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Abstract— A method is presented to determine the appropriate number of photovoltaic panels that should be installed in an end-user 

photovoltaic installation to guarantee the supply of energy to the load during the hours of solar radiation, according to factors such as 

the installation area and global solar radiation. Solar radiation is predicted by approximating the daily distribution of global irradiance 

through a Gaussian function, which is subsequently corrected using a heuristic approach. Meteorological parameters are used as input 

data such as the daily solar insolation and the maximum global irradiance for each day; this last parameter is obtained through an 

expert system based on fuzzy logic that was programmed and trained with the data of ambient temperature and relative humidity that 

were obtained in the processing stage. Output from this expert system is the predicted values of maximum radiation obtained for each 

day for a selectable time interval. With the predicted solar radiation, the generation of electrical energy from the photovoltaic panels is 

calculated. The load is randomly modeled from a pattern of the energy demand of the building to be powered by the photovoltaic 

system. The number of photovoltaic panels needed is found with the information acquired in the previous stages and the information 

of the energy demand of the load and the installation area. The results are the number of solar panels that would be needed at all hours 

of the day from which the radiation prediction was made. 
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I. INTRODUCTION

Ecuador has implemented regulations to increase the use of 
solar power recently. For instance, the country created the 
Electricity Regulation and Control Agency (ARCONEL), an 
organization that regulates and controls the technical, 
economic, and operational aspects of the electric public 
service power activities. In October 2018, ARCONEL issued 
regulation 003/18 that allows the installation of photovoltaic 
systems for self-supply, allowing end consumers can install 
these systems in their homes and obtain both photovoltaic 
electrical energy and network energy [1].  

ARCONEL regulation 003/18 item 12 states that a 
photovoltaic system can generate energy surpluses when 
commercial treatment of energy produced from low-capacity 
photovoltaic systems and is needed to perform an analysis of 

the different cases, which could occur at the same time. The 
regulation also states that when there are surpluses of energy 
from the photovoltaic system, these can be injected into the 
distribution company's low or medium voltage network, and 
the payment of energy is made from a monthly net energy 
balance mechanism. In this case, the distribution company 
oversees making the economic balance of the energy monthly, 
considering the records of injected or consumed energy flows 
that can be measured from bidirectional measurement 
equipment. 

Electrical companies calculate the monthly net balance of 
energy received and consumed by the customer using the 
photovoltaic microsystem within the first ten days of the 
month after the operation of the photovoltaic microsystem. 
When the result of this net monthly energy balance is negative, 
the electrical company evaluates energy consumption 
according to the corresponding tariff found in the ARCONEL 
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tariff schedule. As well, it also emphasizes that a negative 
remainder is not subject to subsidies. 

When the positive net monthly balance result is positive, 
the positive remainder of energy favors the consumer and is 
considered an energy credit that will be passed on to the next 
month and so on successively until it reaches a maximum 
period called reset. This energy credit reset period is two years, 
from the date the operation of the photovoltaic microsystem 
was authorized until there is a cause for the disconnection of 
the photovoltaic microsystem or the term of operation that is 
equal to 20 years is fulfilled. 

A profitability study is needed because it is enough to know 
the number of panels needed and whether the calculated 
number of photovoltaic panels is not an excessive expense at 
the time of their acquisition in the market. The cost of 
photovoltaic generation depends on the equipment investment, 
operation, maintenance cost, the energy delivered by the 
panels, and the capacity factor [2]–[5]. The installation place, 
including its dimensions, is important because the load, 
lifetime of the photovoltaic panel, and the available space of 
the building could not be enough for the number of panels 
calculated [6]. 

This article studies a method to find the number of suitable 
photovoltaic panels for any type of photovoltaic installation 
for end-users, using a practical example, for which algorithm 
programming is developed in MATLAB® software. 

This document is based on the Zervas et al. strategy, which 
consists of two parts: a) to use Gaussian type function to be 
able to predict the daily distribution of total solar irradiance, 
and b) calculate the value of the amplitude of the Gaussian 
function using neural networks or some type of regressor [7]. 

