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Abstract— Tracing the implementation of requirements for making better software identifies whether the application fulfils users' 

desires; progress of development; problematic areas in the testing process, and how far those apply to the source code. In this paper, 

the software development method we studied was the agile method, Extreme Programming (XP). The artifacts in the agile approach 

considered vital include the requirement documents, test documents, and source codes. We used Topic Modelling to map the content 

similarities from those documents to make trace links. The three topic modelling methods we compared consist of Latent Semantic 

Analysis (LSA), Latent Dirichlet Allocation (LDA), and Non-negative Matrix Factorization (NMF). The NMF method proved itself the 

most stable, with an accuracy value of 67% for the requirement, 59% for testing, and 48% for defect lists. The second application 

results proved more accurate with 70%, 79%, and 54%. Although NMF lost to LSA in the second application (LSA achieved an 

accuracy of 79%, 84%, and 56%), the precision and recall values showed almost similar results. We successfully found the link in the 

source code based on keywords extracted from each topic. This research provides a way of explaining the requirement in detail, 

simplifying it for tracing purposes such as the consistent use of terms, technical details inclusion, and mentioning all the variables 

involved. In the future, sentence structure and synonyms need recognition as part of pre-processing to build better trace links. 

Keywords— Software traceability; Agile; topic modeling; latent semantic analysis; latent dirichlet allocation; non-negative matrix 

factorization. 
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I. INTRODUCTION

There are quick changes or additions to requirements in the 
agile application development process. This situation happens 
because the customer is the part of the development team who 
provides input and adjustments. Very intense communication 
processes and the simplification of documentation often make 
it difficult for developers to track the progress of 
implementing the application's overall requirements; 
therefore, requirements tracking is necessary to ensure that 
application development is running on the right track. 

Our previous research paper found a close correlation 
between story points on requirements and integration testing 
with the appearance of defects [1]. Story point changes have 
a more significant impact on the appearance of defects rather 
than an addition to story points. Apart from story points, 
integration testing also strongly correlates with the 
appearance of defects. It was found that malfunctions detected 
and handled by integration testing could recur when multiple 
users used the application. Based on that fact, tracing was 
carried out on three documents, namely story points of 
requirement, test cases, and source code. 

Requirements traceability is the process of tracking the 
application of requirements to a variety of software 
development artifacts. Automated tracing with good efficacy 
and scalability needs to be implemented to form the correct 
trace links. The traceability of requirements is carried out 
based on the formulation of written language structure. The 
manual application of requirements tracing requires effort and 
time, especially with a high complexity level. One of the 
technologies often used to create trace links is information 
retrieval [2].  

In this paper, the information retrieval method we use is 
topic modeling included in the clustering process. The 
document was checked for the similarity of constituent words 
and identify the topic grouping based on the compiler words. 
This grouping facilitated the formation of the traceability link. 
In this method, there is no need for training data. So that 
grouping in limited artifact documents can still be carried out 
without fear of an overfitting model. The information 
structure strongly influences the results of applying 
information retrieval technology in the artifacts and frequent 
evaluations to see whether the trace links created properly are 
Precision and Recall [2]. 
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There are seven types of artifacts often used as sources of 
information when researching software traceability: features, 
requirements, source code, architecture, components, tests, 
and variability models [3]. This paper studies only three types 
– requirements documents, test documents, and source code. 
The domain is the similarity of keywords in the development 
of each module.  

Two topic modeling methods, namely Latent Semantic 
Analysis (LSA) and Latent Dirichlet Allocation (LDA), can 
retrieve information and determine possible linkages [4]. 
Term frequency-inverse document frequency (TF-IDF) 
supports both ways to map terms whose existence in the 
document is represented in the form of metrics. The TF-IDF 
method combined with cosine similarity is not enough to see 
similar words in application artifact documents. The 
application of LSA and LDA can provide better results. The 
combination of TF-IDF as input for LSA and LDA is expected 
to improve the two modeling algorithms' performance for the 
topic. 

LSA and LDA have also been implemented to create a 
search link between the requirements document and the 
source code. It aims to find the source code that needs to be 
changed when the requirement is changed. However, both 
methods still produce low precision and recall values. The 
recall value obtained is 0.23, and the precision value obtained 
is 0.305 [5]. This value is obtained because the requirements 
document describes the process in general. Not many 
technical terms appear in the requirements document, so 
finding similar terms or words in the source code is rare. 
Requirements documents cannot be directly mapped based on 
the similarity of terms to the source code. We need other 
documents with more technical terms used in the source code 
and general terms in the requirements document.  

Another comparison between Probabilistic Latent 
Semantic Analysis (PLSA) and LDA was adopted to track 
business processes and software components. The recall value 
on PLSA is higher than LDA for relevant value because 
software components are suitable for business process 
activities. The LDA precision value is higher than PLSA 
because calculating LDA's relevant value is specific. Optimal 
results can be taken if the dataset has a particular class based 
on specific activities [6]. Previous studies discuss the 
comparison of those three methods with their strength and 
limitation. LSA has limitations in handling polysemy, PLSA 
tends to be overfitting, and LDA has difficulties finding 
correlating words or topics [7]. 

