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Abstract— Mortality rates are important in conducting the pricing and valuation of life insurance policies. Raw values are usually 

wiggly to plot, and practitioners often graduate them to obtain smoothness. Current mortality models have problems related to the 

goodness of fit, interpretability, and usability without implementing other actuarial assumptions for fractional ages. This study proposes 

a mixture of Pareto, log-logistic, and two Weibull distributions with eleven parameters to graduate mortality rates. Lifespan covered 

are whole life, including childhood, adolescence, senescence, and the late elderly's phase. We adjusted the parameterization to improve 

the ease of model's interpretability right after obtaining the value of estimates. Prior distributions of the parameters and sampling 

model form for the data are also proposed to estimate the parameters' value using the Bayesian method with Gibbs sampling. High 

values of coefficient of determination produced by model fit into several data support the graphical evidence to show the model's 

goodness of fit and best fit occurs for the life table of Israeli males in 1987. Gelman-Rubin statistic is also very close to one and shows 

fast convergence in estimating the parameters. Based on the results, obtaining the best and worst estimates of newborn survival 

probabilities is possible. We also showed that this model could be implemented on annual and abridged mortality rates. 

Keywords— Bayesian method; mixing distribution; mortality graduation; newborn survival probabilities; parametric model. 

Manuscript received 13 May 2021; revised 24 Jun. 2021; accepted 3 Aug. 2021. Date of publication 31 Oct. 2022. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

There are two main uncertainties in conducting insurance 

industries, demographic uncertainty and investment 
uncertainty. Demographic uncertainty relates to the mortality 

rates, especially when the number of policyholders in the 

portfolio tends to be small and the policies have a very high 

sum at risk [1]. Mortality rates are used as a basis in the 

valuation of employee pensions and other benefit plans and 

pricing or reserving life insurance products [2]. It is a model 

that generally explains two conditions: current mortality and 

improvement trend. When it is easy and fast enough to obtain 

the most recent data, the former is getting much concern. 

Raw data of mortality rates usually produce wiggly plots, 

and practitioners often choose to have a smoothing process, 

also known as graduation. For example, the implementation 
of P-splines, Greville's cubic polynomials (as implemented in 

Japanese Standard Mortality Table 2018 [3]), or the 

Whittaker-Henderson method (as implemented in Canadian 

Pensioners' Mortality table 2014 and 4th Indonesian Mortality 

Table [4]) could be employed. Another approach that could 

be considered is fitting the mortality rates on parametric 

mortality models, and this approach helps practitioners to 

understand the drivers of mortality and intuitively explain 

those drivers. 

De Moivre model using one parameter is simple, but the 

constant value of hazard rate at age x (μx) is not suitable for 

older ages. Gompertz model was initially formed using a 

formula with two age-dependent parameters to express 
exponentially increasing mortality rates. This model is then 

improved by adding age-independent parameters, which gave 

accurate predictions for ages 30-80 years [5] and plausibly 

extrapolate in many actuarial works. However, this model did 

not fit well for ages under 20 [6]. 

Pareto found that his distribution was a good fit for the first 

twenty years of life in Switzerland and Bavaria but could not 

be used for extrapolation [6]. His later work [6] provided a 

good fit for the age between 0 and 88 years to explain the 

number of survivors at age x, denoted as N(x), in Italian data 

during the years 1881-1883, which is written as (1). However, 
it does not give us an intuitive way to understand the mortality 

characteristics of the population. 
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Later, Heligman and Pollard [7] also constructed their 

model to cover the whole life span. It consists of eight 
parameters, can capture accident humps, provides a good fit 

for all ages [8], and every parameter has an intuitive 

explanation. However, it is often overparameterized [9]. This 

model cannot produce the hazard rate, resulting in the 

inability to calculate the value of complete life expectancy 

without implementing other actuarial assumptions in 

fractional ages (for example, the Balducci assumption). The 

Siler model is an alternative model that produces good fits [10] 

but fails to capture accident humps. 