Artificial neural network training algorithms are quick and 
robust [8]; however, they have some drawbacks [9], [10], such 
as the topology scheme of a conventional neural network is 
calculated when the centers of the hidden nodes are selected, 
and it would require performing several executions passes for 
each of the training examples, increasing the computational 
effort. This occurs when there is a high amount of data in a 
database. On the other hand, artificial neural network training 
algorithms depend on a random selection at the beginning of 
the centers of the nodes having different sets of centers for 
each simulation carried out in the same network structure; 
however, using fuzzy logic is possible to overcome these 
disadvantage [11]–[15].  

Fuzzy logic is advantageous over conventional neural 
networks because fuzzy logic is based on the partition for an 
input space. Both the structure and the centers of the nodes 
are chosen in a single step when passing a single one for the 
training examples [16]–[18]; As well, there will be the same 
set of centers for a fuzzy partition given its input space, which 
prevents many simulations from being carried out because 
this time there are no random selections of centers within the 
algorithm [11], [16], [17]. 

The radiation, relative humidity, and ambient temperature 
data are obtained from the Environment Secretariat of the 
Metropolitan District of Quito website, which is in EXCEL 
format. Later, these data will be extracted through a script 
programmed in MATLAB®, in a data preprocessing stage. It 
is required to select the most important data to develop the 
following stages of this project. For this preprocessing stage, 
the data is obtained on the one hand the highest values during 

each day for the last two years. On the other hand, for global 
solar radiation, relative humidity, and ambient temperature, 
the global solar radiation data is collected for each day for the 
hours of sunlight during the last two years. 

The code was written to find a function to approximate the 
daily distribution of global solar irradiance in the 
Metropolitan District of Quito, especially in places near the 
Belisario Quevedo meteorological station, which is where all 
the data are obtained from global solar irradiance. 

A correction is made in that function so that the results are 
as close as possible to reality. This last function requires a 
fundamental parameter such as the maximum global solar 
irradiance or amplitude based on the processed data. For this 
study, this data prediction is based on the useful life of the 
photovoltaic panel that is chosen as an example. To execute 
this prediction, an algorithm based on Fuzzy Logic is carried 
out. The inputs such as radiation, ambient temperature, 
relative humidity, and output yields the predicted results of 
global solar radiation are 730 values; the algorithm is trained 
with all the data obtained in the preprocessing stage. 

Then the appropriate number of photovoltaic panels is 
found by using a mathematical relationship describing the 
behavior of a photovoltaic panel that includes the global solar 
distribution and the load demand used as an example, in 
addition to other related parameters with the photovoltaic 
panel. 

With the appropriate number of photovoltaic panels found, 
the electrical power in the time delivered by the system is 
determined by the connected demand, and it is compared if 
the results will be correct by using SIMULINK®, which two 
curves are obtained that represent the power in the time that 
the photovoltaic system delivers the load and the demand 
respectively. Therefore, there is a difference between areas of 
both curves whose physical meaning represents the remaining 
or surplus energy the photovoltaic system responds. 

In this study, the appropriate selection of the number of 
photovoltaic panels is proposed on the basis that the energy 
delivered by the installation during each day can cover most 
of the energy needed by the load so that the net consumption 
of the electrical network will be as low as possible so that 
energy savings make it possible to amortize the investment of 
the photovoltaic installation. Considering the maximum use 
of the available areas and avoiding the oversizing since the 
excess energy produced is not invoiced. 

II. MATERIALS AND METHOD 

A. Data Preprocessing 

The Environment of the City of Quito Secretary 's website 
of the [19] has historical data from the Metropolitan Network 
for Atmospheric Monitoring (REMMAQ) that are reliable 
data about the concentration of atmospheric pollutants within 
the city of Quito. 

REMMAQ has 9 monitoring stations that are continuously 
analyzing air quality in the city. From these nine stations, six 
have remote automatic monitoring stations which measure 
some parameters, such as wind speed and direction, solar 
radiation, humidity, precipitation, and pressure. The 
meteorological stations are installed on the roof of the 
monitoring stations. In addition, there is a control center that 
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receives, stores and processes the information registered by 
the monitoring stations. 

