty, memorizing,

bugs, number of students, and unconfident).

 Some participants suggested another issue, such as

communication with/between students.

 All participants agreed that the visualization/interactive

environment was the most effective way to improve

student learning. It was also decided that the ideal

situations to help students learn object-oriented were

practice, consultation (discussion with lecturers, tutors,

seniors, or friends), and group sessions.

Ultimately, the correlation between previous work and the
perspectives from the interview was that all agree with the

issues in learning programming, such as memorizing, bugs,

complexity or difficulty of concepts, unconfident, and

1927

students' number. Interviewers suggested another issue,

which was communication with/between students. In terms of

the practical aspects of supporting students, it was

recommended that an interactive environment be created to

encourage students to practice programming, learn from their

peers, and obtain benefit from the teachers' expertise

TABLE II
VISUAL PROGRAMMING ENVIRONMENTS EVALUATION

Environments NetsBlox
Turtle

graphics
BlueJ

Alice/

AliCe-

ViLlagE

Greenfoot OOPP

Multi-

Device

Grace

Proposed

environment

Approach Block-based

approach

 UML-

notation
approach

Storytelling

approach

Game-

based
approach

Block-

based
approach

Block-

based
approach

Block-Based

approach

Direct
representation

Yes Yes No Yes Yes No Yes Yes

Syntactical
errors

No Yes Yes No Yes No No No

Text-based
representation

No Yes Yes No Yes Yes Yes Yes

Target group Primary to
university
education

Primary and
Secondary
education

University
education

Secondary
education
(11-15)

University
education
(14+)

University
education

University
education

Secondary to
university
education

Basic
programming
concepts

Yes Yes Yes Yes Yes No Yes Yes

Object-
oriented

concepts

Yes Yes Yes Objects and
method

Yes Yes Yes Yes

Direct error
message

No No No No No No No Yes

Students'
community

Yes No Yes Yes Yes Yes Yes Yes

Collaborative
technique

Yes Other
applications

Other
applications

Yes Other
applications

Other
applications

Yes Yes

Virtual pair
programming

side-by-side
programming

No No Yes No No Yes Yes

Discussion
Forums

No No No No No No No Yes

B. RQ2: Did the seven object-oriented learning
programming environments tackle motivation issues?

Several popular environments for learning object-oriented

are discussed in this paper in terms of strengths and

shortcomings (see Table II), leading to demotivation. Among

the analyzed environments, BlueJ and Greenfoot comprised

an advantageous feature that allows the inspection and

interaction with objects. However, the main drawbacks are

the failure to eliminate the likelihood of syntax errors,

including the lack of focus on the logic of assigned problems
and their solutions. As for novice students, error handling

could be challenging and lead to low motivation. Meanwhile,

although systems such as turtle graphics offer good object

behavior visualization, object interaction is lacking.

Multi-Device Grace, AliCe-ViLlagE, and NetsBlox have

recently added collaboration features, such as side-by-side

programming, virtual pair programming, or forums to

enhance students' confidence and learning of the

programming language. Moreover, empirical investigation is

required to determine the usefulness and effectiveness of

NetsBlox, Multi-Device Grace, and OOPP approaches. The

environments offered by Alice, AliCe-ViLlagE, NetsBlox,
Multi-Device Grace, and OOPP eliminate the likelihood of

syntax errors and encourage students to concentrate on the

programming concepts. However, Alice also offers a

straightforward and basic representation underpinning OOP

concepts, while OOPP eliminates the majority of syntax
errors and directly generates a programming language code.

Additionally, the OOPP presents an OOP with no basic

programming concepts, leading to the students' incapability to

understand the correct meaning of object-oriented concepts

[58]. Besides, similar to BlueJ, OOPP does not provide direct

visualization of object state or behavior (e.g., Turtle).

According to Alice and AliCe-ViLlagE, an understandable

result was recorded although the problem-solving flexibility

was reduced, the design was not a user-friendly and complex

environment.

In recent years, different approaches were proposed for
dissemination in learning programming. Among many

projects aiming to facilitate the introduction of coding, the

famous projects code.org, Scratch, the Raspberry Pi platform,

and many others could be highlighted [22]. The feature shared

by most of these projects was the use of Block Programming

to simplify the first approach to programming, reducing and

eliminating syntactic difficulties. Meanwhile, block-based

programming could reduce a student's cognitive load [30],

and encapsulate the code into smaller code chunks to be

utilized instead of remembering the code syntax.