Bebbington et al. [11] mixed flexible Weibull and reduced 

additive Weibull survival functions to obtain the hazard rate 

and produce better interpretability than Gompertz and 
Makeham models but requires further complex mathematical 

derivation for the explanations. Beer and Janssen constructed 

a compression and delay (CoDe) mortality model that can 

explain five stages in life by eleven parameters, but it only 

provides the value of annual mortality rates [12]. Therefore, 

we cannot calculate the value of complete life expectancy 

without other actuarial assumptions involved. Mazzuco et al. 

[9] mixed skew bimodal normal and half-normal distributions 

to obtain a flexible model that can fit data with and without 

accident hump, but the interpretation of the parameters is not 

intuitive enough. 
In this study, we propose the mix of Pareto, log-logistic, 

and two Weibull distributions (later named as PL2W model) 

to graduate mortality data with interpretable parameters in an 

intuitive way and good statistical fit. Implementing the 

Bayesian method, we propose prior distribution for the 

parameters of interest. A Bayesian method is chosen due to its 

ability to incorporate prior knowledge, reliability of small 

data, and producing more realistic and intuitive interval 

estimates than the frequentists' methods [13]–[17]. 

II. MATERIAL AND METHOD 

In this section, we describe baseline distributions that were 

used to construct our model. After the model is constructed, 

we provide intuitive interpretation and determine appropriate 
prior distributions for every parameter. We propose to fit the 

model using the Bayesian method and to calculate the best 

and the worst estimate of newborn survival probabilities. The 

flowchart summarizes the summary of the process in Fig. 1. 

A. Overview of Pareto, Loglogistic, and Weibull 
Distributions 

Some distributions have a relatively simple function of 

hazard rate, survival function, probability density function, 
and mean (first moment), but some others do not. Having long 

tail and flexible distribution properties that produced 

satisfactory model fits in various data as shown in, for 

example, [18]–[21] for Pareto, [22]–[24] for log-logistic, and 

[25]–[27], we consider these distributions for this study. 

1) Pareto Distribution: As mentioned in Section 1, Pareto 

successfully fitted his distribution for the population aged 

under 20. We considered two parameters of Pareto 

distribution as provided in [28]. If X is Pareto distributed with 

parameters α and θ, the hazard rate, the survival function, and 

the first moment of X could be written as (2), (3), and (4), 

respectively. The hazard rate is a monotone decreasing 
function of x and is suitable to explain mortality rates for the 

young population, especially in childhood. Moreover, the 

hazard rate is a monotone increasing function of α and a 

monotone decreasing function of θ. Consequently, the 

survival function and the first moment are a monotone 

increasing function of θ and a monotone decreasing function 

of α. 

 
Fig. 1  Flowchart of the research method 
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 %��� = ���& , � > 1, ! > 0 (4) 

2) Loglogistic Distribution: If there is an accident hump 

in the mortality rates, we need hump-shaped distribution to 

explain it. We considered log-logistic distribution over 

lognormal distribution for a more tractable survival function. 

If X is log-logistic distributed with parameters α and λ, the 

hazard rate, the survival function, and the first moment of X 

could be written as (5), (6), and (7), respectively. 

 ℎ��� = �'�()*
&�'�( , � > 0, + > 0 (5) 

 "��� = &&�'�( , � > 0, + > 0 (6) 

 %�,� = - ./.#0($
�'*( , � > 1, + > 0 (7) 

The characteristic of the hazard rate depends on the value 

of α. For α ≤ 1, the hazard rate is a monotone decreasing 

function of x. For α > 1, the hazard rate increases initially to 

its peak at the time #��&' $*(
 then decreases as x approaches 

infinity with zero as the asymptote. To fit the condition of the 

accident hump, later, we restrict the value of α to be greater 

than one. By limiting our attention to � ≥  1, the hazard rate 

is a monotone increasing function of both α and λ. 

3) Weibull Distribution: Makeham model states the force 

of mortality as a monotone increasing function of age. 

