
Vol.12 (2022) No. 4

ISSN: 2088-5334

Software Traceability in Agile Development Using Topic Modeling

Nuraisa Novia Hidayati a,*, Siti Rochimah a, Agus Budi Rahardjo a
a Department of Informatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Corresponding author: *nunohida@gmail.com

Abstract— Tracing the implementation of requirements for making better software identifies whether the application fulfils users'

desires; progress of development; problematic areas in the testing process, and how far those apply to the source code. In this paper,

the software development method we studied was the agile method, Extreme Programming (XP). The artifacts in the agile approach

considered vital include the requirement documents, test documents, and source codes. We used Topic Modelling to map the content

similarities from those documents to make trace links. The three topic modelling methods we compared consist of Latent Semantic

Analysis (LSA), Latent Dirichlet Allocation (LDA), and Non-negative Matrix Factorization (NMF). The NMF method proved itself the

most stable, with an accuracy value of 67% for the requirement, 59% for testing, and 48% for defect lists. The second application

results proved more accurate with 70%, 79%, and 54%. Although NMF lost to LSA in the second application (LSA achieved an

accuracy of 79%, 84%, and 56%), the precision and recall values showed almost similar results. We successfully found the link in the

source code based on keywords extracted from each topic. This research provides a way of explaining the requirement in detail,

simplifying it for tracing purposes such as the consistent use of terms, technical details inclusion, and mentioning all the variables

involved. In the future, sentence structure and synonyms need recognition as part of pre-processing to build better trace links.

Keywords— Software traceability; Agile; topic modeling; latent semantic analysis; latent dirichlet allocation; non-negative matrix

factorization.

Manuscript received 10 May 2021; revised 24 Sep. 2021; accepted 18 Oct. 2021. Date of publication 31 Aug. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

There are quick changes or additions to requirements in the
agile application development process. This situation happens
because the customer is the part of the development team who
provides input and adjustments. Very intense communication
processes and the simplification of documentation often make
it difficult for developers to track the progress of
implementing the application's overall requirements;
therefore, requirements tracking is necessary to ensure that
application development is running on the right track.

Our previous research paper found a close correlation
between story points on requirements and integration testing
with the appearance of defects [1]. Story point changes have
a more significant impact on the appearance of defects rather
than an addition to story points. Apart from story points,
integration testing also strongly correlates with the
appearance of defects. It was found that malfunctions detected
and handled by integration testing could recur when multiple
users used the application. Based on that fact, tracing was
carried out on three documents, namely story points of
requirement, test cases, and source code.

Requirements traceability is the process of tracking the
application of requirements to a variety of software
development artifacts. Automated tracing with good efficacy
and scalability needs to be implemented to form the correct
trace links. The traceability of requirements is carried out
based on the formulation of written language structure. The
manual application of requirements tracing requires effort and
time, especially with a high complexity level. One of the
technologies often used to create trace links is information
retrieval [2].

In this paper, the information retrieval method we use is
topic modeling included in the clustering process. The
document was checked for the similarity of constituent words
and identify the topic grouping based on the compiler words.
This grouping facilitated the formation of the traceability link.
In this method, there is no need for training data. So that
grouping in limited artifact documents can still be carried out
without fear of an overfitting model. The information
structure strongly influences the results of applying
information retrieval technology in the artifacts and frequent
evaluations to see whether the trace links created properly are
Precision and Recall [2].

1410

There are seven types of artifacts often used as sources of
information when researching software traceability: features,
requirements, source code, architecture, components, tests,
and variability models [3]. This paper studies only three types
– requirements documents, test documents, and source code.
The domain is the similarity of keywords in the development
of each module.

Two topic modeling methods, namely Latent Semantic
Analysis (LSA) and Latent Dirichlet Allocation (LDA), can
retrieve information and determine possible linkages [4].
Term frequency-inverse document frequency (TF-IDF)
supports both ways to map terms whose existence in the
document is represented in the form of metrics. The TF-IDF
method combined with cosine similarity is not enough to see
similar words in application artifact documents. The
application of LSA and LDA can provide better results. The
combination of TF-IDF as input for LSA and LDA is expected
to improve the two modeling algorithms' performance for the
topic.

LSA and LDA have also been implemented to create a
search link between the requirements document and the
source code. It aims to find the source code that needs to be
changed when the requirement is changed. However, both
methods still produce low precision and recall values. The
recall value obtained is 0.23, and the precision value obtained
is 0.305 [5]. This value is obtained because the requirements
document describes the process in general. Not many
technical terms appear in the requirements document, so
finding similar terms or words in the source code is rare.
Requirements documents cannot be directly mapped based on
the similarity of terms to the source code. We need other
documents with more technical terms used in the source code
and general terms in the requirements document.

