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Abstract— From around the nineteenth until the beginning of the twenty-first century, mortality rates show a declining trend. However, 

recent data on the United States population shows that the rate of decline started to slow down in the 2010s. Insurance companies need 

to be prepared in both ways: either mortality rates continue to decline, or there will be a turning point, and mortality rates start to 

increase. In this paper, we aim to get the whole picture of the mortality trend of Indonesian males, detect the possibility of a turning 

point in the mortality rates, and forecast mortality rates in the future. To reach this aim, we propose adjustments to the Makeham 

mortality model by including period and cohort information of the population via quadratic function. We also propose using the 

Bayesian method to estimate the parameters for the Indonesian old-aged males' population, where some adjustments were made in 

determining the priors, and the estimates were sampled from the posterior distribution using the Gibbs sampling algorithm. We found 

that our forecasting accuracy is satisfactory by considering the mean absolute percentage error values and coefficient of determination 

(R2). We found that mortality rates are declining in the long term, but the probability of a turning point in the future is statistically 

significant. We identified two risks, longevity risk because of more centenarians in the future and mortality risk before their children 

complete compulsory education. 
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I. INTRODUCTION

Life insurance is an important asset for its protection 

benefits, especially for individuals who have debt, have or are 

planning on starting a family, or own a business. Even though 

modern insurance policies (for example, unit-linked insurance) 

are getting popular in Indonesian society, there is still a 

considerably large portion (around 40%) of insurance 
customers who choose the traditional one [1]. Traditional 

insurance policies assume that demographic uncertainty 

dominates the investment uncertainty [2].  

Two important factors about demographic uncertainty in 

actuarial studies are mortality risk and longevity risk. 

Insurance companies need to set appropriate risk charges to 

keep being profitable. The mortality risk charge compensates 

the insurer for any losses as a result of the death of the 

policyholder [3]–[5] and affecting insurer’s surplus [6]–[11]. 

While longevity risk exposes insurance companies to the 

chance that they have greater-than-anticipated cash flow 
needs on pension funds [12]–[15] and even those who were 

involved with longevity risk in Europe and North America 

started to increase their participation in the longevity risk 

transfer market rapidly [16]. 

Life expectancy has increased rapidly since the Age of 

Enlightenment, and global inequality regarding health 

conditions has decreased over the last decades [17]. Their 

estimates suggest that life expectancy was around 30 years 

before the 19th century; it has doubled to above 70 years since 

1900. The trend of living ever longer and healthier lives 

seemed assured, but current mortality rates in the United 

States showed that the trend has slowed, starting from 2010 

[18]. The decline in mortality rates has slowed, and it started 
to increase since 2015 in the United States. Several reasons 

for the recent trend change are slowly growing, stagnant and 

even declining incomes, drug overdoses, suicides, and 

alcohol-related liver mortality. Chandra and Abdullah [19] 

suggested the possibility that mortality rates for males in the 

2015-2020 study period are not going to be lower than those 

in the 2005-2010 or 2010-2015 periods. 

Inspired by United Nations [20] and [21], we aimed to 

forecast five-years abridged mortality rates for Indonesian 

old-aged males and females aged 30-95 years old from 2020-

2025 period until 2045 2050 period. We hope that this 
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forecast is useful for stakeholders related to the Indonesian 

population, for example, managing insurance and the health 

system [22]. 

II. MATERIALS AND METHOD 

This section describes the data we used in this study. We 

also explain ex-works related to our study objectives and what 

we learned to improve our formulation. After that, we discuss 
our modeling approach to be implemented and provide the 

results. 

A. Data Description 

We use data on Indonesian males and females’ abridged 

life table for five years study period, starting from 1950 – 

1955 to 2015 – 2020, which was published as a part of World 

Population Prospects 2019 [20], [21]. In this research, we 

considered values of 5q30, 5q35, 5q40, 5q45, 5q50, 5q55, 5q60, 5q65, 

5q70, 5q75, 5q80, 5q85, 5q90, and 5q95 to represent the old, aged 

population. Therefore, the oldest population to contribute to 

the dataset was born in the 1855-1860 period, and the 

youngest population to contribute to the dataset was born in 

the 1985-1990 period. 

To test the forecasting ability of our model, we divided our 

data into a training set and testing set for each sex. Training 

set consists of 5qx values with age denoted as � ∈ [30, 80], 

contributed by populations that were born in 1960-1965 

period or before, and their mortality event were studied in 

2000-2005 period or before. The testing set consists of all 
values that are not part of the training set. Therefore, we have 

118 values in the training set and 78 values in the testing set 

for each sex, giving us a rough ratio of 60:40. 