Topic modeling with the NMF method also found a 
significant topic result related to disease identification; the 
correlation between the topic and the value for certain 
variables showed a good correlation [8]. LDA and NMF are 
considered to be the topic modeling methods that produce the 
most valuable output on short text compared with other 
methods like LSA, Principal Component Analysis (PCA), and 
random projection (RP) [9]. From the two previous studies, 
both LDA and NMF seem to stand out by finding topics in 
short texts that are relatable and easy to conclude. 

Meanwhile, Non-negative Matrix Factorization (NMF) 
produces a higher quality topic spread than LDA with the 
same experimental setting across multiple experimental data 
with short text documents [10]. Data with short text contained 
a small number of words and varied, and the recurrence of the 

exact words in one sentence occurred very rarely. There are 
also not many combinations of word similarities in comparing 
one short text data with other short text data. The lack of 
information about combining words like this cannot be 
appropriately processed with probabilistic models such as 
LDA. Gibbs sampling on the LDA provided a large variety of 
learning and inference in short texts.  

We propose to make traceability from the three selected 
documents as follows: story points on requirements, test cases, 
and defect lists, using topic modeling. In topic modeling, 
documents were grouped into particular topics that save time 
compared to manually. The three topic modeling methods to 
be compared are LSA, LDA, and NMF. These three methods 
have their advantages when used on various datasets. The 
author looked for a topic modeling method that best fits our 
software development dataset. We identified the words that 
compiled each topic according to the best model result. Those 
words can be the input to trace the source code. Each topic 
modeling was different in determining the optimal number of 
topics. Topic modeling such as LSA suggests fewer topics 
than LDA and NMF on the same data [11]. In this study, the 
actual number of topics is known, and we are looking to 
model which topics can group data into predetermined topics 
appropriately. 

Based on a previous study, the tracing model uses several 
points: source, destination, meaning, assumption, 
consequences, pre-process, process, and tool [12]. In this 
paper, the source requires a testing document and source code 
as the destination. Meanwhile, the meaning is dependency, 
assuming that the topic has been determined based on the 
agile development module. The consequences of the 
application process are measured using precision and recall. 
The raw data was structured first through pre-process to be 
used further. The process is the application of modeling topics 
to each artifact using python as the tool. 

This study's contribution is to improve the requirements' 
explanation and make it easier to trace the implementation of 
requirements down to the source code for agile software 
development. This tracing can later be used for better defect 
handling. It can be a way to facilitate application management 
and improve application quality because we can be aware of 
the suspected defect location in the source code, other code 
that is affected by it on the test case step, and other modules 
regarding the story points from the requirement. 

II. MATERIALS AND METHOD 

The written language for the requirements, test cases, and 
comments on the source codes were Indonesian. Only a few 
technical terms were written in English. The requirements 
here would be divided into general and technical terms. In the 
test case, a detailed step was taken. There were very striking 
differences between the requirements document and the test 
case, and the appearance of the same word was infrequent. 
Therefore, topic modeling was carried out separately with the 
same topics. Data were taken from two applications with the 
same programming language but using different frameworks. 
The first application used the PHPMaker generator, and the 
second application used Yii2. Both were simple applications 
that were not too complex. 
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A. Prepare The Data 

All written documents were cleaned of symbols, numbers, 
and single characters that did not provide any information. 
Then a stop word removal – which was a list of words in 
automatic indexing to filter out words that have no real 
purpose in describing the document content, especially in 
searches – was performed. Tokenization was then carried out, 
which broke the flow of text into words, phrases, symbols, or 
other meaningful elements called tokens. The purpose of 
tokenization was the exploration of words in a sentence. 
Stemming was the last thing that combined variant forms of 
words into a general representation of the root words. 

1) Requirement Data: The requirements were obtained 
from a business analyst to identify the stages of business 
processes applied to the application to support user 
performance. Meanwhile, technical needs would arise from 
the System Analyst and input from programmers. Technical 
requirements for more details regarding what attributes were 
involved and how they were processed were translated to 
make applying them to the source code easier. Such as 
explaining employee data, grouping documents, storing 
processes into a database, etc. The pre-processing words on 
the user story were included in Table 1 in the Requirement 
column, and each user story came from the existing meeting 
and discussion notes. The document had a code for easy 
identification. Requirements status for user stories were saved 
as high, medium, or low priority. Needs also fell into two 
categories – changes or additions, and the last column was 
which group of modules these needs were. 

TABLE I 
REQUIREMENT DATA 
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M3  Every employee's 

personal document 

is stored neatly and 

electronically 

organized 

 b. Every employee 

document is always 

updated 

 High - 1 

M7 The official documents 

that have been published 

and uploaded are not 

deleted from the e-filling 

database. 

M3 High Change 1 

2) Test Case Data: The results of pre-processing words 
in the test were entered in Table 2. The table just stored data 
for step detail, and the expected results from the test case 
document would be separately stored because they would be 
processed independently. The pre-processing step detail 
results for each test would be given a code as an identity to 
make it easier to trace the testing document source. In the last 
column, it was entered into which module group these needs 
were. In the latest column was which group of application 
modules the test was. 