The data found on the Quito Environment Secretariat 
website are free of charge to use, and have kept historical data 
from the mid-2000s, and are updated every hour since 2000 
to the current time. It must be emphasized that there were no 
data for certain hours on certain days of several years because 
of the failure of the measurement process at that time. 

The data collected from this database were ambient 
temperature, relative humidity, and radiation. All of them are 
sorted so that the peak value of each variable is obtained for 
each day from January 1st, 2018, and only those belonging to 
the Belisario Quevedo meteorological station.  

The data extracted from the EXCEL file is filtered with a 
script. Data are ordered and after its extraction through the 
script called “data” and then are saved in another script called 
“extracted data”.  The extracted data had a visual inspection 
and a final inspection to verify that there were no days without 
assigned values. After the inspection, there were few days 
with no values and were assigned the corresponding value of 
a day before or a day after, according to a realistic allocation. 
Finally, in the "extracted data" script, three vectors are saved 
with the required parameters' data: radiation, ambient 
temperature, and relative humidity. Both relative humidity 
and ambient temperature have a total of 730 elements 
equivalent to two years. However, the radiation vector has 
790 data representing two years plus the months of January 
and February 2020. 

B. The Division of Fuzzy Subspaces 

Upper and lower limits of the entry space are determined 
for humidity, temperature, and radiation. The minimum of the 
values extracted in the data preprocessing stage minus 10% of 
the range’s data values is used as a reference for the lower 
limit. In addition, the maximum value of the data plus 10% of 
the range of values is used for the maximum limit. Thus, the 
maximum and minimum values of the variables are: 

Minimum temperature: 11.19 °C 
Maximum temperature: 24.03 °C 
Minimum humidity: 39.695 % 
Maximum humidity: 100 % 
Minimum radiation: 164.18 W/m2 
Maximum radiation: 1219.2 W/m2 
For the subdivision of fuzzy subspaces, the part of the input 

space for each variable is equal to 2 * N + 1. In this case, there 
is a homogeneous division for each variable equal to N = 9, 
resulting in 19 subspaces. 

As a strategy to determine the degree of membership for 
each variable, each variable is taken one by one, then the 
mathematical process corresponding to (1.a) and (1.b) is 
carried out [6]. 
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���
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��       ���ℎ� ����� �� 
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1 − ��	
���
��%�����  ,   
&�     �� �ℎ� ����� �� 
−� ��� 1 ≤ ! ≤ 2 ∗ $ + 1
  (1) 

Where:  
m is the degree of membership obtained. '(
)�  is the input (or output) variable. 

δa is the width of the base of the triangular function. 
i is the fuzzy rule. 
N is the number of fuzzy subspaces. 

C. Fuzzification 

The fuzzy subspace in which the variable would be entered 
is taken into account within a loop by which it sweeps the 
entire domain of the input space of the variable. It aims to 
obtain the position of the fuzzy subspaces which the variable 
enters and the degrees of membership thereof; at the end of 
the loop, these two values are stored in different matrices. 

The maximum degree of membership is stored in a matrix 
and another matrix stores three vectors, the position or precise 
fuzzy space in which the variable for the three variables is first 
entered. The dimension of these matrices is 2 * N + 1 columns 
and the same number of rows as the column vector or column 
vectors where the values extracted in the previous stage are 
found, obtaining 730 generated rules. 

Rules were repetitive, so it was necessary to use the 
MATLAB® function called Unique. This function detects all 
the values, elements, columns, rows that repeat a matrix or 
vector. Thus, the rows that are repeated in the matrix are 
captured and saved the ¨If¨ part and then performs an iterative 
process but this time from row to row compared to the original 
rule matrix with the one obtained through the Unique function, 
thus discarding the rows that are repeated and also have the 
same lower degree of membership. 