Therefore, we need an alternative distribution with a similar 

characteristic, and the Weibull distribution fulfills that need 
with certain limitations. If X is Weibull distributed with 

parameters α and λ, the hazard rate, the survival function, and 

the first moment of X could be written as (8), (9), and (10), 

respectively. 

 ℎ��� = �+���&, � > 0, + > 0 (8) 

 "��� = ��2�−+��� , � > 0, + > 0 (9) 

 %�,� = 3#&�*($
'*( , � > 0, + > 0 (10) 

Weibull distribution is considerably flexible. It can explain 

increasing (for α > 1), decreasing (for α < 1), or simply a 

constant hazard rate (for α = 1). Since we are going to limit 

that the hazard rate is always increasing, the value of α must 

be greater than unity. Therefore, it has a mode equal to #��&�' $*(
. 

By limiting our attention to � ≥  1 , the hazard rate is a 

monotone increasing function of both α and λ. 

B. Model Construction 

The construction of a new distribution as a mixture of 
several distributions is required under certain circumstances 

to produce a better fit for the data, as demonstrated in [29]–

[32]. The probability density function of the new distribution 

could be expressed as a weighted sum of probability density 

functions given by the base distributions, ensuring that the 

weights are nonnegative real numbers, and their sum equals 

one. Consequently, the cumulative distribution function, 

survival function, and raw moments function of the new 

distribution could also be expressed as the weighted sum of 

the respective functions given by the base distributions.     

In this study, we modified the parameterization of the base 

distributions to construct a new model that is more 

interpretable. By denoting X as a random variable that 

represents a newborn's future lifetime, X's survival function 

could be expressed as (11). 
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(11) 

The explanations of the notations are provided in the 

following section. 

C. Model Interpretation and Determination of Prior 

Distributions 

In this subsection, we interpret every parameter intuitively 

and explain how changing their values affects the mortality 

condition. Based on the explanation and results from previous 

studies, as discussed in Section I, we determine the prior 

distribution for the model's parameters. Determination of 

prior plays a crucial role in the Bayesian procedure as it 
affects the posterior's complexity and computability and 

produces reliable results [33]–[37].  

1) Weights of Mixing Distribution: Weights of the mixing 

distribution are determined by the values of RA, RS, and RL. 

They represent the probability that a newborn will die as an 

adolescent, a senescent, or a late elderly (who possibly breaks 

the record of lifespan) compared to the probability that the 

newborn dies in her/his childhood, respectively. We consider 

childhood and senescence as the two most important phases 

in life, so we start our analysis from RS. 

Newborn deaths are the most dominant in childhood 

mortality. According to World Bank [38], the worldwide 

lowest mortality rate for an infant in 2018 occurs in Finland, 

with the rate equal to 1 per 1000 for both sexes. If the 

adolescence and late elderly phase are abandoned, then we 

assume that the upper threshold for RS could be set to 999. 

Schell et al.[39] listed that assuming childhood ends at the age 
of 5, its mortality rate in India equals 0.152 for the year 1987. 

Hence, we could assume that the lower threshold for RS could 

be set to 0.152-1 – 1 = 5.579. Setting the threshold range as a 

95-percent confidence interval of a lognormal distribution, we 

obtain the parameters' value of mean μ = 4.313 and standard 

deviation σ = 1.323 to construct the prior distribution for RS. 

Next, we consider RA. We do not have any reliable 

information to consider accident humps. However, after 

looking at the shapes of the observed mortality curves across 

countries and periods, we assume that the mortality rate at the 

peak of the accident hump will not exceed the mortality rate 
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of a newborn, which dominates childhood mortality. 

Therefore, exponential distribution with a mean equal to one 

could be a good choice for the prior distribution of RA. 

The last consideration for getting the weights of mixing is 

the parameter RL. We assume that the proportion of the 

population who die as late elderlies ranges between 0.001 and 

0.1. Thus, we set the range of (0.0066, 100) as a 95-percent 

confidence interval for the prior distribution of RL, which 

gives us the value of μ = -0.209 and σ = 2.499. 