B. Related Works and Study Objective 

Hunt and Blake [23] reviewed some age/period/cohort 

(APC) models that were implemented to study the evolution 

and projection of mortality rates. While there are several age 

models in non-parametric and parametric approaches, to the 

best of our knowledge, studies on time models in parametric 
approaches with considerably simple fitting processes and 

interpretability are limited. As a result, the time representation 

must be forecasted further. For example, Safitri et al. [24] 

implemented a feedforward neural network to project future 

kt values in the Lee-Carter model. Also, Dong et al. [25] also 

implemented tensor decomposition. 

As a result of further forecast of the time representation, it 

is hard to understand the general trend of mortality rates. 

Moreover, the calculation must be done in two steps: 1) 

estimate the values of deterministic parameters, and 2) project 

the values of stochastic parameters. A study by Qiao and 
Sherris [26] tried to solve the issue by implementing a linear 

function of time in the regression formula, each by stochastic 

and deterministic approaches, respectively. Although the 

approach is considerably simple and can predict the increase 

or decrease in mortality rates, it did not test the possibility of 

a turning point. Qiao and Sherris [26] also assumed that the 

force of mortalities is normally distributed. However, we 

argue that the assumption fails to fulfill the normality 

requirement since the force of mortalities must be positive 

valued for all ages. Hilton et al. [27] implemented the spline 

function of time, and it was more flexible than the linear 
function, but it lacks the ease of interpretation. 

An important issue that we identified is that the results 

from previous studies were only in point estimates, which we 

argue lack the reliability of interpretation. Even if we have 

large samples, there is no reason we should expect a point 

estimate from a given sample to be exactly equal to the 

condition of the population. Therefore, it is preferable to 

determine an interval estimate of the parameters of interest. 

Bayesian method is considered due to the flexibility of this 

method that incorporates experts’ judgment in addition to the 

data. Therefore, an optimal result could still be obtained even 

under the circumstances of low qualified data [28]–[31]. 
Chandra and Abdullah [19] produced annual mortality rates 

of the Indonesian population, for both males and females, in 

the form of interval estimates using the Bayesian method with 

Metropolis-Hastings algorithm and bootstrapping. However, 

this study was based on 2015-2020 data, a relatively short 

period, and not provide future projections. 

General-purpose of this study is to obtain the whole picture 

of the mortality trend for Indonesian males. To reach the 

purpose, we have two specific objectives: to detect the 

possibility of a turning point in the mortality trend and 

forecast future mortality rates. To achieve the research aim 
and objectives, we propose the following framework. First, 

we will develop a method that can be used for forecasting (i.e., 

extrapolation). Second, a further model that could provide 

insights (i.e., allows for interpretation) on the mortality trend 

will be proposed. Third, we will address the trade-off between 

data size and model complexity to guarantee the validity of 

the results. Fourth, once the model parameter estimates are 

obtained, we will develop an approach to construct the 

confidence interval for each estimate. Finally, we apply the 

constructed approach to Indonesian population data, both 

males and females, to analyze the probability of the turning 
point in the mortality trend and to forecast future mortality 

rates. 

In this study, we propose a simpler method than those 

previously discussed at the beginning of this section, in the 

sense that this method needs only one step of the calculation 

process. However, the proposed method will test the 

possibility of slowing mortality decline, is easier to interpret, 

and can provide interval estimates. Learning from Dong et al. 

[25], we decided to divide our data into a training set for 

model building and a testing set to assess the model’s 

performance, thus confirming the robustness of the model to 

forecast new data. 

C. Research Method 

In this study, we assume the compliance of the Makeham 

mortality model and adjust that model for forecasting 

purposes, which will be elaborated more in the subsequent 

sections. We consider two independent models for each sex 

and one pooled model for both sexes. We aim to identify and 

assess whether the mortality trends differ according to gender 

by considering these three models. Moreover, we will 
estimate a 95% credible interval of the parameters and 

measure the accuracy of the fitted model on testing data. 

Finally, we provide a forecast of mortality rates for the next 

periods. If there are no trend differences, the reported metrics 

will apply for both sexes. A summary of the detailed process 

is displayed in Fig. 1.  
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Fig. 1 Flowchart of the research method 

 

1)  Makeham model adjustment for forecasting purposes 

with separate sex: According to Dickson et al. [2], the 

Makeham model is defined by expressing the force of 

mortality at age x (μx) as written in (1). 

 �� = � + �	 � , � > −�, � > 0, 	 ≥ 1 (1) 

where A is an age-independent parameter, but B and C are 

age-dependent parameters. This specification indicates that 
the model fits well when mortality rates are increasing 

exponentially in terms of age. 

According to Jordan [32], usually, the value of A is in the 

range of (0.001, 0.003), B is in the range of (10-6, 10-3), and C 

is in the range of (1.08, 1.12). Good fit usually occurs for the 

age range of 30 to 80 years old, and actuarial practitioners 

often consider this model for its extrapolation ability. Chandra 

and Abdullah [19] modified the model as served by (2) to 

simplify the construction of prior distributions and parameter 

estimation process in the Bayesian method. 