Because this problem appears as a time series prediction, 
fuzzy subspaces are generated for both the input and the 
output variables. That is, there are three sets of fuzzy rules 
with which combines and predicts the three variables, each 
behaving as an output variable and using the other two 
remaining as input variables in each set, as shown in the block 
diagram of Figure 1, with which a prediction in time of the 
three variables treated (radiation M, ambient temperature T, 
and relative humidity H). 

D.  Defuzzification 

The defuzzification stage uses the same strategies when 
entering a variable in its input space. For this reason, much of 
the code has identical characteristics. The main difference is 
that a comparison is made between the position where each of 
the variables was entered and the previous saved position of 
each generated rule. Likewise, it makes a scan comparing the 
current row (position where the variable is entered) with each 
row of the matrix that contains the generated rules. 

Finally, the objective to create a matrix with the pairs of 
data necessary to be able to satisfy equations (2) and (3) [20]. 

 *∆�) = *-.� 
/0�*-1� 
/2�  (2) 
Where: ∆� Represents the output region of the rule i. 34�   Represents the input region of rule i for component j, j is 
the variable or input data. 

 5 = ∑ 7∆�� 89�:�;.∑ 7∆��:�;.    (3) 

Where: 59) Represents the center of the region ∆�, in this place, the 
degree of membership for said output region is equal to 1. 

462



< is the number of rules combined in the fuzzy rule base when 
the variables enter each one in their respective input spaces. 

 
Fig. 1 Block diagram of fuzzy rule generation. 

 

Equation (4) is a matrix with 4 pairs of elements, the first 
column represents all the combinations that can occur 
between the degrees of membership obtained at the time of 
entry for each variable in its respective input spaces, which is 
a product between degrees and in the second column is 
occupied by the output variable resulting from the matrix of 
fuzzy rules which the variable that we want to predict such as 
temperature, relative humidity or radiation. This represents 
the center of each diffuse subspace or the place corresponding 
to the triangle's tip within the input space. 

 => = ⎣⎢
⎢⎡*B
'B� ∗ *B
'C� 59*C
'B� ∗ *C
'C� 59*B
'B� ∗ *C
'C� 59*C
'B� ∗ *B
'C� 59⎦⎥

⎥⎤   (4) 

Where: *B
'B� is the degree of membership for the fuzzy subspace 
where variable 1 enter first.  *C
'B� is the degree of membership for the fuzzy subspace 
where variable 1 enters second. *B
'C� is the degree of membership for the fuzzy subspace 
where variable 2 enter first. *C
'C� is the degree of membership for the fuzzy subspace 
where variable 2 enters second. 59 is the central value of the subspace of the output variable 
of the fuzzy rule that coincides with the input data of the 
corresponding input variables. 

To find one of the elements involved in column 2 of (4), 
the procedure shown in Figure 2 is followed, which 

exemplifies obtaining one of the variables such as H (relative 
humidity). 

Figure 2 shows the comparison between the input position 
vector of the two input variables and the matrix containing the 
if part's rules. Figure 2 also represents the input of each 
variable in its respective input subspace, and it can be seen 
that for each entry of a variable corresponding to two fuzzy 
subspaces, which finally leads to having in column 1 of (4) 
four possible combinations between the degrees of 
membership in each entry of data of the space domain with 
the two input variables that are involved. Once this matrix of 
2 rows and 4 columns is obtained, the mathematical operation 
shown in (3) is calculated, which was predicted from the 
variable's value. 

E. Prediction of global irradiance 

With the process carried out in the previous stage, there are 
three vectors with predicted values for 20 years, that is, 7300 
days, but to be able to visualize and validate the prediction 
process correctly is necessary that the variable of interest for 
the particular case will be used (radiation) to contrast the 
information. Two curves are graphed, the first one with the 
already known radiation data extracted in the first stage, and 
in the second graph the values predicted by the network. 
However, these will extend to 20 years. 

After obtaining the maximum global solar irradiance for 
each day, the following purpose is to find the global solar 
irradiance distribution from expression (5) [7]: 

 G
'� = H ∗ exp L−M ∗ �1
N1O  (5) 

Where: H is the amplitude of the function for the maximum 
radiation of the day. M tuning parameter. ' is the time difference on periods of one hour between the 
moment the prediction of global solar radiation G
'� is given 
and solar noon. 
L represents half the number of daylight sixths. 