It is complicated to directly examine the effects of RA, RS, 

and RL values on mortality rates. Nevertheless, there is an 
intuitive way to understand that minimal weights of childhood, 

adolescence, and senescence mortality contribute to higher 

life expectancy, also vice versa. 

2) Childhood Death: Death in childhood is largely 

explained by parameters C1 and C2, each representing the 

additive decrease and exponential increase rate of mortality 

rates in this phase. Former Pareto studies [5] suggest that the 

values of C1 and C2 are mostly close to zero, with the highest 

logical value being two. Therefore, we choose exponential 

distribution with its 99-percentile equals two as the prior 

distribution for both C1 and C2. The value of C2 greater than 
unity implies that the first moment of X is determinate and 

finite, as formulated in (12). Therefore, it suggests that life 

condition in childhood is worse enough to limit the overall 

lifespan, partly could be due to the parents' behavior and their 

ability to provide wealth-related resources [40].  

%�,� = J&�J
 − 1��1 + KL + KM + KN� + 
KL1 + KL + KM + KN 9OP QRQ # OP
 + 1$&

�P
 + 1��P
� &L�
;

+                       KM�65 + "&� #1 + 1"
$1 + KL + KM + KN S D1
+ 11 + "
E + 

KN�100 + T&� #1 + 1T
$1 + KL + KM + KN S D1 + 11 + T
E , J
 > 1 

(12) 

3) Adolescence Death: Death in adolescence is largely 
explained by parameters A1 and A2. Parameter A1 roughly 

approximates the peak age of the accident hump. Based on 

[12] and Chandra and Abdullah [41], the peak of the accident 

hump is assumed to happen in the age interval of [10, 30]. It 

is also supported by the fact that Steinberg et al. [42] defined 

the adolescence phase in equal age intervals. The accident 

hump was also considered by [43]. Therefore, we choose 

continuous uniform distribution with domain on the interval 

[10, 30] as the prior distribution of parameter A1. A higher 

value of A1 while keeping other parameters constant will 

result in lower mortality rates. The exponential increase rate 

of mortality rate in this phase is denoted by parameter A2. 
Looking at the shape of the accident hump, we expect that 1 

is a large enough value for A2, and a smaller value is preferred 

to prevent overfitting. Consequently, we choose exponential 

distribution with a mean equaling one as the prior distribution 

for A2. 

4) Senescence Death: Death in senescence is largely 
explained by parameters S1 and S2. We expect most deaths in 

this phase to occur after the population becomes elderly and 

has their pension. Similar to [44], we assume that it happens 

after 65 years old in current modern life, and it has exceeded 

80 in many countries (as also assumed in [45]). In this study, 

we denote that age as 65 + S1. Thus, we choose exponential 

distribution with the mean of 80 – 65 = 15 as the prior 

distribution for S1. An increased value of S1 while keeping 

other parameters constant results in decreased mortality rates. 

Generally, mortality in this phase is often modeled using the 
Makeham model. Learning from previous studies [41], [46], 

and [47], we suggest lognormal distribution with μ = 1.278 

and σ = 0.470 as the prior distribution for S2, exponential 

increase rate of mortality rate in this phase so that the 

goodness of fit in age interval (30, 80] could be as good as the 

Makeham model. 

TABLE I 

PRIOR DISTRIBUTIONS FOR THE PARAMETERS 

Parameter Distribution 

RA Exponential (λ = 1) 
RS Lognormal (μ = 4.313, σ = 1.323) 
RL Lognormal (μ = -0.209, σ = 2.499) 
C1 Exponential (λ = 2.303) 
C2 Exponential (λ = 2.303) 
A1 Uniform (10, 30) 

A2 Exponential (λ = 1) 
S1 Exponential (λ = 0.067) 
S2 Lognormal (μ = 1.278, σ = 0.470) 
L1 Exponential (λ = 0.1) 
L2 Lognormal (μ = 2.430, σ = 0.433) 