 �� = �� − �� + ��� + 1�� , � > 0, � > 0, � > 0 (2) 

Referring to the latter model specification, Chandra and 

Abdullah [19] expressed α as the sum of A and B, also ϛ is C 

subtracted by one. Referring to the range suggested by Jordan 

[32], the value of α is usually in the range of (0.001 + 10-6, 

0.004) and ϛ is in the range of (0.08, 0.12). It implies that α is 

currently influenced by both age-independent and age-

dependent factors. We interpret that age-independent factors 

are not related to the individuals and cannot be explained well 

by their information. Yet, they are supposed to be related to 

overall environmental conditions. Therefore, we assign the 

time of the study period to represent the age-independent 
factors. In comparison, age-dependent factors are related to 

individuals and can be explained well by their information. 

Thus, we assign cohort information to represent the age-

dependent factors. 

Considering the year of birth, our data starts with the 1855-

1860 period and ends in the 1985-1990 period. We converted 

these periods into numerical predictors, denoted as y, 

referring to the 1855-1860 period as the base. Therefore, y 

equals zero for the 1855-1860 period, one for the 1860-1865 

period, and will continue as such. As for the study period, our 

data starts with the 1950-1955 period and ends with the 2015-

2020 period. We converted these periods into numerical 

predictors, denoted as z, referring to the 1950-1955 period as 
the base. Therefore, z equals zero for the 1950-1955 period, 

one for the 1955-1960 period, and will continue as such. 

Our interest is in understanding the overall trend of 

mortality rates and the existence of a turning point, both 

caused by age-independent factors (represented by time of 

study period) and age-dependent factors (represented by 

cohort information). We choose a quadratic form of 

mathematical expressions to investigate this occurrence and 

keep the model to be parsimonious. Since α, B, and ϛ should 

be positive for all cohorts and study periods, we seek a 

mathematical function that preserves this condition for all 
inputs. Therefore, we choose the exponential function, which 

also maintains the monotonicity property to guarantee the 

ease of interpretation. We express α, β, and ϛ as in (3), (4), 

and (5). 

 ��,� = �� exp���� + ���� + ��� + ����� (3) 

 ��,� =  �exp � �� +  ���� (4) 

 ��,� = ��exp ���� + ����� (5)  

By substituting y and z with zero, α0, β0, and ϛ0 could be 

interpreted as the value of α, B, and ϛ, respectively, for those 

who were born in 1855-1860 period and were studied in 1950-

1955 period. The study period does not affect the mortality 

rates if the values of α3 and α4 equal zero. While cohort effect 
does not affect the mortality rates if and only if the values of 

α1, α2, β1, β2, ϛ1, and ϛ2 are all equal to zero. As a result, we 

582



will have a model with eleven parameters (i.e. αj, βk, ϛl, j = 

0,…,4; k = 0,…,2; l = 0,..,2) and three predictors (i.e. x, y, and 

z). 

Our data do not have the values of μx; instead, we have data 

on 5qx. Our model assumes that mortality rates are determined 

by age (x), index of five-year birth year period (y), an index 

of the five-year study period (z). Therefore, the final model 

that we propose to fit the data is adjusted as in (6). 

5#�,�,� = 1 − $�% &−5'��$()�*(+�+*(,�*(-�+

−  �$.)�*.+�+/0 

                 × exp 2−  �$.)�*.+�+
log���$6)�*6+�+ + 1�7 

                 × exp 2'��$6)�*6+�+ + 1/� &'��$6)�*6+�+ + 1/8 − 107  (6)  

Once the model is specified, estimation of its parameters is 

required, as discussed in the subsequent section. The fitting 

process run in two phases, one for males and one for females. 
We assume that the parameters for males and females are 

independent, so we state this model as an independent sex 

model in the later sections. 

2)  Gibbs sampling to estimate the parameters of 
independent sex models: The equation of 5qx,y,z is considerably 

complicated to estimate the parameters. Since we have 

information on the domain, the suggested range, and previous 

research results of parameter values, implementing the 

Bayesian method could optimally utilize this information. We 

use the Gibbs sampler provided in WinBUGS [33] and 

R2WinBUGS [34] to simplify the estimation process. 

Chandra and Abdullah [19] considered the studies of 

Australian, British, Indian, and Malaysian populations to 

construct their prior distributions. After fitting the Makeham 

model into data, specifically from the 2015-2020 study period, 

the 95% credible intervals for all parameters were narrower 

than the 95% confidence intervals of their prior distributions 
and the range proposed by Jordan [32]. Therefore, we decided 

to construct new distributions after considering 95% credible 

intervals estimated by Cox et al. [9] and the implied range by 

Jordan [32], starting from α0, B0, and ϛ0. Selected prior 

distributions are two-parameters Weibull and lognormal with 

parameterization follows. 