 
The number of daylight sixths because the city of Quito is 

located at a latitude of 0 °, the variation of hour angle is tiny 
throughout the year, so it remains constant between 90 and -
90 degrees. Consequently, the number of daylight sixths is 
equal to 12 hours, corresponding to the number of hours in 
which the solar resource is available. 

The MATLAB® function called fitlm was used allowed to 
find δ of (5) with the least squares’ method. The δ calculated 
varies according to the day. However, it depends on whether 
there are data to obtain it, but since a prediction is being made 
only of the maximum global solar irradiance, the data to 
obtain δ would be insufficient; therefore, the script performs 
an average between all the δ values obtained with available 
data from the measurements made by the meteorological 
station [5]. The respective global solar irradiance distribution 
can finally be found for each day during all years that the 
prediction is calculated. 
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Fig. 2 Example of a section of the defuzzification of a variable. 

 

Figure 3 shows the global solar irradiance distribution J(x) 
in (W/m2) for any given day and compares the real and 
measured distribution. It is highlighted in yellow that the 
maximum global solar irradiance (M) is very close to the 
measurement, as well the calculated and measured shape of 
the distribution of the global solar irradiance are similar.  

F. Estimation of the Number of Panels 

Equations (6), (7), (8), (9), and (10) and reference [21] 
show the prediction calculation of the number of panels. The 
parameters used are shown in Table 1. 

 3PQRSN = $T ∗ 3TU − $T ∗ 3V ∗ ∆  (6) 

Where: 3PQRSN  is the current delivered by the set of solar cells or 
photovoltaic panel. 3TU is the photogenerated current. $T  is the number of photovoltaic modules connected in 
parallel. 3V is a factor that represents the reverse saturation current 
of the diode given in (7): 

 3V = 3VWXY ∗ Z [\[WXY]^ ∗ exp _`∗Sab .cWXY .c\d
e∗Q f  (7) 

Where: gh is the energy of the semiconductor in the forbidden band, 
in this case for silicon it is equal to 1.11 eV at a temperature 
of 300 K. 

 i� is the working temperature of the photovoltaic panel in K 
that varies over time. j equals the ideality factor (0.98291 ) iklm  = 298 K n equals the charge of the electron ( 1.6 ∗ 10Br coulombs)  <  is the Boltzmann constant ( 1.38 ∗ 10C^  J/°K = 8.61 73 324 ∗ 10w eV/°K) 3VWXY is given in (8): 

 3VWXY = -xyl�TL z∗{|y}~∗:∗�∗c\O (8) 

Where: 3�� is the short-circuit current in A. ���  is the open-circuit voltage given by the manufacturer. j is the ideality factor. < is Boltzmann's constant. i� is the working temperature of the solar panel in K variable 
over time. 
 n is the charge of the electron ( 1.6 ∗ 10Br coulombs). 

The photogenerated current3TU is given in (9): 

 3TU = ��WXY L3�� + �-xy�i� − iklm�O  (9) 

Where:  �  is the radiation that varies in time. 
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Fig. 3 Example of obtaining J (x) in one day 

 �klm is the ideal radiation for a clear sky equal to 1000 W/m2. 3�� is equal to the short-circuit current that the manufacturer 
of the photovoltaic panel gives. i� is the working temperature of the photovoltaic panel in K 
that varies over time. �-xy  is the temperature coefficient for short circuit that is 
given by the manufacturer. 

The Delta coefficient (∆) is expressed in (10): 

 ∆= exp L `∗�R~∗e∗Q∗[\O − 1 (10) 

Where:  � is the nominal voltage. $� is the number of photovoltaic panels connected in series 
that forms a photovoltaic module. 

TABLE I 
PARAMETERS USED IN ESTIMATING THE NUMBER OF PANELS. 