Another comparison between Probabilistic Latent
Semantic Analysis (PLSA) and LDA was adopted to track
business processes and software components. The recall value
on PLSA is higher than LDA for relevant value because
software components are suitable for business process
activities. The LDA precision value is higher than PLSA
because calculating LDA's relevant value is specific. Optimal
results can be taken if the dataset has a particular class based
on specific activities [6]. Previous studies discuss the
comparison of those three methods with their strength and
limitation. LSA has limitations in handling polysemy, PLSA
tends to be overfitting, and LDA has difficulties finding
correlating words or topics [7].

Topic modeling with the NMF method also found a
significant topic result related to disease identification; the
correlation between the topic and the value for certain
variables showed a good correlation [8]. LDA and NMF are
considered to be the topic modeling methods that produce the
most valuable output on short text compared with other
methods like LSA, Principal Component Analysis (PCA), and
random projection (RP) [9]. From the two previous studies,
both LDA and NMF seem to stand out by finding topics in
short texts that are relatable and easy to conclude.

Meanwhile, Non-negative Matrix Factorization (NMF)
produces a higher quality topic spread than LDA with the
same experimental setting across multiple experimental data
with short text documents [10]. Data with short text contained
a small number of words and varied, and the recurrence of the

exact words in one sentence occurred very rarely. There are
also not many combinations of word similarities in comparing
one short text data with other short text data. The lack of
information about combining words like this cannot be
appropriately processed with probabilistic models such as
LDA. Gibbs sampling on the LDA provided a large variety of
learning and inference in short texts.

We propose to make traceability from the three selected
documents as follows: story points on requirements, test cases,
and defect lists, using topic modeling. In topic modeling,
documents were grouped into particular topics that save time
compared to manually. The three topic modeling methods to
be compared are LSA, LDA, and NMF. These three methods
have their advantages when used on various datasets. The
author looked for a topic modeling method that best fits our
software development dataset. We identified the words that
compiled each topic according to the best model result. Those
words can be the input to trace the source code. Each topic
modeling was different in determining the optimal number of
topics. Topic modeling such as LSA suggests fewer topics
than LDA and NMF on the same data [11]. In this study, the
actual number of topics is known, and we are looking to
model which topics can group data into predetermined topics
appropriately.

Based on a previous study, the tracing model uses several
points: source, destination, meaning, assumption,
consequences, pre-process, process, and tool [12]. In this
paper, the source requires a testing document and source code
as the destination. Meanwhile, the meaning is dependency,
assuming that the topic has been determined based on the
agile development module. The consequences of the
application process are measured using precision and recall.
The raw data was structured first through pre-process to be
used further. The process is the application of modeling topics
to each artifact using python as the tool.

This study's contribution is to improve the requirements'
explanation and make it easier to trace the implementation of
requirements down to the source code for agile software
development. This tracing can later be used for better defect
handling. It can be a way to facilitate application management
and improve application quality because we can be aware of
the suspected defect location in the source code, other code
that is affected by it on the test case step, and other modules
regarding the story points from the requirement.

II. MATERIALS AND METHOD

The written language for the requirements, test cases, and
comments on the source codes were Indonesian. Only a few
technical terms were written in English. The requirements
here would be divided into general and technical terms. In the
test case, a detailed step was taken. There were very striking
differences between the requirements document and the test
case, and the appearance of the same word was infrequent.
Therefore, topic modeling was carried out separately with the
same topics. Data were taken from two applications with the
same programming language but using different frameworks.
The first application used the PHPMaker generator, and the
second application used Yii2. Both were simple applications
that were not too complex.

1411

A. Prepare The Data

All written documents were cleaned of symbols, numbers,
and single characters that did not provide any information.
Then a stop word removal – which was a list of words in
automatic indexing to filter out words that have no real
purpose in describing the document content, especially in
searches – was performed. Tokenization was then carried out,
which broke the flow of text into words, phrases, symbols, or
other meaningful elements called tokens. The purpose of
tokenization was the exploration of words in a sentence.
Stemming was the last thing that combined variant forms of
words into a general representation of the root words.

1) Requirement Data: The requirements were obtained
from a business analyst to identify the stages of business
processes applied to the application to support user
performance. Meanwhile, technical needs would arise from
the System Analyst and input from programmers. Technical
requirements for more details regarding what attributes were
involved and how they were processed were translated to
make applying them to the source code easier. Such as
explaining employee data, grouping documents, storing
processes into a database, etc. The pre-processing words on
the user story were included in Table 1 in the Requirement
column, and each user story came from the existing meeting
and discussion notes. The document had a code for easy
identification. Requirements status for user stories were saved
as high, medium, or low priority. Needs also fell into two
categories – changes or additions, and the last column was
which group of modules these needs were.

TABLE I
REQUIREMENT DATA

C
o
d

e

R
e
q

u
ir

em
e
n

t

D
e
p

e
n

d
en

t

S
ta

tu
s

C
h

a
n

g
e/

A
d

d

M
o
d

u
l

M3 Every employee's

personal document

is stored neatly and

electronically

organized

 b. Every employee

document is always

updated

 High - 1

M7 The official documents

that have been published

and uploaded are not

deleted from the e-filling

database.