We still need to construct prior distributions for parameters 

representing the effects of cohort and study period on the 

trend of mortality rates. By looking at our study objectives 

and current visible decreasing trend of mortality rates, our 

worst scenario assumes that the initial values of α, B, and ϛ 
will fall at the 2.5-percentile of prior distributions 

(respectively for α0, β0, and ϛ0)  and final values of α32,19, B32,19, 

and ϛ32,19 (for a population who is born in 2015-2020 period 

and will be studied in 2045-2050 period) will fall at the 97.5-

percentile of prior distributions (respectively for α0, β0, and 

ϛ0). We do not provide any prior tendency related to how 

cohort and study period affect mortality rates, positively or 

negatively. Therefore, our prior distributions are constructed 

based on a normal distribution with parameterization follows. 

We follow the specification of the sampling model 

constructed by Chandra and Abdullah [19]. Our trust in the 

data is considerably low since we only have the mortality rates 

without underlying data to calculate them. The variance of the 

sampling model is to be maximized to represent our belief 

without causing the problem of underflow or overflow in the 

fitting process. Thus, by denoting 5Qx,y,z as a random variable 

representing the value of 5qx,y,z, our sampling model for a 

particular mortality rate is defined as (7). 

 �89�,�,�|;, <, =�~Beta ?1, �@ABC,D,E
8BC,D,E F (7) 

where ; = G��, ��, ��, ��, ��H, < = G �,  �,  �H , and = =G��, ��, ��H. 
By assuming conditional independence on the data, we 

could construct our full sampling model as a multiplication of 

sampling model for each mortality rate. The posterior joint 

density of the parameters is proportional to the product of the 

density function of the parameters and the full sampling 

model. Denoting our training data as {q1, q2, …, q118}, our 
posterior joint density could be expressed by (8). 

 Posterior ∝ ��@�.PQ8��� �@���@� × 
$@��R∑ & (T8.�8×��U,0+-TV) *∑ ? .T�.��×��U,F++TV) *∑ & 6T�.WP×��U-0+-TV) X× 
$@��R?YZ[ .\*��.WWQQ.�Q� F+*&YZ[ 6\*�.8�P�.��Q 0+X× 

       $@��.�Q](\\.,+A ∏ _ `? )aTF
`?)UaTaT F �#b� )aT@��1 − #b� )aT@�c��]bd�  (8) 

 

We fitted all data together because there is a possible 

correlation between them. Therefore, we suggest that it is 

more plausible to estimate the initial values and trend 

parameters together in one model than fitting independent 

Makeham models into each part of data and forecast every 

parameter independently by ARIMA models later. 

3)  Makeham model adjustment for forecasting purposes 

with pooled sex models: Independent models for each sex 
produced better accuracy than pooled sexes model, but they 

also have disadvantages. First, they take a longer duration to 

have the fitting process. Second, some parties may consider 

that overall degrees of freedom is smaller than pooling both 

sexes into a model. Therefore, we construct the pooled model 

by modifying (3), (4), and (5). Assuming that the estimate of 

trend parameters are equal for both males and females, our 

expressions for the value of α, β, and ϛ in the pooled model 

are expressed as (9), (10), and (11) with adding a sex indicator 

denoted by s, with the value of 1 for males and 0 for females. 

 ��,�,e = �� $�%���� + ���� + ��� + ���� + �8f� (9) 

 ��,�,e =  � $�%� �� +  ��� +  �f� (10) 

 ��,�,e = �� $�%���� + ���� + ��f� (11) 

The values of α5, β3, and ϛ3 represent the naturally-log ratio 

of α, β, and ϛ for males to females, respectively. We expect 

that the differences are small, so we put normal distribution 

with zero mean as the prior distribution of α5, β3, and ϛ3 (later, 

we mention them as ratio parameters). The standard 

deviations are determined by looking at the naturally-log form 

of the ratio between 97.5-percentile to 2.5-percentile for every 

prior distribution of α0, β0, and ϛ0. Thus, we express the five-

year abridged rates for the pooled model as (12). 
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5#�,�,�,g = 1 − exp &−5'��$()�*(+�+*(,�*(-�+*(Ag/0 × 
exp &−5'− �$.)�*.+�+*.,g/0 × 
&'��$6)�*6+�+*6,g + 1/8 − 10 × 

2$�% 2− .\hi)Dji+D+ji,k
YZ[&6\hl)Djl+D+jl,k*�0  77&6\hl)Djl+D+jl,k*�0C

 (12) 

The sampling model and joint posterior density are similar 

to the case of the independent model for each sex with a 
modification regarding the sex indicator and ratio parameters. 

The sampling model is given by 

 �89�,�,�,g|;∗, <∗, =∗�~beta ?1, �@ABC,D,E,k
8BC,D,E,k F (13) 

where ;∗ = G��, ��, ��, ��, ��, �8H, <∗ = G �,  � ,  �,  �H, and =∗ = G��, ��, ��, ��H. 
 