TABLE II 
TEST CASE DATA 

Code Step Modul 

P5 Choose the file format for storage 1 

P6 Save files in the file repository in the 

application 

1 

3) Defect and Bug Data: The results of pre-processing 
words on bugs, defects, and expected results on testing were 
included in Table 3 in the content column. The difference was 
whether the content was a bug, defect, or expected result to be 
entered into the type. Each word in the content was given an 
identity code to make it easier to identify which test document 
it came from. The last column was which module group it 
belongs to. 

TABLE III 
DEFECT AND BUG DATA 

Content Type Test 

Case  

Modul 

File saved with input name and 

appropriate file extension, but file 

contents are corrupt. The last stage 

failed 

Bugs P3 1 

 
4) Source Code Data: Source code was also collected but 

not through pre-processing in Table 4. A necessary function 
code was entered in the source code column; meanwhile, the 
name of the file was entered in the name column. The last 
column was which module group it belongs to. 

TABLE IIIV 
SOURCE CODE DATA 

Source Code Name Modul 

<?php 

//Mencari nama pegawai dari 

database 

//mysql_connect("localhost","root",""

); 

//mysql_select_db("edoc"); 

include_once('koneksi_db.php'); 

$nip18 = $_GET['nip18']; 

$nama = mysql_query("SELECT 

nama_nongelar FROM ms_pegawai 

WHERE nip18='$nip18' order by 

nip"); 

while($k = 

mysql_fetch_array($nama)){ 

echo "<option selected 

value=\"".$k['nama_nongelar']."\">".$

k['nama_nongelar']."</option>"; 

} 

?> 

ambilnama.

php 

1 

B. Topic Modeling 

First of all, all sentences in the document list were 
vectorized using TF-IDF using Unigram, bigram, or trigram. 
The three topic modeling algorithms based on word 
vectorization input identified all text data with the topic and 
the constituent words' similarity. It should be underlined that 
all words match the original document without stemming; this 
facilitates the topic interpretation easiness. The overall topic 
modeling process, as shown in Fig. 1. 
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Fig.  1  Topic Modeling Stage 

Every text document consists of words that are related to 
each other. When we needed to find out the document's topic, 
it was necessary to identify the words that represent it. In each 
document, words that were considered essential and a 
representative would be given weight. This search and 
weighting of words was a necessary process. The search and 
weighting process of words used was TF-IDF in this research. 
In the TF-IDF algorithm, TF was the frequency of terms that 
appear in a document, IDF was a document distribution with 
certain words from the entire data set [13]. 
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 TFtd was the number of appearances t in document d. 

 DFt was the number of documents containing the term 

t. 
 N was the total number of documents in the corpus. 

 
The IDF was the reciprocal of the document frequency, 

measuring the informativeness of the t term. When we 
calculated the IDF, the low weight was given to the most 
frequent words such as stop words (because stop words such 
as "that" were present in most documents, and N / df would 
offer shallow scores for that word). Therefore, in the end, it 
would give us what we wanted – the relative weight. 

A search for document similarity by word appearance cut 
into Unigram, bigram, or trigram had been carried out to 
search for requirements, resulting in low precision and recall 
values [14]. Therefore, in this study, the process of finding 
words in the Unigram and bigram or trigram formations was 
formulated with TF-IDF. The word vectorization results from 
TF-IDF would then be used as input for the three topic 
modeling algorithms, namely LSA, LDA, and NMF. 

LSA studied latent topics by performing matrix 
decomposition on the term-document matrix using singular 

value decomposition (SVD) [5]. The python method that 
would be used is SVD. SVD broke the matrix into an 
orthogonal column matrix, an orthogonal row matrix, and a 
single matrix. There were several options for determining the 
optimal number of topics. 

 

 � �  �∑�∗ (2) 

 M is the m × m matrix 
 U is the left single matrix m x n 
 Σ is an n × n diagonal matrix with non-negative real 

numbers. 
 V is the right single matrix m × n 
 V * is an n × m matrix, which is the transpose of V. 

LDA extracted document features from the word level, go 
to the document level and finally reach the corpus level. 
Feature extraction with LDA was carried out through the 
knowledge stage of connectedness reasons, and the results 
could be implemented for extracting information. 
Connectedness was vital in the LDA process because it 
determined the document's distribution of topics. Therefore, 
the process of selecting a method of connection reasons 
needed special attention. Previous research on Indonesian 
language text processing compared the mean variational 
inference and Gibbs sampling methods showing that Gibbs 
Sampling performed better than the Mean Variational 
Inference for LDA [15]. 
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 n (d, k) was the number of times document d used topic 
k 

 v (k, w) was the frequency with which topic k used the 
given word 

 αk was Dirichlet parameter for the document-to-topic 
distribution 

 λw was the Dirichlet parameter for topic-to-word 
distribution. 