Parameter Value Units Description 

Isc 5.34 A Short-circuit current 
Tcref 298 K Reference temperature 

Ns 14 
 

- 

Number of cells in 
series to achieve the 
desired voltage 

Vpanel 18 V 
DC voltage of each cell 
inside the photovoltaic 
panel 

Rs 0.38707 Ω 
Series resistance of 
photovoltaic panel 

Voc 22.3 V Open Circuit Voltage 
Uisc 2.1886E-4 %/°K 0.060 [%/°C] 
q 1.6*10E-19 eV Electron charge 
K 1.38E-23 - Boltzmann constant 

Tc 308.15 K 
Typical working 
temperature (35°C) 

A 0.98291 Ω Ideality factor 

Eg 
1.77842E-
19 

J 
Semiconductor energy 
in the forbidden band 
for Si is 1.11 eV 

 
The procedure to find the number of panels is similar to a 

numerical method process. Equation (6) calculates the current 
of the panel, but the Np value is needed that indicates the 

number of modules of cells in parallel necessary to be able to 
cover the current required by the load. Therefore, each 
module will be made up of 14 panels, and it is sought to 
equalize the right side with the left side of the equation with 
an iterative process, which will stop the moment the 
equalization occurs. There is a daily demand from hour to 
hour of energy, and an adequate number of panels for each 
hour is obtained, meaning for a year, there would be 8760 
values with a certain number of panels. From all this range of 
values obtained, the largest of them is chosen because it 
represents the number of panels required in the worst-case 
scenario when it is the time between all the days of a specific 
year that would have the least solar radiation. 

After the fixed number of cells have been found and 
consequently, the appropriate number of photovoltaic panels, 
the panel's dimensions are considered. Figure 4 shows the area 
in square meters of a panel. 

 

 
Fig. 4  Canadian Solar CS5C 90M photovoltaic panel diagram. Dimensions 
in mm. 
 

Then, this area is compared with the square meters 
necessary to carry out the installation. If the previously 
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obtained number of photovoltaic panels is correct, these 
dimensions will be used, or it will be changed if it needs to be 
corrected to meet the specification of the place to be installed. 

III. RESULTS AND DISCUSSION 

The load of the building of the Faculty of Civil Engineering 
of the Central University of Ecuador was chosen as an 

example, which is located in the Miraflores - Belisario sector, 
of the Metropolitan District of Quito, near the meteorological 
station from where data were collected to make the prediction 
of Solar Irradiance. There are the minimum and maximum 
power measurement data obtained from a power analyzer, 
which measure power data for a week every 15 minutes. 
Figure 5 shows the measurements made during the month of 
November 2019. 

 

 
Fig. 5 Power measurements of the load corresponding to the building of the Faculty of Civil Engineering of the Central University of Ecuador. 

 
Considering the demand for this selected load, the 

minimum and maximum values existing in the total data range 
were selected and used as limits to create a set of random 
numbers. This set will later be used as a static load model to 
interact to the photovoltaic system by simulating the 
interconnection between the photovoltaic system and the load. 

Figure 6 shows the details of a small part of the total data 
obtained to generate the distribution of maximum global solar 
irradiance. The period chosen was a month taken from 
December 15th, 2019, until January 15th, 2020. For the first 
fifteen days, the global solar irradiance distribution data are 
measured by the meteorological station; On January 1st, only 
the global solar irradiance distribution found through the 
Gaussian function is available. On the other hand, the first 
fifteen days presented in the graph, the curves are stacked in 
each daily graph to be able to visually compare the predicted 
data and measured data, in yellow; in blue and violet, the 
calculation of the global solar irradiance distribution for 
alphas equal to 1, 2 and 3 respectively are presented. 
Additionally, in magenta and a broken line are the calculation 
of the maximum global solar irradiance for the real alpha 
calculated that manages to approximate the predicted data to 
the real data. Finally, it is verified that the process carried out 
for predicting the maximum global solar irradiance and its 
distribution throughout the day or 12 hours that there is 
sunlight nearby the measured global solar irradiance 
distribution. 