Furthermore, the posterior joint density is 

 Posterior ∝ ��@�.PQ8��� �@���@� × 
$@��R∑ & (T8.�8×��U,0+-TV) *∑ ? .T�.��×��U,F++TV) *∑ & 6T�.WP×��U-0+-TV) X× 
$@��R?YZ[ .\*��.WWQQ.�Q� F+*&YZ[ 6\*�.8�P�.��Q 0+X× 
$@��R& (AQ.]��0*? .,�.8��F+*& 6,�.Q�Q×��U)0+X ×hU++.)nop\\.,+A× 

     ∏ _ `? )aTF
`?)UaTaT F �#b� )aT@��1 − #b� )aT@�c��]bd�  (14) 

 

We have 236 pieces of data in total to fit into this model, 

which consists of equal size of 118 data for males and females. 

The sample size ratio to the number of parameters is 16.9: 1. 
Since the ratio is greater than that of the independent sex 

model, this pooled model has more degrees of freedom so that 

we have more power to reject a false null hypothesis and find 

a significant result. 

III. RESULTS AND DISCUSSION 

We obtained the parameter estimates in their posterior 

distributions by implementing our modeling approach. Their 

posterior means are further substituted into independent sex 
models in Equation 6 and pooled sexes model in Equation 12 

to form the fitted model. The accuracy of the model is tested 

on both training and testing data. Furthermore, we analyzed 

the mortality trend to forecast future mortality tables and life 

expectancy. 

A. Parameter Estimates for Independent Sex Models 

We estimated the parameters using the R2WinBUGS 

package [34] in R version 3.6.0 with WinBUGS14 [33]. We 
determined which trend parameters are significant by 

evaluating their estimated 95% credible interval. To ensure 

the convergence of our estimates, we run two different chains 

for each sex, with 10,000 iterations for burn-in and 100,000 

iterations for sampling in one chain. This process ran for a 

total of around two hours and ten minutes (for males), and 57 

minutes (for females) on a computer with Intel® Core™ i5-

8250U processor. 

After applying single-chain convergence diagnostics such 

as the Heidelberger-Welch test (with ε of 2) and the Geweke 

test (p-value, of 0.01), we decided to burn another 10,000 

iterations (for males) and kept all the 100,000 iterations (for 

females) or to achieve stationarity. We obtained our 

multivariate potential scale reduction factor values 1.02 (for 

males) and 1.00 (for females) in Gelman-Rubin multi-chain 

convergence diagnostic by considering the two chains. In the 

end, we combined results from the two chains for each sex to 

base on our statistical inference about the posterior 

distribution of the parameters. 
A parameter is considerably significant (at the significance 

level of 0.01) if the 0.5-percentile to 99.5-percentile range 

does not contain zero. Examining the summary statistics, no 

significant trend parameters were found. Therefore, other 

statistics are required to understand the mortality trend. For 

this purpose, we introduce the use of posterior probabilities of 

the parameters to be negative (or positive), as it implies the 

non-zero value of those parameters, indicating the existence 

of trends. 

TABLE I 

POSTERIOR PROBABILITIES OF NEGATIVE TREND PARAMETERS FOR 

INDEPENDENT SEX MODELS  

Parameter 
Prob (Parameter < 0 | Data) 

Males Females 

α1 0.497 0.479 
α2 0.817 0.807 
α3 0.518 0.503 
α4 0.585 0.591 

β1 0.282 0.262 
β2 0.679 0.500 
ϛ1 0.460 0.347 
ϛ2 0.808 0.869 

 

Examining the total number of kept iterations (i.e., the 

sample size), Prob(Parameter < 0 | Data) is considered to give 

us an insignificant result if its value lies between 0.496 and 

0.504 (for males) or between 0.497 and 0.503 (for females), 

as these values imply that around 50:50 chance of being 

negative or the complement. Therefore, by looking at the 

numbers in Table I, all trend parameters except α1 (for males) 
or α3 and β2 (for females) are significant to understand the 

mortality trend. Moreover, since the probability of all other 

parameters, except β1 and ϛ1 (for both sexes), to be negative 

are greater than 0.504 (for males) and 0.503 (for females), it 

implies these parameters represented the tendency of the 

negative trend of factors. 

B. Accuracy Testing for Independent Sex Models 

We obtained the fitted model by substituting the posterior 

means of the parameters into Equation 6. To assess the 
reliability and robustness of the accuracy of the fitted model, 

we use the model to forecast both training and testing data. As 

our accuracy metrics, we implemented mean absolute 

percentage error (MAPE) and coefficient of determination 

(R2). According to Gatabazi and Pindza [35], the MAPE 

criteria for accuracy are highly accurate, good, reasonable, 

and inaccurate for the range of under 10%, between 10% to 

20%, between 20% to 50%, and >50%, respectively. In the 

whole training data, our model yields MAPE of 36.89% (for 

males) or 33.10% (for females) and R2 of 98.57% (for males) 
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or 98.34% (for females), implying that the estimates are 

reasonably accurate. 