In the programming teaching field, the collaborative
programming framework was shown to be an efficient

learning programming method [59]. Participation in a pair of

1928

microworld projects created a higher sense of

accomplishment and confidence in assignments among

learners [34], including the discussion on how to solve tasks

with others or utilize interactions, assist students in solving

complex programming problems and develop programming

skills [35]. Therefore, pair programming and discussion

forums were used to increase student enjoyment (comfort,

insights, interest), motivation, and confidence and improve

learning performance [33], [34].

IV. CONCLUSIONS

Regarding the general aims of this study, the most common

issues faced by students when learning programming was

based on previous work and perspectives in interviews, such

as memorizing, bugs, the complexity of concepts, unconfident,

and the number of students in labs. The necessary skills

should be useful in educational environments that support and

facilitate object-oriented learning (see Table II). It was found

that visualization environments were related to learning and
teaching OOP and focused on some issues. However, the

coverage of other elements of interest for students to provide

the appropriate motivation was lacking. In terms of the

previous work supported by the experts' perspective,

visualization technique (Block-based approach) and

collaborative learning could be important in the execution of

learning object-oriented programming to enhance the learning

process, which could be challenging, complex and require

hard work from the students. Future work could include

developing a programming environment that addresses all

these issues and measuring the effectiveness, usefulness, and

motivation with the usability of learning applications as pre-
test and post-test in terms of student learning progress.

ACKNOWLEDGMENT

This research was supported by the Ministry of Higher

Education of Malaysia and the GUP-2018-155. The authors

appreciate all the parties who have assisted in accomplishing

this work.

REFERENCES

[1] R. Queirós, M. Pinto, and T. Terroso, "Computer Programming

Education in Portuguese Universities," OpenAccess Ser. Informatics,

vol. 81, no. 21, pp. 1–11, 2020, doi: 10.4230/OASIcs.ICPEC.2020.21.

[2] C. S. Cheah, "Factors contributing to the difficulties in teaching and

learning of computer programming: A literature review," Contemp.

Educ. Technol., vol. 12, no. 2, pp. 1–14, 2020, doi:

10.30935/cedtech/8247.

[3] M. Aissa, M. Al-Kalbani, S. Al-Hatali, and A. BinTouq, "Novice

learning programming languages in omani higher education institution

(Nizwa University) issues, challenges and solutions," in Sustainable

Development and Social Responsibility—Volume 2, Springer, 2020, pp.

143–148.

[4] C. Chibaya, "A Metaphor-Based Approach for Introducing

Programming Concepts," in Proceedings - 2019 International

Multidisciplinary Information Technology and Engineering

Conference, IMITEC 2019, 2019, pp. 1–8, doi:

10.1109/IMITEC45504.2019.9015888.

[5] T. W. Koet and A. Abdul Aziz, "Teachers' and Students' Perceptions

towards Distance Learning during the Covid-19 Pandemic: A

Systematic Review," Int. J. Acad. Res. Progress. Educ. Dev., vol. 10,

no. 3, pp. 531–562, 2021, doi: 10.6007/ijarped/v10-i3/11005.

[6] K. V. Zacharis and A. D. Niros, "Computational Thinking," Commun.

ACM, vol. 49, no. 3, pp. 140–158, 2020, doi: 10.4018/978-1-7998-

4576-8.ch006.

[7] R. Hawariyah, B. Z. Halimah, A. Azlina, and M. A. Nazlena, "Student'

s Difficulties in Learning Programming," Adv. J. Tech. Vocat. Educ.,

vol. 2, no. 3, pp. 40–43, 2018.

[8] S. Hodges, S. Sentance, J. Finney, and T. Ball, "Physical Computing:

A Key Element of Modern Computer Science Education," Computer

(Long. Beach. Calif)., vol. 53, no. 4, pp. 20–30, 2020, doi:

10.1109/MC.2019.2935058.

[9] A. V. Robins, "Novice Programmers and Introductory Programming,"

Cambridge Handb. Comput. Educ. Res., pp. 327–376, 2019, doi:

10.1017/9781108654555.013.

[10] P. O. Jegede, E. A. Olajubu, A. O. Ejidokun, and I. O. Elesemoyo,

"Concept-based analysis of java programming errors among low,

average and high achieving novice programmers," J. Inf. Technol.