NMF could be applied to multivariate data's statistical 
analysis by providing a set of n-dimensional multivariate data 
vectors. The vectors were placed in the n x m matrix V column 
where m was the number of samples in the data set. The 
matrix was then factored into n x r for W matrix and r x m  for 
H matrix, where r was the number of generated topics [16]. 
Usually, r was chosen less than or m, so that W and H were 
less than V as the original matrix. This algorithm produced a 
compressed version of the original data matrix [17]. Several 
measures of reconstruction error between V and WH estimated: 
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Maximization optimization to smooth W and H was used to 
minimize reconstruction errors. A common approach was to 
iterate between two renewal rules of multiplication until 
convergence. 

 ,40 ←  ,40
�6#�78

�669�78
  +/4 ← �:9�!7

�699�!7
 (5) 

The requirements document sentences tend to be general 
and do not consist of technical terms and detailed processes. 
In contrast, the testing documents collected many technical 
terms and the detailed process flow of application operations. 
Therefore, both documents were grouped into different topics 
without any link when comparing the documents of 
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requirements and testing. The link between the two 
documents would be very difficult to detect. Each document 
would be identified with its respective topics following the 
results of the pre-processing data. After the topics were 
identified in each document, the documents' linkages were 
determined based on the same topics they had through expert 
judgment. Every word in the sentence that belongs to the same 
topic (stemming results) would be entered into the search list 
to find the related source code. The overall modeling topic in 
the document and source code, as shown in Fig.  2. 

 

 
Fig. 2 Make traceability with topic modeling 

C. Evaluation 

The modeling topic would be carried out using three 
methods of LSA, LDA, and NMF. The topic modeling results 
would be compared with the existing ground truths. To 
determine how well a topic modeling method was carried out, 
it was necessary to measure accuracy, precision, and recall. 
When a system's learning model was run on the data set, a 
confusion matrix is shown in Table 5.  

TABLE V 
CONFUSION MATRIX 

 Actual Value 

  True False 

Prediction 

Value 

True  TP (True Positive) 
Correct positive 
class prediction 
results 

FP (False 
Positive) 
Unexpected 
results 

False FN (False 
Negative) 
Incompatible 
results 

TN (True 
Negative) Correct 
negative class 
prediction results 

 
Precision (also called positive predictive value) was the 

fraction of the relevant instances among the retrieved 
instances, as in formula (6) [18]. Recall (also known as 
sensitivity) was the fraction of the total number of relevant 
instances retrieved as in formula (7) [18]. In other words, 
precision was used to measure the accuracy of the desired 
information with the answers given by the model function. 
Then, recall measured the model's success in finding the 
desired information. Accuracy was the real proportion of both 

positive and negative in the overall data, measuring how close 
the correct predictive result was compared to the true value in 
formula (8) [18]. If the data used were not balanced in each 
class, then Cohen's Kappa was needed where E (Zk) was the 
expectation of Zk in the population of an item, and Eind (Zk) 
was an expectation that assumes statistical independence from 
ratings made by two observers [19], as shown in formula (9). 

 P � <=
<=�>= (6) 

 R � <=
<=�>@  (7) 

 A � <=�<@
<=�<@�>=�>@ (8) 

 κ � 1 * D�EF �
DGHI�EF �

 (9) 

III. RESULT AND DISCUSSION 

A. First App 

We wanted to recognize the three topics in the first 
application: file management, promotion, and document 
validation status. Modeling topics using LDA often cannot 
separate the list of requirements and testing into these three 
topics. Several lists of requirements, which belonged to the 
status & validation module, often became clustered into the 
same topic with the promotion or file management module. 
This clustering happened because the file or document's status 
affects its process stages. When storing files, ordinary 
employees must first send them to the operator. The operator 
determined the employee's file validity and whether those 
files were suitable to keep and processed later for promotion 
needs. Therefore, the sentence for file management 
requirements also contained words about the file's status to 
indicate if the file could be processed further. Likewise, the 
promotion module's requirement sentence would have words 
about the file status and the validation process, limiting which 
files could be processed in the promotions stage. Meanwhile, 
NMF and LSA gave slightly better results in separating the 
three topics on requirements. NMF got the requirements 
separated well and successfully classified almost all 
requirements and testing for two topics: file validation status 
and promotion. 

The topic of status and document validation became more 
inseparable at testing. This case happened because the steps 
taken were very similar to each other. The attributes involved 
in the file storage stage would appear when the operator 
validated the document and then changed the saved file's 
status. In the promotion module testing step, the file status 
essential attribute and the words indicate the document's 
status module process. These two modules overlap words and 
attributes raised because only files with a specific status could 
be used for processing as a promotion needs. 

Meanwhile, the file storage process would cover all 
attributes and words about promotion, such as the choice of 
files for promotion by operators and how incomplete 
documents were uploaded by ordinary employees to meet the 
needs. Many attribute words were not specific to a particular 
topic in the testing step sentence. In this case, again, LDA 
failed to separate the three desired topics. 

These fewer specific words made us look for the 
occurrence of one unique word and look for the occurrence of 
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two or three uncommon words that coincided. Switching to 
Bigram and Trigram reduced the accuracy, and even LDA 
failed to separate the topic into what was expected. Again, 
NMF had the highest accuracy, although its value was smaller 
than before. 