The model was fit into data with � ∈  [30, 80] . The 

model’s ability to extrapolate was assessed on the calculation 

of five-years abridged mortality rates for � ∈  G85, 90, 95H. 

We fitted our model for the population who are expected to 

be studied in the 2000-2005 period or before. For this criterion, 

the model yields MAPE of 2.65% (for males) and 5.16% (for 

females) and R2 of 96.56% (for males) and 88.82% (for 

females), which imply that we could use the model for 
extrapolation purposes in term of age. 

The model was then used to project the mortality rates 

across cohorts and periods. We have only fifteen data from 

five cohorts to assess forecasting accuracy by cohorts, so 

accuracy testing is done for all available data. We obtained 

MAPE of 45.93% (for males), and 6.10% (for females), and 

the resulting R2 is 97.04% (for males) and 98.80% (for 

females). Moreover, we have three abridged life tables (each 

in 2005-2010, 2010-2015, and 2015-2020 study period) to 

assess forecasting accuracy by study periods, and the 

assessment is going to be done for each period. MAPE is in 

the range of [18.92%, 22.15%] for males and [8.20%, 8.54%] 
for females, when R2 exceeds 99% for both males and females 

in all three study periods. Therefore, those results showed that 

our model could produce considerably high accuracy 

forecasts. 

Moreover, we tried to determine our best estimate and 

worst estimate of mortality rates. By best estimates, we mean 

that it is the lowest logical probability of death, and the worst 

estimate means that it is the highest logical probability of 

death. For example, whenever our study resulted that the 

probability of a male aged 70 in 2030-2035 to die within the 

age of [70, 75) is between 2.549% and 48.33%, it is still 
possible that actual death is only 0.5%. We adjust the values 

based on historical data to suit the Indonesian males’ society 

concerning their health background and other related risk 

factors. By substituting the ith-percentile from posterior 

distributions of the parameters into the model as the best 

estimate and (100-i)th-percentile as the worst estimate, with i 

  {0, 1, 2, …, 49}, we found that all values in training data 

fit for i ≤ 41 (for both sexes) and all values in testing data for 

i ≤ 40 (for males) or 39 (for females). 

C. Mortality Trend Analysis by Using Independent Sex 
Models 

The study period is represented by z variable and only 

affects the value of α through parameters α3 and α4 in our 

model. Our fitted model has negative values for both 

parameters, so it is expected that generally, mortality rates 

always decline concerning time. However, we also need to 

consider the values of Prob (α3 < 0 | Data) and Prob (α4 < 0 | 

data) as they are not far over 0.5 for both sexes. Further 

calculation shows that Prob (α1 < 0 and α2 > 0 | Data) = 0.210 

(for males) or 0.209 (for females), implying that the 
possibility of having a turning point is statistically significant. 

It is also possible that actually mortality rates always increase 

with respect to time since the value of Prob (α1 > 0 and α2 > 0 

| Data) = 0.205 (for males) and 0.200 (for females). 

We used the birth year as cohort information, and the y 

variable represents it. Our fitted model has negative values of 

α2, β2, and ϛ2, so it is expected that in the long term, the 

mortality rates decline with respect to a birth year for both 

sexes. By looking at positive-valued β1 and ϛ1, the values of 

α, B, and ϛ just start to go down together for those who were 

born in 1980 afterward (for males), or 1970 afterward (for 

females). However, we also need to prepare for another 

scenario that the mortality trend is going to have a turning 

point and will increase in the long term. This importance is 

suggested by the fact that the values of Prob (α2 < 0 | Data), 

Prob(α4 < 0 | Data), Prob(β2 < 0 | Data), and Prob(ϛ2 < 0 | Data) 

are all less than 0.99 for both sexes. 

D. Comparing to The Results of Pooled Model 

For every parameter in the independent sex models, all the 

symmetric 95% credible intervals for males and females 

overlap. Posterior probabilities of the trend parameters in both 

models to be negative are also considered close up to the first 

decimal digit (except β2 and ϛ1). Therefore, it is considered 

safe and plausible to assume those trend parameters for both 

sexes are equal, so we could proceed to use the pooled model. 

With a similar procedure as in using independent sex models, 
we also run two different chains, each chain with 10,000 

iterations for burn-in and 100,000 iterations for sampling. The 

running time took two hours and 32 minutes in total on the 

same computer. 