5) Late Elderlies' Death: Finally, we explain death for 

late elderlies by parameters L1 and L2. Abridged life tables 

that are constructed by World Population Prospects of the 

United States [48] group all centenarians in an open age 

interval. In comparison, complete life tables supplied by the 

Human Mortality Database group all centenarians with ages 

over 110 in an open age interval. Even though we do not have 

any limiting age for our model, we are interested in 

investigating the maximum age that needs extra attention, 
which is denoted as 100 + L1, as we learned that it is expected 

to have more centenarians in the future due to better income 

in the long run [49]. Therefore, we choose exponential 

distribution with a mean equaling ten as the prior distribution 

of L1. A higher value of L1 with other parameters' values will 

not change, resulting in a decrease in mortality rates. Chandra 

and Abdullah [47] forecasted that there would be more 

centenarians, and human lifespan could exceed age 150 (at 

their best) in the future. This result is considered possible, but 

with complete loss of body resilience [50]. Therefore, we 

choose lognormal distribution with μ = 2.430 and σ = 0.433 

as the prior distribution of L2, exponential increase rate of 
mortality rate in this phase, so that the goodness of fit in age 

interval (80, 230] could be as satisfactory as extrapolating the 

Makeham model. Prior distributions for all parameters are 

summarized in Table I. Their parameterization follows Tse 

[29]. 

D. Model Fitting 

Several algorithms fit the model using the Bayesian 

method, but Gibbs sampling [51]–[53] is considerably easier 
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with the availability of several software's, such as WinBUGS, 

OpenBUGS, or JAGS. We found that it was easier for a 

further calculation to fit the mortality rates instead of the 

survival probabilities into the model. The value of tqx, the 

probability that someone aged x will die in t years, could be 

calculated from the survival function by (13). 

 UV � = M���V�M��� , � ≥ 0, W > 0 (13) 

Following previous studies [41] and [47], we put low trust 

in the data that the variance of the sampling model should be 

maximized without causing computational error because of 

the underflow or overflow problem. If we have n values of 

mortality rates, then the sampling model for each value could 

be expressed as (14). One important thing to note is that 

readers must remove a value that exactly equals 1 to fit the 

model. 

 # UVX �X|KL, KM , KN , J&, J
, P&, P
, "&, "
, T&, T
$ 
                ~[�W\ D1, M]�X�VX^M]�X^�M]�X�VX^E , _ = 1,2, . . . , ` (14)  

One important thing to note is that we have eleven 

parameters in this model. Using a complete life table supplied 

by Human Mortality Database is enough because we have 

exactly 110 values of complete mortality rates. However, 

using abridged life tables constructed by World Population 

Prospects of United Nations [48] means we need 
bootstrapping practice, as done by Chandra and Abdullah [41], 

to reduce the sensitivity of prior distribution specifications. 

By assuming conditional independence on the data, we could 

construct our posterior joint density of the parameters that is 

proportional to the product of prior distribution density 

functions of the parameters and the sampling model. We do 

not provide its mathematical expression here due to its 

complexity. 

E. Best and Worst Estimate of Newborn Survival 

Probabilities 

As discussed in subsection II.C, the effects of RA, RS, and 

RL parameters on the estimated survival probabilities of 

newborns are complicated. However, we could accept that 

generally, the best condition occurs if there are fewer deaths 

in childhood, adolescence, and senescence. Therefore, we 

propose maximizing the RL value, then set the values of RA 

and RS equal to their posterior mean. The worst condition 

occurs due to death in childhood, adolescence, and senescence. 

Thus, we propose to minimize the value of RL, then set the 

values of RA and RS equal to their posterior mean. For the rest, 

we choose to minimize the values of C1, A1, S1, and L1, and 

also maximize the values of C2, A2, S2, and L2 to calculate our 

worst estimate and vice versa. Our optimization is based on 

(100-α)-percent symmetric credible interval of posterior 

distributions. 