 
Fig.  3 App One Requirement Accuracy 

 
Fig.  4 App One Test Accuracy 

 
Fig.  5 App One Requirement Cohen Kappa 

 
Fig.  6 App One Test Case Cohen Kappa 

TABLE VI 
APP ONE REQUIREMENT AND TEST CASE PRECISION AND RECALL 

LDAUnigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 0.688 0.423 0.421 0.211 
2 0.667 0.750 0.238 0.238 
3 0.526 0.909 0.250 0.615 

LDA Bigram or Trigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 0.625 0.385   
2 0.474 0.562   
3 0.333 0.545   

NMF Unigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 1.000 0.423 0.778 0.368 
2 0.737 0.875 0.419 0.857 
3 0.478 1.000 1.000 0.846 

NMF Bigram dan Trigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 1.000 0.385 0.765 0.342 
2 0.632 0.750 0.517 0.714 
3 0.458 1.000 0.423 0.846 

LSA Unigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 1.000 0.423 0.667 0.263 
2 0.424 0.875 0.250 0.190 
3 0.556 0.455 0.268 0.846 

LSA Bigram or Trigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 1.000 0.423 0.533 0.211 
2 0.750 0.750 0.344 0.524 
3 0.423 1.000 0.440 0.846 

 
Overall, the Unigram word search accuracy value showed 

better results than bigram or trigram. Likewise, with the 
Precision and Recall values according to Fig. 3, Fig. 4, Fig. 5, 
and Fig. 6. Topic modeling in LDA testing was difficult to 
translate into promotion, document validation status, and file 
management. NMF had a reasonably stable accuracy value 
using Unigram and bigram or trigram. Meanwhile, LSA was 
in second place, and LDA was last. In the LDA and NMF 
methods, the precision value and recall score were also better 
when using the Unigram method. We discovered something 
different applied to the LSA method. Even though the 
accuracy value was high with Unigram, the precision and 
recall values were better when using bigram and trigram. 

As shown in Fig. 3, the requirements with the NMF - 
Unigram method produced an accuracy value of 0.67, and 
when using NMF -Bigram and Trigram, it only reached 0.62. 
Fig. 4 showed similar results where the NMF once again had 
the best accuracy with 0.59 for the test steps using the 
Unigram method and only 0.54 when we used Bigram or 
Trigram.  

Data on topic grouping in the requirements document and 
testing documents were not balanced for each module 
representation, and because the data was imbalanced, 
accuracy, precision, and recall values could be affected. For 
example, larger than the other two modules, the data on file 
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management would be grouped differently and could be 
identified as overlapping topics or even the same as the 
second or third module. Therefore, the Cohen Kappa 
Coefficient needed to be calculated to see whether the three 
modules had an agreement on the pattern of application of 
each topic modeling algorithm. Cohen Kappa measured the 
accidental dependence of the predicted grouping measure and 
the actual result to remove intrinsic characteristics from the 
existing data [20]. In Fig. 5, requirements with NMF topic 
modeling had a high positive value, namely 0.54 for the 
Unigram search and 0.46 for Bigram and Trigram search. This 
result meant that the NMF algorithm model runs well in 
grouping the three modules compared to the other two 
algorithms LSA and LDA. In Fig. 6, it could be seen that LDA 
failed to perform the grouping of the test steps. The resulting 
Cohen Kappa value was also negative, which means that the 
model did not work, and it could be seen that NMF gave a 
good Cohen Kappa score once again compared to the other 
two algorithms; however, in the test case document, NMF did 
a better job using Bigram and Trigram searches than Unigram. 
NMF-Unigram only reached Cohen kappa value 0.39, while 
NMF - Bigram and Trigram could reach up to 0.54. These 
results differ in accuracy, precision, and recall, where 
Unigram gave better scores. So, it could be concluded that 
requirement topic modeling worked well using the NMF 
algorithm with the Unigram search. Still, the NMF algorithm 
worked better using Bigram and Trigram searches in the 
grouping of testing steps. 

Based on Table 6, Unigram with the three algorithms 
produced the NMF precision value of 0.737 for topic two for 
the requirements and 0.778 for topic one for the test case. This 
value was higher than the bigram or trigram method, which 
only achieved a precision value of 0.632 for the requirements 
and 0.765 for the test case. In this first application, the NMF 
topic modeling method best separated requirements and test 
steps in a test case based on the desired topic. 

Seeing that Unigram worked better when compared to 
bigram or trigram, we only used the unigram method to find 
bugs and defect links with testing expected results to find the 
defect relation. The three topic modeling methods were 
compared again to see their similarities. The comparison was 
from the list of desired results in the test case document, a list 
of bugs that appeared during testing (which could be during 
unit testing or integration testing), and a list of defects when 
the user tested the application's full function after the product 
was released (regression testing). Once again, the NMF 
method gave the best accuracy value results shown in Fig. 7. 
Table 7 showed that NMF provided almost the same precision 
value as LSA with 0,650 in topic 1 and achieved the highest 
recall values on topics 2 and 3 with 0.680 and 0.708. 