M3 High Change 1

2) Test Case Data: The results of pre-processing words
in the test were entered in Table 2. The table just stored data
for step detail, and the expected results from the test case
document would be separately stored because they would be
processed independently. The pre-processing step detail
results for each test would be given a code as an identity to
make it easier to trace the testing document source. In the last
column, it was entered into which module group these needs
were. In the latest column was which group of application
modules the test was.

TABLE II
TEST CASE DATA

Code Step Modul

P5 Choose the file format for storage 1

P6 Save files in the file repository in the

application

1

3) Defect and Bug Data: The results of pre-processing
words on bugs, defects, and expected results on testing were
included in Table 3 in the content column. The difference was
whether the content was a bug, defect, or expected result to be
entered into the type. Each word in the content was given an
identity code to make it easier to identify which test document
it came from. The last column was which module group it
belongs to.

TABLE III
DEFECT AND BUG DATA

Content Type Test

Case

Modul

File saved with input name and

appropriate file extension, but file

contents are corrupt. The last stage

failed

Bugs P3 1

4) Source Code Data: Source code was also collected but

not through pre-processing in Table 4. A necessary function
code was entered in the source code column; meanwhile, the
name of the file was entered in the name column. The last
column was which module group it belongs to.

TABLE IIIV
SOURCE CODE DATA

Source Code Name Modul

<?php

//Mencari nama pegawai dari

database

//mysql_connect("localhost","root",""

);

//mysql_select_db("edoc");

include_once('koneksi_db.php');

$nip18 = $_GET['nip18'];

$nama = mysql_query("SELECT

nama_nongelar FROM ms_pegawai

WHERE nip18='$nip18' order by

nip");

while($k =

mysql_fetch_array($nama)){

echo "<option selected

value=\"".$k['nama_nongelar']."\">".$

k['nama_nongelar']."</option>";

}

?>

ambilnama.

php

1

B. Topic Modeling

First of all, all sentences in the document list were
vectorized using TF-IDF using Unigram, bigram, or trigram.
The three topic modeling algorithms based on word
vectorization input identified all text data with the topic and
the constituent words' similarity. It should be underlined that
all words match the original document without stemming; this
facilitates the topic interpretation easiness. The overall topic
modeling process, as shown in Fig. 1.

1412

Fig. 1 Topic Modeling Stage

Every text document consists of words that are related to
each other. When we needed to find out the document's topic,
it was necessary to identify the words that represent it. In each
document, words that were considered essential and a
representative would be given weight. This search and
weighting of words was a necessary process. The search and
weighting process of words used was TF-IDF in this research.
In the TF-IDF algorithm, TF was the frequency of terms that
appear in a document, IDF was a document distribution with
certain words from the entire data set [13].

 ��� � ���� � �	
 � �
��

� (1)

 TFtd was the number of appearances t in document d.

 DFt was the number of documents containing the term

t.
 N was the total number of documents in the corpus.

The IDF was the reciprocal of the document frequency,

measuring the informativeness of the t term. When we
calculated the IDF, the low weight was given to the most
frequent words such as stop words (because stop words such
as "that" were present in most documents, and N / df would
offer shallow scores for that word). Therefore, in the end, it
would give us what we wanted – the relative weight.

A search for document similarity by word appearance cut
into Unigram, bigram, or trigram had been carried out to
search for requirements, resulting in low precision and recall
values [14]. Therefore, in this study, the process of finding
words in the Unigram and bigram or trigram formations was
formulated with TF-IDF. The word vectorization results from
TF-IDF would then be used as input for the three topic
modeling algorithms, namely LSA, LDA, and NMF.

LSA studied latent topics by performing matrix
decomposition on the term-document matrix using singular

value decomposition (SVD) [5]. The python method that
would be used is SVD. SVD broke the matrix into an
orthogonal column matrix, an orthogonal row matrix, and a
single matrix. There were several options for determining the
optimal number of topics.

 � � �∑�∗ (2)

 M is the m × m matrix
 U is the left single matrix m x n
 Σ is an n × n diagonal matrix with non-negative real

numbers.
 V is the right single matrix m × n
 V * is an n × m matrix, which is the transpose of V.

LDA extracted document features from the word level, go
to the document level and finally reach the corpus level.
Feature extraction with LDA was carried out through the
knowledge stage of connectedness reasons, and the results
could be implemented for extracting information.
Connectedness was vital in the LDA process because it
determined the document's distribution of topics. Therefore,
the process of selecting a method of connection reasons
needed special attention. Previous research on Indonesian
language text processing compared the mean variational
inference and Gibbs sampling methods showing that Gibbs
Sampling performed better than the Mean Variational
Inference for LDA [15].

 ����,�� � ��,�� �
∑ ��,!� !"

!

#�,$�,%�&$�,%
∑ #�,!� ! &!

 (3)

 n (d, k) was the number of times document d used topic
k

 v (k, w) was the frequency with which topic k used the
given word

 αk was Dirichlet parameter for the document-to-topic
distribution

 λw was the Dirichlet parameter for topic-to-word
distribution.