TABLE II 

POSTERIOR PROBABILITIES OF NEGATIVE TREND PARAMETERS FOR POOLED 

MODEL 

Parameter Prob(Parameter < 0 | Data) 

α1 0.530 
α2 0.769 
α3 0.504 
α4 0.587 
α5 0.423 

β1 0.273 
β2 0.790 
β3 0.222 

 

We decided to burn 15,000 more iterations to achieve the 

same convergence criteria defined for independent sex 

models. The multivariate potential scale reduction factor 

grows to 1.19, but it still satisfies convergence as univariate 

point estimates are lower than their respective upper limit of 
the confidence interval. By looking at the symmetric 95% 

credible interval of the ratio parameters, the difference in 

mortality rates between males and females is insignificant. It 

also suggests that the trend parameters are not significantly 

different from zero, so once again, we need to calculate 

posterior probabilities of the trend and ratio parameters to be 

negative as written in Table II. Each parameter is considered 

significant if significant if its respective probability is less 

than 0.496 or more than 0.504. 

Table II suggests that all trend parameters (expect α3) and 

ratio parameters are significant. Negative values for α2, α4, β2, 
and ϛ2 implies the expectation that the value of α, B, and ϛ 

decrease over time. Prob (α5 < 0 | data) and Prob (β3 < 0 | data) 

are less than a half, then we expect that the value of α and B 

for males are lower than females. However, Prob (ϛ3 < 0 | Data) 

is greater than 0.5, so the value of ϛ is higher for males than 

females, and we found no significant different mortality rates 

by sex. 

Implementing similar procedures as defined for 

independent sex models, the accuracy of the pooled model is 
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presented in Table III. The value of α equals 43 (for training 

data of males), 42 (for testing data of males), 41 (for training 

data of females), and 40 (for testing data of females). The 

pooled model gives the males better accuracy, and the 

independent sex model is better for females. 

TABLE III 
OVERALL ACCURACY ASSESSMENT FOR THE POOLED MODEL 

Parameter 
MAPE R2 

Males Females Males Females 

Training data 34.95% 39.05% 98.26% 98.15% 
Extrapolation to  � ∈ 

[85, 95]   
3.42% 2.33% 97.21% 95.18% 

Forecasting 
accuracy by cohorts 
(overall) 

9.90% 13.48% 97.32% 98.78% 

Forecasting 
accuracy to 2005-
2010  

9.93% 18.09% 99.34% 99.68% 

Forecasting 
accuracy to 2010-
2015  

11.75% 17.58% 99.25% 99.67% 

Forecasting 
accuracy to 2015-
2020  

15.79% 15.54% 99.23% 99.66% 

Forecasting 
accuracy by time 
periods (overall) 

12.49% 17.07% 99.23% 99.60% 

 

Our fitted pooled model also provides decreasing mortality 

rates over the study period and cohort information, as the 
expected value of α2, α4, β2, and ϛ2 are all negative with 

significant probabilities. The declining trend of mortality 

rates provided by the pooled model is stronger than that 

provided by the independent sex models, as the estimated 

values of α, B, and ϛ decrease together for those who were 

born in 1915 afterward. The possibility to have a turning point 

in the mortality trend is still significant as the values of Prob 

(α2 < 0 | Data), Prob(α4 < 0 | Data), Prob(β2 < 0 | Data), and 

Prob(ϛ2 < 0 | Data) are all less than 0.99. 

E. Forecasting Mortality Table 

This section serves our research objective to forecast the 

abridged mortality table for the 2020-2025 period until the 

2045-2050 period in the form of interval estimates, both by 

independent sex models and pooled models. Since the values 

of α are around 40 for both sexes and both models, our best 

estimate substituted 40-percentile values from posterior 

distributions of the parameters into the model, while the worst 

estimate substituted 60-percentile values. This procedure 

considers the approximation of predictive mortality rates 

instead of the posterior one. Due to maintaining the length of 
the resulting manuscript, complete mortality tables are not 

printed here. 

F. Forecasting Life Expectancy 

We have not concluded which approach is the best fit 

among independent sex models and pooled sex models. 

Outside of its accuracy, we also consider that the parameter 

estimates must be logical because it is neither too pessimistic 

nor too optimistic. Therefore, we need to calculate another 
indicator, and it is done by forecasting life expectancy. 

Assuming that we could extrapolate our model to x ≥ 100, and 

the model is directly expressed in the form of μx, we could 

numerically calculate the value of complete life expectancy at 

age 30, symbolized as $Z��. 

One important thing to consider is, our function of μx is 

discontinuous, as birth year and study period are aggregated 

in five years. We also limit values of y and z to be integer-

valued. These conditions work well for the calculation of tpx 

with t ≤ 5, because the value of y and z are constants in those 

calculations. Furthermore, we need to consider across study 

periods if we try to calculate tpx with t > 5. Therefore, we need 

to define how to calculate them. For someone who is born in 

year w and will be studied in age x, with w ≥ 1950, y and z 

are calculated as (15) and (16). 

 � = e@�]88
8  (15) 

 � = 8vjCA @�W8�
8 = e*�

8 − 390 (16) 

We have to express the function of μx,w,s, the force of 

mortality at age x for a male (s = 1) or a female (s = 0) who is 

born in year w. Recall that in the independent sex models, we 

have a different estimate of parameters for males and females. 