The first topic was the issue of promotion and document 
storage. NMF succeeded in classifying defects with 
accompanying bugs and problematic testing steps in the file 
storage process, which failed to appear correctly on the 
promotion document list. In the second topic, filtering 
document types and document categories were no longer a 
problem because no defects had been found. On topic 3, a 
problem with the document status appearance was found. The 
validation process was problematic. The defect that was a 
solved bug before happened again. When a document status 
that had been rejected still appeared on the operator page and 

did not reappear on the employee page. The LSA method 
could not classify defects well because all were collected on 
one topic only, and the other two topics only presented testing 
without any connection with bugs and defects at all. LDA 
performed well in a grouping on topics regarding the defects 
of promotion and file management modules. For example, the 
file storage through scanning could not appear and failed to 
save, resulting in the system sending blank files for validation. 
In the end, the list of files for the promotion process did not 
appear correctly.  

 

 
Fig.  7 App One Bug and Defect Topic Modeling 

 

TABLE VII 
APP ONE BUG AND DEFECT PRECISION AND RECALL 

 LSA LDA NMF 
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1 0.600 0.128 0.500 0.340 0.650 0.277 

2 0.600 0.240 0.286 0.400 0.548 0.680 

3 0.316 1.000 0.345 0.417 0.378 0.708 

 
Based on modeling topics in requirements documents, test 

cases, and defect lists, it was found that each module had a 
dominant word as its identity. In this first application, the 
keywords that would be used as a search tool for the code 
source were as follows: 

 The first module was a file management. The keywords 
were "pindai" (scan), "scan", "simpan" (save), "upload", 
"kategori dokumen" (document category), and "PDF". 

 The second module was the validation status. The 
keywords were valid, reject, process, and operator. 

 The third module was the promotion process. The 
keywords were "syarat" (terms), "persyaratan" (terms), 
and "pangkat" (promotion). 

Apart from the mentioned words, other words were the 
module's identity, but those words were constantly changing. 
These terms never appear in the source code. Tracking the 
implementation of requirements in source code via keywords 
in each module only managed to map 40% of the related code 
in this first application. 

In all three datasets, namely requirements data, test cases, 
and defect lists, NMF worked best. NMF could separate the 
three types of requirements and correctly predict the 
category's existing requirements with little data, such as 
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promotion and status validation. In this first application, the 
process occurred through a single stream where the variables 
involved were the same, and only the function was different. 
That was why there were not many unique words that could 
be used to make up a topic in a module. Therefore, it was not 
easy to distinguish between one topic and another. In addition, 
the terms used in requirements were very general, while the 
terms in test cases were specific and hugely different. It could 
be said that the test case data had a lot of noise with the 
technical terms and the same variables that were mentioned 
repeatedly.  

NMF performed better on short text with noise when 
compared to the other two algorithms [10]. This result was 
supported by previous findings where NMF performed 
slightly better on short text data with noise when compared to 
LDA, but the LDA used a bag of word matrix input instead of 
TF-IDF [21]. Meanwhile, the number of exact words in each 
module made it difficult for LSA to categorize topics. This 
was because the LSA did not care about word order and could 
not even distinguish a sentence from just a collection of words 
[22]. LDA tends to provide generalized and non-specific 
views and probabilistic functions that continually alter word 
results and occurrences [6], [10]. This made the grouping of 
topics unstable because sometimes there were lost topics 
when it was regenerated with different word distribution. The 
instability of the modeling results actually occurred in NMF. 
However, a study showed that NMF provided more stable 
results compared to LDA with the Normalized Pointwise 
Mutual Information (NPMI) value as its evaluation. [23]. 

B. Second App 

In the second application, there were five modules. 
Therefore, the initial number of topics was also five. The five 
modules mentioned were master data, budget reference data 
management, activity reports, budget reports, and overall 
report view. There was almost the same grouping pattern 
when topic modeling was applied in requirement data, using 
LDA, NMF, and LSA. The separation of the five topics from 
the three algorithms can be reduced to two topics. When we 
used Unigram for word searching and weighting, the first 
topic was about funds or budgets, and the second topic was 
about activities and their attributes. In modeling topics with 
five topics in the LDA method, the first topic was about 
master data related to detailed actions such as measuring 
targets, deleting and adding activities, and partners in 
implementing activities. The second topic also revolved 
around activities such as adding master data in the field of 
technology. The activities were carried out in these work units, 
and the names of the actions were added. Activity reports such 
as obstacles, the location of activities carried out, and data to 
support activities were also included in the second topic. It 
could be seen that the first topic and the second topic 
discussed the attributes of the action.  

Meanwhile, the budget report, the attributes of the source 
of funds, and the distribution of budget reports for each unit 
were included in the third topic. The fifth topic could not be 
concluded. The fifth topic was about the main reference of the 
budget and uploading it into the application. So, the third and 
fifth topics discussed funds or budgets. The topic modeling 
results using NMF separated the funding components into one 
topic on the second topic. The rest were attributes of activity 

implementation. LSA produced a new combination, where all 
matters related to master data were included in the third topic. 
Most of the budget attributes were included in the second 
topic, while a few others were included in the first topic with 
the activity reports' main attributes. The fourth topic was 
mixed, but it dominantly talked about activities. The accuracy 
score was quite high when the topic separation was reduced 
to two out of five topics due to the similarities of things 
discussed. NMF in first place reached 0.79, LDA and LSA in 
second place reached 0.75. 