NMF could be applied to multivariate data's statistical
analysis by providing a set of n-dimensional multivariate data
vectors. The vectors were placed in the n x m matrix V column
where m was the number of samples in the data set. The
matrix was then factored into n x r for W matrix and r x m for
H matrix, where r was the number of generated topics [16].
Usually, r was chosen less than or m, so that W and H were
less than V as the original matrix. This algorithm produced a
compressed version of the original data matrix [17]. Several
measures of reconstruction error between V and WH estimated:

'
(

‖� * +,‖�
(� ∑ ∑ -./0 * �+,�/01(2

03'
�
/3' (4)

Maximization optimization to smooth W and H was used to
minimize reconstruction errors. A common approach was to
iterate between two renewal rules of multiplication until
convergence.

 ,40 ← ,40
�6#�78

�669�78
 +/4 ← �:9�!7

�699�!7
 (5)

The requirements document sentences tend to be general
and do not consist of technical terms and detailed processes.
In contrast, the testing documents collected many technical
terms and the detailed process flow of application operations.
Therefore, both documents were grouped into different topics
without any link when comparing the documents of

1413

requirements and testing. The link between the two
documents would be very difficult to detect. Each document
would be identified with its respective topics following the
results of the pre-processing data. After the topics were
identified in each document, the documents' linkages were
determined based on the same topics they had through expert
judgment. Every word in the sentence that belongs to the same
topic (stemming results) would be entered into the search list
to find the related source code. The overall modeling topic in
the document and source code, as shown in Fig. 2.

Fig. 2 Make traceability with topic modeling

C. Evaluation

The modeling topic would be carried out using three
methods of LSA, LDA, and NMF. The topic modeling results
would be compared with the existing ground truths. To
determine how well a topic modeling method was carried out,
it was necessary to measure accuracy, precision, and recall.
When a system's learning model was run on the data set, a
confusion matrix is shown in Table 5.

TABLE V
CONFUSION MATRIX

 Actual Value

 True False

Prediction

Value

True TP (True Positive)
Correct positive
class prediction
results

FP (False
Positive)
Unexpected
results

False FN (False
Negative)
Incompatible
results

TN (True
Negative) Correct
negative class
prediction results

Precision (also called positive predictive value) was the

fraction of the relevant instances among the retrieved
instances, as in formula (6) [18]. Recall (also known as
sensitivity) was the fraction of the total number of relevant
instances retrieved as in formula (7) [18]. In other words,
precision was used to measure the accuracy of the desired
information with the answers given by the model function.
Then, recall measured the model's success in finding the
desired information. Accuracy was the real proportion of both

positive and negative in the overall data, measuring how close
the correct predictive result was compared to the true value in
formula (8) [18]. If the data used were not balanced in each
class, then Cohen's Kappa was needed where E (Zk) was the
expectation of Zk in the population of an item, and Eind (Zk)
was an expectation that assumes statistical independence from
ratings made by two observers [19], as shown in formula (9).

 P � <=
<=�>= (6)

 R � <=
<=�>@ (7)

 A � <=�<@
<=�<@�>=�>@ (8)

 κ � 1 * D�EF �
DGHI�EF �

 (9)

III. RESULT AND DISCUSSION

A. First App

We wanted to recognize the three topics in the first
application: file management, promotion, and document
validation status. Modeling topics using LDA often cannot
separate the list of requirements and testing into these three
topics. Several lists of requirements, which belonged to the
status & validation module, often became clustered into the
same topic with the promotion or file management module.
This clustering happened because the file or document's status
affects its process stages. When storing files, ordinary
employees must first send them to the operator. The operator
determined the employee's file validity and whether those
files were suitable to keep and processed later for promotion
needs. Therefore, the sentence for file management
requirements also contained words about the file's status to
indicate if the file could be processed further. Likewise, the
promotion module's requirement sentence would have words
about the file status and the validation process, limiting which
files could be processed in the promotions stage. Meanwhile,
NMF and LSA gave slightly better results in separating the
three topics on requirements. NMF got the requirements
separated well and successfully classified almost all
requirements and testing for two topics: file validation status
and promotion.

The topic of status and document validation became more
inseparable at testing. This case happened because the steps
taken were very similar to each other. The attributes involved
in the file storage stage would appear when the operator
validated the document and then changed the saved file's
status. In the promotion module testing step, the file status
essential attribute and the words indicate the document's
status module process. These two modules overlap words and
attributes raised because only files with a specific status could
be used for processing as a promotion needs.

Meanwhile, the file storage process would cover all
attributes and words about promotion, such as the choice of
files for promotion by operators and how incomplete
documents were uploaded by ordinary employees to meet the
needs. Many attribute words were not specific to a particular
topic in the testing step sentence. In this case, again, LDA
failed to separate the three desired topics.

These fewer specific words made us look for the
occurrence of one unique word and look for the occurrence of

1414

two or three uncommon words that coincided. Switching to
Bigram and Trigram reduced the accuracy, and even LDA
failed to separate the topic into what was expected. Again,
NMF had the highest accuracy, although its value was smaller
than before.