III. RESULTS AND DISCUSSION 

We fitted several data for analyzing our model's 

performance. We took complete life tables from Human 

Mortality Database for Swedish males in the year 1751 [54] 

(which was also considered in [55]), Israeli males in the year 

1987 [56], and South Korean females in 2008 [57], also the 

4th Indonesian Mortality Table (TMI IV) for both males and 
females [4]. From each table, we obtained values of q0, q1, 

q2, …, q108, and q109 to fit into the model. We set the 1st 100 

iterations for burn-in and the next 2000 iterations for sampling. 

Even though the number of iterations is considerably small, 

we considered that this analysis is quite effective in detecting 

whether the model needs a long time to mix well and/or 

whether it fits well on the data. 

A. Goodness of Fit 

Looking at values of Gelman-Rubin R̂  statistic for every 
parameter, stationarity and convergence are achieved as all of 

them are very close to one. Therefore, we need to look at the 

plots that compare the actual value to the fitted value of 

annual mortality rates. Since mortality rates are relatively 

small, we provide the plot in the natural logarithm form of the 

values as displayed in Fig. 2, following the approach from Li 

[58]. A newborn's probability of survival at least to certain 

ages, simply described as values of newborn survival 

function, is also plotted in Fig. 3 for every life table. Dashed 

and solid lines, respectively, represent fitted and actual 
values. 

 

 

Fig. 2  Natural logarithm form of actual (solid lines) and fitted (dashed lines) annual mortality rates 
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Fig. 3  Actual (solid lines) and fitted (dashed lines) newborn survival function plots. 

 

Fig. 2 and Fig. 3 suggest that the best fit of this model is on 

the Israeli males' life table for the year 1987. For the rest, 
fitted models tend to overestimate the mortality rates in early 

adolescence (age 10 to 20) [59], [60], underestimate in late 

adolescence and early senescence (age 20  to 50 ) [61], 

overestimate in late senescence (age 50  to a 80 ) and 

underestimate in late elderlies phase. 

Newborn survival probabilities are also overestimated for 

ages under 80 and underestimated for ages over 80, except for 

Swedish males. However, a fitted model could estimate the 

shape of newborn survival functions quite well. Coefficient of 

determination ( K
 ) for both annual mortality rates and 

newborn survival probabilities are also considerably good as 
all of them exceed 93%, satisfying the criteria set by [62] that 

a good model should have at least 90% rate of K
. 

B. Determination of Alpha 

This section investigates the logical value of α to be later 

implemented in future works. We calculate the highest 

possible positive integer for α < 100 so that proportion of 

actual newborn survival probabilities that is not in the interval 

formed by the best and worst estimates must be less than fifty 

percent. The posterior mean of every parameter must also be 

contained in the interval formed by (100-α)-percent 
symmetric credible interval of their posterior distribution. 

Based on our observations of the five life tables we considered 

in subsection III.A, we suggest α = 14 for future 

implementations. 

C. Model Implementation 

Referring to our explanation in Subsection II.C.5, we could 

set the value of (100 + L1) as the limiting age. Therefore, we 

adjust the value of  1L100q   to equal one and S(x) = 0 for x > 

 1L100 . Subsections III.E and IV.B suggest we have our 

best and worst estimates of newborn survival probabilities 

based on an 86% symmetric credible interval of posterior 

parameter distributions. Furthermore, we calculate annual 

mortality rates based on the best estimate, fitted values, and 

worst estimate of newborn survival probabilities by (13). Here 

we provided an example of how to graduate newborn survival 
probabilities and annual mortality rates for Indonesian 

females based on TMI IV [4]. The posterior means of 

parameters in this model are provided in Table II and were 

used for the fitted model. We intuitively interpreted the values 

in Table II as the following. The overall death probabilities 
for a newborn to have occurred in adolescence, senescence, 

and late elderlies phase compared to in childhood are 1.680, 

158.420, and 2.673, respectively. 