Educ. Innov. Pract., vol. 18, no. June, pp. 49–59, 2019, doi:

10.28945/4322.

[11] J. Cuny, "Transforming High School Computing: A Compelling Need,

A National Effort." 2012, doi:

http://www.worldcat.org/isbn/0071362681.

[12] N. C. C. C. Brown and G. Wilson, "Ten quick tips for teaching

programming," PLoS Comput. Biol., vol. 14, no. 4, p. e1006023, 2018,

doi: 10.1371/journal.pcbi.1006023.

[13] N. O. Anwar, H. Okumura, T. Widiyaningtyas, and U. Pujianto,

"NemU: Design and improvement of visual programming

environment as learning support system on basic programming

subjects," in ACM International Conference Proceeding Series, 2019,

vol. Part F1483, pp. 54–61, doi: 10.1145/3323771.3323788.

[14] K. J. Mackin, "Turtle graphics for early Java programming education,"

Artif. Life Robot., vol. 0, no. 0, p. 0, 2019, doi: 10.1007/s10015-019-

00528-y.

[15] N. Fraser, "Google Blockly: A Web-based Visual Programming

Editor," Google, 2013.

[16] R. Shen, D. Y. Wohn, and M. J. Lee, "Comparison of Learning

Programming between Interactive Computer Tutors and Human

Teachers," in CompEd 2019 - Proceedings of the ACM Conference on

Global Computing Education, 2019, pp. 2–8, doi:

10.1145/3300115.3309506.

[17] A. Sartori and C. Schlette, "Visual Programming of a Human-Machine

Interface for a Multi-Robot Support System," in 2021 4th IEEE

International Conference on Industrial Cyber-Physical Systems

(ICPS), 2021, pp. 387–392, doi: 10.1109/icps49255.2021.9468200.

[18] H. W. Hnin and K. K. Zaw, "Element Fill-in-Blank Problems in

Python Programming Learning Assistant System," in 2020

International Conference on Advanced Information Technologies

(ICAIT), 2020, pp. 88–93.

[19] A. Adeliyi et al., "Remote Pair Programming," in SIGCSE 2021 -

Proceedings of the 52nd ACM Technical Symposium on Computer

Science Education, 2021, p. 1289, doi: 10.1145/3408877.3439681.

[20] S. R. Manoharan, T. K. Hua, and F. M. M. Sultan, "A Comparison of

Online Learning Challenges Between Young Learners and Adult

Learners in ESL Classes During the COVID-19 Pandemic: A Critical

Review," Theory Pract. Lang. Stud., vol. 12, no. 1, pp. 28–35, 2022,

doi: 10.17507/tpls.1201.04.

[21] M. Mohtar and M. Md Yunus, "A Systematic Review of Online

Learning during COVID 19: Students' Motivation, Task Engagement

and Acceptance," Arab World English J., no. 2, pp. 202–215, 2022,

doi: 10.24093/awej/covid2.13.

[22] S. Xinogalos, M. Satratzemi, and C. Malliarakis, "Microworlds, games,

animations, mobile apps, puzzle editors and more: What is important

for an introductory programming environment?," Educ. Inf. Technol.,

vol. 22, no. 1, pp. 145–176, 2017, doi: 10.1007/s10639-015-9433-1.

[23] M. A. Bakar, M. Mukhtar, and F. Khalid, "The development of a visual

output approach for programming via the application of cognitive load

theory and constructivism," Int. J. Adv. Comput. Sci. Appl., vol. 10, no.

11, pp. 305–312, 2019, doi: 10.14569/IJACSA.2019.0101142.

[24] M. A. Bakar, M. Mukhtar, and F. Khalid, "The effect of turtle graphics

approach on students' motivation to learn programming: A case study

in a malaysian university," Int. J. Inf. Educ. Technol., vol. 10, no. 4,

pp. 290–297, 2020, doi: 10.18178/ijiet.2020.10.4.1378.

[25] J. M. Rodriguez Corral, I. Ruiz-Rube, A. Civit Balcells, J. M. Mota-

Macias, A. Morgado-Estevez, and J. M. Dodero, "A study on the

suitability of visual languages for non-expert robot programmers,"

IEEE Access, vol. 7, pp. 17535–17550, 2019, doi:

10.1109/ACCESS.2019.2895913.