Fig. 3 App One Requirement Accuracy

Fig. 4 App One Test Accuracy

Fig. 5 App One Requirement Cohen Kappa

Fig. 6 App One Test Case Cohen Kappa

TABLE VI
APP ONE REQUIREMENT AND TEST CASE PRECISION AND RECALL

LDAUnigram

 Requirement Test Case

Precision Recall Precision Recall

1 0.688 0.423 0.421 0.211
2 0.667 0.750 0.238 0.238
3 0.526 0.909 0.250 0.615

LDA Bigram or Trigram

 Requirement Test Case

Precision Recall Precision Recall

1 0.625 0.385
2 0.474 0.562
3 0.333 0.545

NMF Unigram

 Requirement Test Case

Precision Recall Precision Recall

1 1.000 0.423 0.778 0.368
2 0.737 0.875 0.419 0.857
3 0.478 1.000 1.000 0.846

NMF Bigram dan Trigram

 Requirement Test Case

Precision Recall Precision Recall

1 1.000 0.385 0.765 0.342
2 0.632 0.750 0.517 0.714
3 0.458 1.000 0.423 0.846

LSA Unigram

 Requirement Test Case

Precision Recall Precision Recall

1 1.000 0.423 0.667 0.263
2 0.424 0.875 0.250 0.190
3 0.556 0.455 0.268 0.846

LSA Bigram or Trigram

 Requirement Test Case

Precision Recall Precision Recall

1 1.000 0.423 0.533 0.211
2 0.750 0.750 0.344 0.524
3 0.423 1.000 0.440 0.846

Overall, the Unigram word search accuracy value showed

better results than bigram or trigram. Likewise, with the
Precision and Recall values according to Fig. 3, Fig. 4, Fig. 5,
and Fig. 6. Topic modeling in LDA testing was difficult to
translate into promotion, document validation status, and file
management. NMF had a reasonably stable accuracy value
using Unigram and bigram or trigram. Meanwhile, LSA was
in second place, and LDA was last. In the LDA and NMF
methods, the precision value and recall score were also better
when using the Unigram method. We discovered something
different applied to the LSA method. Even though the
accuracy value was high with Unigram, the precision and
recall values were better when using bigram and trigram.

As shown in Fig. 3, the requirements with the NMF -
Unigram method produced an accuracy value of 0.67, and
when using NMF -Bigram and Trigram, it only reached 0.62.
Fig. 4 showed similar results where the NMF once again had
the best accuracy with 0.59 for the test steps using the
Unigram method and only 0.54 when we used Bigram or
Trigram.

Data on topic grouping in the requirements document and
testing documents were not balanced for each module
representation, and because the data was imbalanced,
accuracy, precision, and recall values could be affected. For
example, larger than the other two modules, the data on file

1415

management would be grouped differently and could be
identified as overlapping topics or even the same as the
second or third module. Therefore, the Cohen Kappa
Coefficient needed to be calculated to see whether the three
modules had an agreement on the pattern of application of
each topic modeling algorithm. Cohen Kappa measured the
accidental dependence of the predicted grouping measure and
the actual result to remove intrinsic characteristics from the
existing data [20]. In Fig. 5, requirements with NMF topic
modeling had a high positive value, namely 0.54 for the
Unigram search and 0.46 for Bigram and Trigram search. This
result meant that the NMF algorithm model runs well in
grouping the three modules compared to the other two
algorithms LSA and LDA. In Fig. 6, it could be seen that LDA
failed to perform the grouping of the test steps. The resulting
Cohen Kappa value was also negative, which means that the
model did not work, and it could be seen that NMF gave a
good Cohen Kappa score once again compared to the other
two algorithms; however, in the test case document, NMF did
a better job using Bigram and Trigram searches than Unigram.
NMF-Unigram only reached Cohen kappa value 0.39, while
NMF - Bigram and Trigram could reach up to 0.54. These
results differ in accuracy, precision, and recall, where
Unigram gave better scores. So, it could be concluded that
requirement topic modeling worked well using the NMF
algorithm with the Unigram search. Still, the NMF algorithm
worked better using Bigram and Trigram searches in the
grouping of testing steps.

Based on Table 6, Unigram with the three algorithms
produced the NMF precision value of 0.737 for topic two for
the requirements and 0.778 for topic one for the test case. This
value was higher than the bigram or trigram method, which
only achieved a precision value of 0.632 for the requirements
and 0.765 for the test case. In this first application, the NMF
topic modeling method best separated requirements and test
steps in a test case based on the desired topic.

Seeing that Unigram worked better when compared to
bigram or trigram, we only used the unigram method to find
bugs and defect links with testing expected results to find the
defect relation. The three topic modeling methods were
compared again to see their similarities. The comparison was
from the list of desired results in the test case document, a list
of bugs that appeared during testing (which could be during
unit testing or integration testing), and a list of defects when
the user tested the application's full function after the product
was released (regression testing). Once again, the NMF
method gave the best accuracy value results shown in Fig. 7.
Table 7 showed that NMF provided almost the same precision
value as LSA with 0,650 in topic 1 and achieved the highest
recall values on topics 2 and 3 with 0.680 and 0.708.