The method of searching and weighting words using 
bigram and trigram also still had the same pattern. In the LDA 
method, topic three was challenging to recognize because it 
was mixed. However, it tended to explain more about the 
budget because it contained words about the main budget 
reference. Topics one and two consisted of words that concern 
budget funds. Topics three and four were about activities and 
details of the implementation of activities. The NMF method 
produced each topic that was easier to identify than the LDA. 
Topics one and five were about activities, and the rest were 
about the budget. There were no topics that contained a 
mixture of the two. LSA still had better topic separation 
results than LDA, topics two, three, and four regarding the 
budget, and there was no need for activities on these three 
topics. The needs regarding activities were gathered on the 
first topic. Some of the fifth topic requirements were 
regarding the budget, but most of them explained the addition 
of data master and activity linkages. Bigram and trigram 
applications separated very well in the NMF method, which 
achieved an accuracy value of 0.81, and LSA in second place 
with 0.77. However, LDA accuracy decreased to only 0.61. 

The problem arose when the activity and budget grouping 
patterns could not be applied to the testing document. Testing 
activity reports and testing budget reports were always 
grouped into the same topic for all topic modeling algorithms. 
The grouping pattern must be changed to avoid many topics 
grouping mistakes, especially in determining which group the 
activity report and budget combination belong to; thus, the 
grouping of requirements also changed to see the link between 
the existing patterns in testing. Everything about the master 
module would become one group. Everything was discussed 
in the activity report module, and the budget report would 
become another group. Everything about the budget reference 
and the report view would turn into one group. Three groups 
would be concluded from the results of the five topics 
resulting from the topic modeling process. The value of 
accuracy on the newest requirements topic pattern, as shown 
in Fig. 8 that NMF is no longer the best method. The LSA 
accuracy value rose to be the best with the unigram method, 
namely, 0.79. NMF was down in second place with 0.70, and 
LDA was in last place. However, NMF produced the best 
accuracy value on the bigram and trigram methods, 0.68 for 
requirements. 

The emergence of the same unique word in the activity 
report test case and the financial report grouped these two 
modules on the same topic. As shown in Fig. 9, the LSA had 
better accuracy with new topic groupings. LSA hit 0.84, 
following NMF 0.79 in second place and LDA in the last 
place with 0.75. The high kappa cohen value on the LSA both 
in the requirements document and the test case document 
shown in Fig. 10 and Fig. 11 further strengthened that LSA 
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was the winner this time. LSA achieved a Cohen Kappa 
coefficient value of 0.62 in the requirements document and 
0.72 in the test case document with unigram word searches. 
However, in the requirements document, LSA was inferior to 
NMF when using bigram and trigram word searches. Where 
LSA only reached 0.45 while NMF reached 0.47. 

 

 
Fig.  8 App Two Requirement Accuracy 

 

Fig.  9 App Two Test Case Accuracy 

 
Fig.  10 App Two Requirement Cohen Kappa 

 
Fig.  11 App Two Test Case Cohen Kappa 

 

TABLE VIII 
APP TWO REQUIREMENT AND TEST CASE PRECISION AND RECALL 

LDA Unigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 0.381 0.800 0.900 0.500 
2 0.643 0.375 0.941 0.821 

3 0.667 0.600 0.440 0.917 

LDA Bigram or Trigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 0.429 0.600 0.455 0.278 

2 0.625 0.625 0.644 0.744 
3 0.667 0.400 0.308 0.333 

NMF Unigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 0.533 0.800 0.621 1.000 

2 0.875 0.583 1.000 0.692 
3 0.692 0.900 0.769 0.833 

NMF Bigram or Trigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 0.455 0.500 0.600 0.333 
2 0.870 0.833 0.821 0.590 
3 0.500 0.500 0.290 0.750 

LSA Unigram 

 Requirement Test Case 

Precision Recall Precision Recall 

1 1.000 0.500 0.680 0.944 
2 0.793 0.958 0.946 0.897 

3 0.700 0.700 0.857 0.500 

LSA Bigram dan Trigram 

 Requirement Test Case 

Precision Recall Precision Recall 

 1 0.500 0.400 0.556 0.556 

 2 0.857 0.750 0.781 0.641 

 3 0.467 0.700 0.368 0.583 

 
As shown in Table 8, the precision value of using Unigram 

was again superior to using Bigram and Trigram. Modeling 
using the LSA algorithm gave perfect scores on the first 
grouping of topics and 0.793 on the requirements document's 
second topic. The LSA and NMF test documents provided 
almost as good results. NMF provided an excellent precision 
value on the second topic, while LSA only gave a precision 
result of 0.946. However, NMF could not provide a better 
precision value than LSA on the other two topics. LDA came 
last. On all topics, the precision value could not even touch 
0.700. 