TABLE II 
THE POSTERIOR MEAN OF THE DISTRIBUTION PARAMETERS 

Parameter Value 

RA     1.68 
RS 158.42 
RL     2.67 
C1     0.30 

C2     0.67 
A1   24.42 
A2    1.17 
S1  19.13 
S2   5.83 
L1   5.17 
L2 17.42 

 
We roughly approximated that the peak of accident hump 

for Indonesian females based on the TMI IV [4] is around age 

24 or 25 (because of A1 values 24.420), and most deaths in 

senescence occur around age 84 or 85 (because 65 + S1 equals 

84.134), and the maximum age that needs extra attention is 

around 105 or 106 (because 100 + L1 values 105.167). 

Therefore, we set 106 as the limiting age in this case. Based 

on the guidance discussed in subsections III.E and IV.B, we 

obtained the 86% symmetric confidence interval lower and 

upper limits for almost every parameter, excluding RA and RS. 

We arranged the values to construct our best estimate, and the 
worst estimate with the results are served in Table III. 

TABLE III 
BEST AND WORST ESTIMATES OF SEVERAL PARAMETERS 

Parameter Best estimate Worst estimate 

RL 10.403   0.056 
C1   0.795   0.026 

C2   0.208   1.370 
A1 29.471 16.330 
A2   0.490   2.082 
S1 21.260   5.310 
S2   5.310   6.381 
L1 14.833   0.280 
L2   5.487 33.671 
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From Table III, we could estimate that the overall death 

probabilities for a newborn as late elderlies compared to a 

child are in the interval [0.056, 10.403]. Our best estimate is 

10.403 as more deaths in the old ages than the young ages 

mean that we expect their lifespan to be long, and our worst 

estimate is 0.056 as more deaths in the young ages than old 

ages mean that we expect their lifespan is considerably short. 

We also could roughly approximate that the peak of accident 

hump, most deaths in senescence, and maximum age that 

needs extra attention occur in age interval [16.330, 29.471], 

[70.310, 86.260], and [100.280, 114.833]. The reason for 
putting the best estimate higher than the worst is similar to 

what we explained for RL. The value of C2 is expected to be 

in the interval [0.208, 1.370], so Indonesian females may have 

a risk factor in their childhood that limits their age. The best 

estimate for a complete life expectancy of a newborn is 

indeterminate, and its worst estimate values 87.49 years. 

Therefore, we set 101 and 115 as limiting ages for the worst 

and best estimates, respectively. 

The final results in annual mortality rates are not presented 

here due to space efficiency. Please notice that although best 

estimates, fitted values, and worst estimates of newborn 
survival probabilities. S(x) is always sorted in descending 

order for every certain x; best estimates, fitted values, and 

worst estimates of annual mortality rates at age x (denoted as 

qx) are not always sorted in ascending order for every certain 

x. In the end, the best estimate, fitted value, and worst 

estimate of newborns curtate life expectancy values of 82.87, 

79.27, and 76.64 years, respectively. 

Calculating the annual mortality rates shows that the 

accident hump is insignificant if we refer to our best estimate 

of newborn survival probabilities. The overall peak of 

accident hump occurs in age interval [11, 15] based on the 
implication of the fitted newborn survival probabilities, and 

the worst estimate even puts the hump peak at age 10. It is 

worth noting that the best and worst estimates of A1 in Table 

III are only rough approximations, so it is clear to understand 

why the values differ from real peaks obtained after 

calculating the annual mortality rates. 

IV. CONCLUSIONS 

In this study, we proposed a model to graduate mortality 
rates by implementing a mixture of Pareto, log-logistic, and 

two Weibull distributions. We adjusted the parameterization 

so it is easier for users to interpret this model once they know 

the value of the parameters, and they can set feasible limiting 

ages for the graduated mortality rates. We also proposed 

implementing the Bayesian method to fit the mortality rates 

into the model and calculate best estimates, fitted values, and 

worst estimates of newborn survival probabilities denoted as 

S(x). Once S(x) values are obtained, we could calculate 

implied annual mortality rates (qx). Implementing the model 

to several datasets showed satisfactory results, as implied by 
good graphical fit and high R2 values. 
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