The first topic was the issue of promotion and document
storage. NMF succeeded in classifying defects with
accompanying bugs and problematic testing steps in the file
storage process, which failed to appear correctly on the
promotion document list. In the second topic, filtering
document types and document categories were no longer a
problem because no defects had been found. On topic 3, a
problem with the document status appearance was found. The
validation process was problematic. The defect that was a
solved bug before happened again. When a document status
that had been rejected still appeared on the operator page and

did not reappear on the employee page. The LSA method
could not classify defects well because all were collected on
one topic only, and the other two topics only presented testing
without any connection with bugs and defects at all. LDA
performed well in a grouping on topics regarding the defects
of promotion and file management modules. For example, the
file storage through scanning could not appear and failed to
save, resulting in the system sending blank files for validation.
In the end, the list of files for the promotion process did not
appear correctly.

Fig. 7 App One Bug and Defect Topic Modeling

TABLE VII
APP ONE BUG AND DEFECT PRECISION AND RECALL

 LSA LDA NMF

Topi

c

P
re

ci
si

o
n

R
ec

al
l

P
re

ci
si

o
n

R
ec

al
l

P
re

ci
si

o
n

R
ec

al
l

1 0.600 0.128 0.500 0.340 0.650 0.277

2 0.600 0.240 0.286 0.400 0.548 0.680

3 0.316 1.000 0.345 0.417 0.378 0.708

Based on modeling topics in requirements documents, test

cases, and defect lists, it was found that each module had a
dominant word as its identity. In this first application, the
keywords that would be used as a search tool for the code
source were as follows:

 The first module was a file management. The keywords
were "pindai" (scan), "scan", "simpan" (save), "upload",
"kategori dokumen" (document category), and "PDF".

 The second module was the validation status. The
keywords were valid, reject, process, and operator.

 The third module was the promotion process. The
keywords were "syarat" (terms), "persyaratan" (terms),
and "pangkat" (promotion).

Apart from the mentioned words, other words were the
module's identity, but those words were constantly changing.
These terms never appear in the source code. Tracking the
implementation of requirements in source code via keywords
in each module only managed to map 40% of the related code
in this first application.

In all three datasets, namely requirements data, test cases,
and defect lists, NMF worked best. NMF could separate the
three types of requirements and correctly predict the
category's existing requirements with little data, such as

1416

promotion and status validation. In this first application, the
process occurred through a single stream where the variables
involved were the same, and only the function was different.
That was why there were not many unique words that could
be used to make up a topic in a module. Therefore, it was not
easy to distinguish between one topic and another. In addition,
the terms used in requirements were very general, while the
terms in test cases were specific and hugely different. It could
be said that the test case data had a lot of noise with the
technical terms and the same variables that were mentioned
repeatedly.

NMF performed better on short text with noise when
compared to the other two algorithms [10]. This result was
supported by previous findings where NMF performed
slightly better on short text data with noise when compared to
LDA, but the LDA used a bag of word matrix input instead of
TF-IDF [21]. Meanwhile, the number of exact words in each
module made it difficult for LSA to categorize topics. This
was because the LSA did not care about word order and could
not even distinguish a sentence from just a collection of words
[22]. LDA tends to provide generalized and non-specific
views and probabilistic functions that continually alter word
results and occurrences [6], [10]. This made the grouping of
topics unstable because sometimes there were lost topics
when it was regenerated with different word distribution. The
instability of the modeling results actually occurred in NMF.
However, a study showed that NMF provided more stable
results compared to LDA with the Normalized Pointwise
Mutual Information (NPMI) value as its evaluation. [23].

B. Second App

In the second application, there were five modules.
Therefore, the initial number of topics was also five. The five
modules mentioned were master data, budget reference data
management, activity reports, budget reports, and overall
report view. There was almost the same grouping pattern
when topic modeling was applied in requirement data, using
LDA, NMF, and LSA. The separation of the five topics from
the three algorithms can be reduced to two topics. When we
used Unigram for word searching and weighting, the first
topic was about funds or budgets, and the second topic was
about activities and their attributes. In modeling topics with
five topics in the LDA method, the first topic was about
master data related to detailed actions such as measuring
targets, deleting and adding activities, and partners in
implementing activities. The second topic also revolved
around activities such as adding master data in the field of
technology. The activities were carried out in these work units,
and the names of the actions were added. Activity reports such
as obstacles, the location of activities carried out, and data to
support activities were also included in the second topic. It
could be seen that the first topic and the second topic
discussed the attributes of the action.