We only used Unigram to model bugs and defect topics and 
did not compare it with Bigram or Trigram because the 
Unigram Requirements and Test Case topics modeling always 
showed better results. As shown in Fig. 12, LSA still excelled 
in finding suitable topics compared to the other two methods. 
The accuracy of LSA was at 0.56, in the second place was 
NMF, and in the last was LDA. Meanwhile, LSA showed that 
the model worked quite well, separating topics with the 
highest Cohen Kappa coefficient of 0.33 compared to the 
other two methods. Looking at the value of precision and 
recall on the three topics from Table 9, LSA gave good results 
in grouping the two topics. The LSA precision value was the 
highest on topic 2 with 0.963 compared to NMF 0.958 and 
LDA 0.800. The LSA recall value was also in the highest 
result on topic 3, 0.857 compared to NMF, only 0.607, and 
LDA 0.536. The LSA topic modeling method performed best 
in finding suitable topics in this second application. 
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Fig.  12 App Two Bug and Defect Topic Modeling 

TABLE IX 
APP TWO BUG AND DEFECT PRECISION AND RECALL 

 LSA LDA NMF 

Topic Precision Recall Precision Recall Precision Recall 

1 0.364 0.174 0.400 0.522 0.400 0.522 

2 0.963 0.565 0.800 0.522 0.958 0.500 

3 0.407 0.857 0.405 0.536 0.395 0.607 

 
Based on modeling topics in requirements documents, test 

cases, and defect lists, it was found that each module had a 
dominant word as its identity. In this second application, the 
keywords that are used as a search tool to the code source 
were as follows: 

 The first module was the data master. The keywords 
were “master”, “kaitan kegiatan”, “data awal”, “data 

satuan”, “nama kegiatan” 
 The second module was the activity and budget 

reports. The keywords were pnbp, blu, status, target, 

dokumen pendukung 
 The third module was DIPA data management. The 

keywords were sub, output, component, DIPA, 
upload, import 

 The fourth module was search and display reports 
based on DIPA activity data. The key words were 
cari, pencarian, pilih, tampil, list, bidang teknologi, 

bidang prinas 
Apart from the words already mentioned, other words were 

the module's identity, but the terms were constantly changing. 
These terms never appeared in the source code. Tracking the 
implementation of requirements in source code via keywords 
in each module showed better results than the first application. 
The associated source code could be traced up to 62% in this 
second application.  

Unlike the first application, the second application had 
unique words that are consistently mentioned starting from 
the requirements for each module so that the obstacles 
encountered in the study [5] were not found. The only changes 
were the things discussed by the requirements were in general. 
Those were separated into two categories, activities and funds. 
Then the test case explained those in more detail through the 
stages of the process in the application. This condition caused 
the number of topics about requirements to need to be 
changed so that the need could be mapped with existing test 
cases precisely.  

Based on the consistency of the unique constituent words 
in each module, LSA could perform better than NMF and 
LDA. However, the LSA could not distinguish the meaning 

of words in a sentence. Therefore, adjustments such as the 
location of the subject and object needed to be identified as 
well as the types of words such as nouns and adjectives 
according to the previous study [24]. A word had a lot of 
meaning depending on its placement in a sentence, so this 
separation process was required for better LSA topic 
modeling. The LSA could be successful with data containing 
unique words that were consistent in use or by adjusting 
synonyms for words [25]. However, the LSA method with 
TF-IDF had the best result when used in short text from tweets, 
and the email contained health care issues rather than LSA 
combined with Doc2Vec and another method like LDA with 
TF-IDF or Doc2vec [26]. 

IV. CONCLUSION 

This paper compares the tracing process of two types of 
developed applications in Agile. The tracing used topic 
modeling in three documents: the requirements document, test 
cases, and source code. In the first application, the topic 
modeling algorithm that works best is NMF, while in the 
second application, the topic modeling algorithm that works 
best is LSA. The first application does not consistently apply 
the terms used, and the variables involved are not unique to 
each module. Meanwhile, the second application has unique 
variables involved in each module so that each unique term is 
consistently mentioned from the requirements to the source 
code. Despite being in second place, NMF also performs quite 
well in the second application, where all evaluation values 
give results that are not too different from the LSA. In both 
applications, LDA always ranks last because the instability of 
the generated results is worse when inferred compared to 
NMF. 

It can be concluded that tracing can be done more easily 
when consistent terms are occurring. It is better if the 
technical matters have been discussed clearly along with each 
development stage phase at the beginning of making the 
requirements. In the testing document, the terms need to 
reappear (as in the requirement document), not be replaced. 
Programmer comments on the source code are necessary to 
make it easier to find similarities apart from giving the 
variable names following the two previous documents 
(requirement and test case). 

In this study, several weaknesses were found, including not 
paying attention to sentence structure in the existing data, not 
providing synonyms, and being dependent on expert 
judgment. These three weaknesses make the results of topic 
modeling to track the application of requirements imprecise. 
There are still many misidentifications. In the future, the data 
was processed by sentence structures and word synonyms so 
that the words that are checked for similarities have the same 
meaning. In addition, the agreement from the expert judgment 
that was compared later as ground truth should be measured 
not only based on cohen kappa but also using other measuring 
tools such as calculating the "Area Under the Curve" (AUC) 
of the "Receiver Characteristic Operator" (ROC) to 
emphasize how well segregated each group is. 
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