[26] M. Krafft, G. Fraser, and N. Walkinshaw, "Motivating Adult Learners

by Introducing Programming Concepts with Scratch," in ACM

International Conference Proceeding Series, 2020, pp. 22–26, doi:

10.1145/3396802.3396818.

1929

[27] C. Y. Tsai, "Improving students' understanding of basic programming

concepts through visual programming language: The role of self-

efficacy," Comput. Human Behav., vol. 95, pp. 224–232, 2019, doi:

10.1016/j.chb.2018.11.038.

[28] M. Seraj, E. S. Katterfeldt, K. Bub, S. Autexier, and R. Drechsler,

"Scratch and google blockly: How girls' programming skills and

attitudes are influenced," in ACM International Conference

Proceeding Series, 2019, p. 23, doi: 10.1145/3364510.3364515.

[29] W. C. Hsu and J. Gainsburg, "Hybrid and Non-Hybrid Block-Based

Programming Languages in an Introductory College Computer-

Science Course," J. Educ. Comput. Res., vol. 59, no. 5, pp. 817–843,

2021, doi: 10.1177/0735633120985108.

[30] D. Weintrop, "Education block-based programming in computer

science education," Commun. ACM, vol. 62, no. 8, pp. 22–25, 2019,

doi: 10.1145/3341221.

[31] Ł. Wiechetek, "Teaching basic of programming with the elements of

Scratch - Evaluation of VBA programming course for logistics

students," Int. J. Innov. Learn., vol. 28, no. 2, pp. 159–179, 2020, doi:

10.1504/IJIL.2020.108972.

[32] B. Díaz-Lauzurica and D. Moreno-Salinas, "Computational thinking

and robotics: A teaching experience in compulsory secondary

education with students with high degree of apathy and demotivation,"

Sustain., vol. 11, no. 18, p. 5109, 2019, doi: 10.3390/su11185109.

[33] L. K. Lee, T. K. Cheung, L. T. Ho, W. H. Yiu, and N. I. Wu, "Learning

computational thinking through gamification and collaborative

learning," in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2019, vol. 11546 LNCS, pp. 339–349, doi:

10.1007/978-3-030-21562-0_28.

[34] B. Zhong and T. Li, "Can Pair Learning Improve Students'

Troubleshooting Performance in Robotics Education?," J. Educ.

Comput. Res., vol. 58, no. 99, pp. 220–248, 2019, doi:

10.1177/0735633119829191.

[35] A. F. Zulfikar et al., "The effectiveness of online learning with

facilitation method," Procedia Comput. Sci., vol. 161, pp. 32–40, 2019,

doi: 10.1016/j.procs.2019.11.096.

[36] M. Satratzemi, D. Tsompanoudi, S. Xinogalos, and L. Karamitopoulos,

"Examining the compatibility of students in distributed pair

programming," in Proceedings of the European Conference on e-

Learning, ECEL, 2019, vol. 2019-Novem, pp. 510–518, doi:

10.34190/EEL.19.023.

[37] J. Hughes, A. Walshe, B. Law, and B. Murphy, "Remote pair

programming," in CSEDU 2020 - Proceedings of the 12th

International Conference on Computer Supported Education, 2020,

vol. 2, no. Csedu, pp. 476–483, doi: 10.5220/0009582904760483.

[38] Y.-C. Hsu, Y.-H. Ching, J. Callahan, and D. Bullock, "Enhancing

STEM Majors' College Trigonometry Learning through Collaborative

Mobile Apps Coding," TechTrends, vol. 65, no. 1, pp. 26–37, 2021.

[39] D. Tsompanoudi, M. Satratzemi, S. Xinogalos, and L. Karamitopoulos,

"An Empirical Study on Factors related to Distributed Pair

Programming," Int. J. Eng. Pedagog., vol. 9, no. 2, pp. 65–81, 2019,

doi: 10.3991/ijep.v9i2.9947.

[40] C. M. C. De Oliveira, E. D. Canedo, H. Faria, L. H. V. Amaral, and R.

Bonifacio, "Improving Student's Learning and Cooperation Skills

Using Coding Dojos (In the Wild!)," in Proceedings - Frontiers in

Education Conference, FIE, 2019, vol. 2018-Octob, pp. 1–8, doi:

10.1109/FIE.2018.8659056.