Meanwhile, the budget report, the attributes of the source
of funds, and the distribution of budget reports for each unit
were included in the third topic. The fifth topic could not be
concluded. The fifth topic was about the main reference of the
budget and uploading it into the application. So, the third and
fifth topics discussed funds or budgets. The topic modeling
results using NMF separated the funding components into one
topic on the second topic. The rest were attributes of activity

implementation. LSA produced a new combination, where all
matters related to master data were included in the third topic.
Most of the budget attributes were included in the second
topic, while a few others were included in the first topic with
the activity reports' main attributes. The fourth topic was
mixed, but it dominantly talked about activities. The accuracy
score was quite high when the topic separation was reduced
to two out of five topics due to the similarities of things
discussed. NMF in first place reached 0.79, LDA and LSA in
second place reached 0.75.

The method of searching and weighting words using
bigram and trigram also still had the same pattern. In the LDA
method, topic three was challenging to recognize because it
was mixed. However, it tended to explain more about the
budget because it contained words about the main budget
reference. Topics one and two consisted of words that concern
budget funds. Topics three and four were about activities and
details of the implementation of activities. The NMF method
produced each topic that was easier to identify than the LDA.
Topics one and five were about activities, and the rest were
about the budget. There were no topics that contained a
mixture of the two. LSA still had better topic separation
results than LDA, topics two, three, and four regarding the
budget, and there was no need for activities on these three
topics. The needs regarding activities were gathered on the
first topic. Some of the fifth topic requirements were
regarding the budget, but most of them explained the addition
of data master and activity linkages. Bigram and trigram
applications separated very well in the NMF method, which
achieved an accuracy value of 0.81, and LSA in second place
with 0.77. However, LDA accuracy decreased to only 0.61.

The problem arose when the activity and budget grouping
patterns could not be applied to the testing document. Testing
activity reports and testing budget reports were always
grouped into the same topic for all topic modeling algorithms.
The grouping pattern must be changed to avoid many topics
grouping mistakes, especially in determining which group the
activity report and budget combination belong to; thus, the
grouping of requirements also changed to see the link between
the existing patterns in testing. Everything about the master
module would become one group. Everything was discussed
in the activity report module, and the budget report would
become another group. Everything about the budget reference
and the report view would turn into one group. Three groups
would be concluded from the results of the five topics
resulting from the topic modeling process. The value of
accuracy on the newest requirements topic pattern, as shown
in Fig. 8 that NMF is no longer the best method. The LSA
accuracy value rose to be the best with the unigram method,
namely, 0.79. NMF was down in second place with 0.70, and
LDA was in last place. However, NMF produced the best
accuracy value on the bigram and trigram methods, 0.68 for
requirements.

The emergence of the same unique word in the activity
report test case and the financial report grouped these two
modules on the same topic. As shown in Fig. 9, the LSA had
better accuracy with new topic groupings. LSA hit 0.84,
following NMF 0.79 in second place and LDA in the last
place with 0.75. The high kappa cohen value on the LSA both
in the requirements document and the test case document
shown in Fig. 10 and Fig. 11 further strengthened that LSA

1417

was the winner this time. LSA achieved a Cohen Kappa
coefficient value of 0.62 in the requirements document and
0.72 in the test case document with unigram word searches.
However, in the requirements document, LSA was inferior to
NMF when using bigram and trigram word searches. Where
LSA only reached 0.45 while NMF reached 0.47.

Fig. 8 App Two Requirement Accuracy

Fig. 9 App Two Test Case Accuracy

Fig. 10 App Two Requirement Cohen Kappa

Fig. 11 App Two Test Case Cohen Kappa

TABLE VIII
APP TWO REQUIREMENT AND TEST CASE PRECISION AND RECALL

LDA Unigram

 Requirement Test Case

Precision Recall Precision Recall

1 0.381 0.800 0.900 0.500
2 0.643 0.375 0.941 0.821

3 0.667 0.600 0.440 0.917

LDA Bigram or Trigram

 Requirement Test Case

Precision Recall Precision Recall

1 0.429 0.600 0.455 0.278

2 0.625 0.625 0.644 0.744
3 0.667 0.400 0.308 0.333

NMF Unigram

 Requirement Test Case

Precision Recall Precision Recall

1 0.533 0.800 0.621 1.000

2 0.875 0.583 1.000 0.692
3 0.692 0.900 0.769 0.833

NMF Bigram or Trigram

 Requirement Test Case

Precision Recall Precision Recall

1 0.455 0.500 0.600 0.333
2 0.870 0.833 0.821 0.590
3 0.500 0.500 0.290 0.750

LSA Unigram

 Requirement Test Case

Precision Recall Precision Recall

1 1.000 0.500 0.680 0.944
2 0.793 0.958 0.946 0.897

3 0.700 0.700 0.857 0.500

LSA Bigram dan Trigram

 Requirement Test Case

Precision Recall Precision Recall

 1 0.500 0.400 0.556 0.556

 2 0.857 0.750 0.781 0.641

 3 0.467 0.700 0.368 0.583

As shown in Table 8, the precision value of using Unigram

was again superior to using Bigram and Trigram. Modeling
using the LSA algorithm gave perfect scores on the first
grouping of topics and 0.793 on the requirements document's
second topic. The LSA and NMF test documents provided
almost as good results. NMF provided an excellent precision
value on the second topic, while LSA only gave a precision
result of 0.946. However, NMF could not provide a better
precision value than LSA on the other two topics. LDA came
last. On all topics, the precision value could not even touch
0.700.