When the maximum global solar irradiance distribution 
was obtained for all the periods of days chosen for the 
prediction, these data were used to find the number of 

photovoltaic modules required to supply the demand that the 
connected load requires. The first hour in the morning and the 
last hour in the afternoon were where the demand increased 
considerably, and on the contrary, there is a lower solar 
irradiance and was excluded to avoid oversizing the number 
of parallel photovoltaic modules of the photovoltaic system. 

For the total hours of 80179 (of the twenty years of 
prediction), the highest number of photovoltaic panels are 
1236 photovoltaic modules. After the necessary number of 
photovoltaic modules has been obtained, this number is 
divided by the number of panels connected in series, which is 
14 in each module to reach the desired voltage, and the 
number of photovoltaic panels is 89. 

Now the real dimensions of the selected photovoltaic panel 
are taken into account, and the area available to carry out the 
installation of the photovoltaic system. Therefore, the area 
obtained is taken into account through the ideal number of 
panels for the system. First, it could be oversized for the 
system occupying a large area. This study shows that the 
available area is slightly larger, so 91 panels can theoretically 
be installed compared with the 89 calculated is negligible. 
Table 2 reports the technical-physical data and prices from the 
results obtained. 

After the final number of panels have been obtained 
according to the dimensions of the place for installation, now 
it is important to find the current generated by the panel or the 
photovoltaic system, with the global solar radiation data 
previously calculated in the previous stages, and it is shown 
in Figure 7. 
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Fig. 6 Prediction of the Daily Global Solar Irradiance distribution. 

 

Fig. 7 The total current generated by the photovoltaic system. 
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With the current obtained, the product is made by the 
operating voltage of the installation, that is, 250 V. Figure 8 
shows the power generated by the photovoltaic system with 
the global solar irradiance and the demand curve, for a 
randomly chosen day. 

 

Fig. 8 Power curves generated by the photovoltaic system and load demand. 

TABLE II 
NUMBER OF PHOTOVOLTAIC PANELS CONSIDERING THE DIMENSIONS OF THE 

INSTALLATION SITE 
Parameter Value 

Number of panels calculated with 
the prediction 

89 

Number of panels calculated 
considering installation site 
dimensions 

91 

Panel area m2 0,664 
Installation place area m2 60 
Panel area without considering 
the installation site area m2 

0,664*89=59.09 

Panel area considering the 
installation site area m2 

0,664*91=60.42 

Figure 9 represents the power generated by the 
photovoltaic system and the demand and shows the 
intersection section between the two curves in light blue. This 
area represents the demand that is satisfied through the energy 
delivered by the photovoltaic system. On the other hand, the 
remaining areas represent the excess or lack of energy that the 
photovoltaic system provides to the load and implies the 
injection or absorption of energy respectively from the 
distribution network where the load is also connected. It is 
noteworthy. Figure 9 also represents only data from one day 
taken randomly among the 7300 days (20 years) for which the 
prediction was made. 

 

 
Fig. 9  Power curve that supplies the load by the photovoltaic system. 

 

Figure 10 represents the excess or lack of energy delivered 
by the photovoltaic system to the load. This excess or missing 
energy is shown in blue and orange, respectively, for each day, 
during all the prediction years. 

 
Fig. 10 Energy supplied by the photovoltaic system or received from the grid to the load. 
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IV. CONCLUSION 

For this study, solar global irradiance prediction with fuzzy 
logic was developed.  The data of solar radiation was obtained 
from meteorological stations and was helpful to predict global 
solar irradiance with regressors. This prediction allows 
calculating the energy produced by a photovoltaic system 
over time. In addition, measuring the load demand is useful to 
determine the amount of excess or missing energy in a 
photovoltaic system connected to the grid. This quantified 
energy over time and through the tariff imposed by the 
electricity companies represents money saved or spent to 
power load over time, and with this, the profitability of the 
photovoltaic project can be calculated. Also, the prediction of 
energy produced compared to the load allows determining a 
suitable number of photovoltaic panels to avoid possible 
oversizing or to know the possible lack of energy capacity. 
The number of panels calculated also predicts the availability 
of space for their installation. 
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