[41] J. Cheng and J. Lei, "A description of students' commenting

behaviours in an online blogging activity," E-Learning Digit. Media,

vol. 18, no. 2, pp. 209–225, 2021, doi: 10.1177/2042753020954971.

[42] B. Laurel, "Computers as Theater-Laurel, B." Visible Language

RISD-Graphic Design Dept 2 College ST, Providence, RI 02903, 1993.

[43] C. Jost and B. Le Pévédic, Designing Evaluations: Researchers'

Insights Interview of Five Experts. Springer International Publishing,

2020.

[44] M. Kölling, "Blue, bluej, greenfoot: Designing educational

programming environments," in Innovative Methods, User-Friendly

Tools, Coding, and Design Approaches in People-Oriented

Programming, IGI Global, 2018, pp. 42–87.

[45] A. Ferrari, G. Lombardo, M. Mordonini, A. Poggi, and M. Tomaiuolo,

"OOPP: Tame the Design of Simple Object-Oriented Applications

with Graphical Blocks," in Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering,

LNICST, 2018, vol. 233, pp. 279–288, doi: 10.1007/978-3-319-76111-

4_28.

[46] D. Garcia and M. Ball, "Snap! 6, Introducing Hyperblocks!," in

Proceedings of the 52nd ACM Technical Symposium on Computer

Science Education, 2021, p. 1379.

[47] G. Stein and A. Lédeczi, "Enabling Collaborative Distance Robotics

Education for Novice Programmers," in 2021 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC), 2021,

pp. 1–5.

[48] S. Cooper, W. Dann, and R. Pausch, "Alice: a 3-D tool for introductory

programming concepts," J. Comput. Sci. Coll., vol. 15, no. 5, pp. 107–

116, 2000.

[49] A. Al-Jarrah and E. Pontelli, "AliCe-ViLlagE Alice as a Collaborative

Virtual Learning Environment," in Proceedings - Frontiers in

Education Conference, FIE, 2015, vol. 2015-Febru, no. February, pp.

1-9. doi:10.1109/FIE.2014.7044089, doi: 10.1109/FIE.2014.7044089.

[50] B. Selwyn-Smith, C. Anslow, M. Homer, and J. R. Wallace, "Co-

located Collaborative Block-Based Programming," in 2019 IEEE

Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2019, pp. 107–116.

[51] B. T. Fasy, S. A. Hancock, B. Z. Komlos, B. Kristiansen, S. Micka,

and A. S. Theobold, "Bring the page to life: Engaging rural students in

computer science using alice," in Proceedings of the 2020 ACM

Conference on Innovation and Technology in Computer Science

Education, 2020, pp. 110–116.

[52] C. Kelleher and R. Pausch, "Using storytelling to motivate

programming," Commun. ACM, vol. 50, no. 7, pp. 58–64, 2007, doi:

10.1145/1272516.1272540.

[53] B. Johnson and C. Larry, Quantitative, Qualitative, and Mixed

Approaches. SAGE Publications, Incorporated, 2003.

[54] A. Al-Jarrah and E. Pontelli, "The collaborative virtual affinity group

model: principles, design, implementation, and evaluation," Int. J.

Comput. Appl., vol. 42, no. 5, pp. 485–513, 2020.

[55] M. Kölling, "Lessons from the Design of Three Educational

Programming Environments," Int. J. People-Oriented Program., vol.

4, no. 1, pp. 5–32, 2015, doi: 10.4018/IJPOP.2015010102.

[56] S. J. Cox and S. J. Johnston, Raspberry Pi Technology. MDPI, 2018.

[57] N. Lytle, A. Milliken, V. Catete, and T. Barnes, "Investigating

different assignment designs to promote collaboration in block-based

environments," in Annual Conference on Innovation and Technology

in Computer Science Education, ITiCSE, 2020, pp. 832–838, doi:

10.1145/3328778.3366943.

[58] J. Lewis, "Myths about object-orientation and its pedagogy," in

SIGCSE Bulletin (Association for Computing Machinery, Special

Interest Group on Computer Science Education), 2000, vol. 32, no. 1,

pp. 245–249, doi: 10.1145/331795.331863.

[59] A. L. Asnawi et al., "The needs of collaborative tool for practicing pair

programming in educational setting," Int. J. Interact. Mob. Technol.,

vol. 13, no. 7, pp. 17–30, 2019, doi: 10.3991/ijim.v13i07.10722.

1930