We have to look carefully for the respective sex and compute 

the hazard rates with (17). 
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 (17) 

On the other side, if we implement the pooled model, 
parameter estimates are equal for males and females, but we 

have to consider the value of α5. Therefore, the function of 

μx,w,s for the pooled model is written in (18). 
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1)  Forecasting Life Expectancy Based on Independent Sex 

Models: By substituting posterior means of the parameters 

into the independent sex models, we obtained our expected 

value of $Z�� for several birth years. The numbers show that 

the expected life expectancy is increasing for the younger 
cohort and if this declining mortality trend continues, an 

individual who was born in 2005 afterward (for males) or 

1980 afterward (for females) could be expected to become 

centenarian after surviving the age of 30. Therefore, insurance 

companies must consider longevity risk well, especially for 

whole-life insurance and pension funds providers. 

Referring to our best estimate of forecasting models, we 

plot our best estimate of $Z�� values in Fig. 2. At their best, 

individuals who were born in 1990 afterward (for males) or 
1975 afterward (for females) will probably exceed age 150 if 

they survive until age 30. Some parties may consider these 

results a wild dream, but it is possible by looking at lifespan 

records. Our models suggest that the expected total lifespan 

record, which we can see today in Indonesia, is in the range 
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of [87, 90] years (for males) or [91, 95] years (for females). 

This result aligns with the raw data used to generate the 

mortality table by the Indonesian Life Insurance Association, 

that the observed age was up to 110. 

 

Fig. 2 Best estimate of life expectancy trend at age thirty, implied by the 

independent sex models. 

Looking at another perspective, we have to give more 

attention to males’ position as the breadwinner in their 

families. Especially when the family’s income is only from 

them, males’ roles in making a living for their families are 

very important, at least until their children complete formal 

education and no longer under their affordance. The mode of 

fathers’ age when their children were born was 33, for the 

Jakarta population in 2015 [36]. Other data shows that most 

births in Jakarta occurred when the mothers’ ages were in the 

range of [25, 29], as presented in Jakarta Open Data [37]. 

Assuming this condition also applies to other locations in 
Indonesia, we expect that most Indonesian children complete 

their 12-years compulsory education when their fathers and 

mothers are fifty and forty years old, respectively. 

On the other side, the Indonesian government set the 

pension age at 57. Therefore, we need to calculate our worst 

estimate of probabilities that a 30 year old male passes away 

before his child completes compulsory education (30q20) and 

before he reaches pension age (30q27), respectively. Fig. 3 

suggests that the probabilities are statistically significant at p-

values of 0.01, 0.05, and 0.10 for all born in 2015 or before. 

Thus, it is suggested that having an insurance policy could be 

an advantage.  

 

Fig. 3 Worst estimate of death probabilities trend for males, implied by the 

independent sex models. 

Assuming that the father is dead when his child completes 

the compulsory education and his wife substitutes his role to 

be a breadwinner at least until the child obtains an 

undergraduate degree, we consider that it is important to 

calculate the worst estimates of 40q4 and 40q17 (i.e., the 

probability that the mother dies before her child obtains 

undergraduate degree, and before she reaches pension age, 

respectively). The estimated values of 40q4 range between 20% 

to 35%; and between 30% to 50% for 40q17. These probabilities 

are still considered high, as they are statistically significant 

(p-value = 0.01) for all females born in 2015 or before. 

Therefore, it is also suggested that married females have life 

insurance policies.  

2)  Forecasting Life Expectancy Based on Pooled Model: 

We also calculated all statistics that we have considered 

similarly for independent sex models. Our pooled model 
suggested that females have a longer lifespan than males, but 

males still live longer by looking at the best estimates. Based 

on these two scenarios, the pooled model gives a more 

optimistic estimate for the males and a more pessimistic 

estimate for the females than the independent sex models in 

the long term. 

However, the pooled model gives a less optimistic estimate 

for the males and a more optimistic estimate for the females 

for the worst scenario. We chose not to provide detailed 

results here because this article’s length is reasonable, but 

readers could look for them as separate supplementary 

material. Our intuitive explanation and conclusion for the 

results of this pooled model are similar to the independent sex 

models; we have to seriously consider both longevity risk and 

mortality risk. 

IV. CONCLUSION 

We found that mortality rates declined with time, with 

newer data suggesting slowing the decline. Our study 

proposed an eleven-parameters Makeham model considering 

both birth year and study period. We implemented the 

Bayesian method to forecast mortality rates of the Indonesian 

old-age population. We also calculated the probabilities that 

the decline would stop and turn into increasing mortality rates 

in the future. Our results expect that mortality rates are 
declining in the long term. Insurance companies need to 

consider both mortality risk and longevity risk to ensure their 

profitability and financial health in the future. The probability 

of a turning point is statistically significant, so it is 

recommended to be aware of the possibility of worse 

mortality rates in the future. 
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