We only used Unigram to model bugs and defect topics and
did not compare it with Bigram or Trigram because the
Unigram Requirements and Test Case topics modeling always
showed better results. As shown in Fig. 12, LSA still excelled
in finding suitable topics compared to the other two methods.
The accuracy of LSA was at 0.56, in the second place was
NMF, and in the last was LDA. Meanwhile, LSA showed that
the model worked quite well, separating topics with the
highest Cohen Kappa coefficient of 0.33 compared to the
other two methods. Looking at the value of precision and
recall on the three topics from Table 9, LSA gave good results
in grouping the two topics. The LSA precision value was the
highest on topic 2 with 0.963 compared to NMF 0.958 and
LDA 0.800. The LSA recall value was also in the highest
result on topic 3, 0.857 compared to NMF, only 0.607, and
LDA 0.536. The LSA topic modeling method performed best
in finding suitable topics in this second application.

1418

Fig. 12 App Two Bug and Defect Topic Modeling

TABLE IX
APP TWO BUG AND DEFECT PRECISION AND RECALL

 LSA LDA NMF

Topic Precision Recall Precision Recall Precision Recall

1 0.364 0.174 0.400 0.522 0.400 0.522

2 0.963 0.565 0.800 0.522 0.958 0.500

3 0.407 0.857 0.405 0.536 0.395 0.607

Based on modeling topics in requirements documents, test

cases, and defect lists, it was found that each module had a
dominant word as its identity. In this second application, the
keywords that are used as a search tool to the code source
were as follows:

 The first module was the data master. The keywords
were “master”, “kaitan kegiatan”, “data awal”, “data

satuan”, “nama kegiatan”
 The second module was the activity and budget

reports. The keywords were pnbp, blu, status, target,

dokumen pendukung
 The third module was DIPA data management. The

keywords were sub, output, component, DIPA,
upload, import

 The fourth module was search and display reports
based on DIPA activity data. The key words were
cari, pencarian, pilih, tampil, list, bidang teknologi,

bidang prinas
Apart from the words already mentioned, other words were

the module's identity, but the terms were constantly changing.
These terms never appeared in the source code. Tracking the
implementation of requirements in source code via keywords
in each module showed better results than the first application.
The associated source code could be traced up to 62% in this
second application.

Unlike the first application, the second application had
unique words that are consistently mentioned starting from
the requirements for each module so that the obstacles
encountered in the study [5] were not found. The only changes
were the things discussed by the requirements were in general.
Those were separated into two categories, activities and funds.
Then the test case explained those in more detail through the
stages of the process in the application. This condition caused
the number of topics about requirements to need to be
changed so that the need could be mapped with existing test
cases precisely.

Based on the consistency of the unique constituent words
in each module, LSA could perform better than NMF and
LDA. However, the LSA could not distinguish the meaning

of words in a sentence. Therefore, adjustments such as the
location of the subject and object needed to be identified as
well as the types of words such as nouns and adjectives
according to the previous study [24]. A word had a lot of
meaning depending on its placement in a sentence, so this
separation process was required for better LSA topic
modeling. The LSA could be successful with data containing
unique words that were consistent in use or by adjusting
synonyms for words [25]. However, the LSA method with
TF-IDF had the best result when used in short text from tweets,
and the email contained health care issues rather than LSA
combined with Doc2Vec and another method like LDA with
TF-IDF or Doc2vec [26].

IV. CONCLUSION

This paper compares the tracing process of two types of
developed applications in Agile. The tracing used topic
modeling in three documents: the requirements document, test
cases, and source code. In the first application, the topic
modeling algorithm that works best is NMF, while in the
second application, the topic modeling algorithm that works
best is LSA. The first application does not consistently apply
the terms used, and the variables involved are not unique to
each module. Meanwhile, the second application has unique
variables involved in each module so that each unique term is
consistently mentioned from the requirements to the source
code. Despite being in second place, NMF also performs quite
well in the second application, where all evaluation values
give results that are not too different from the LSA. In both
applications, LDA always ranks last because the instability of
the generated results is worse when inferred compared to
NMF.

It can be concluded that tracing can be done more easily
when consistent terms are occurring. It is better if the
technical matters have been discussed clearly along with each
development stage phase at the beginning of making the
requirements. In the testing document, the terms need to
reappear (as in the requirement document), not be replaced.
Programmer comments on the source code are necessary to
make it easier to find similarities apart from giving the
variable names following the two previous documents
(requirement and test case).

In this study, several weaknesses were found, including not
paying attention to sentence structure in the existing data, not
providing synonyms, and being dependent on expert
judgment. These three weaknesses make the results of topic
modeling to track the application of requirements imprecise.
There are still many misidentifications. In the future, the data
was processed by sentence structures and word synonyms so
that the words that are checked for similarities have the same
meaning. In addition, the agreement from the expert judgment
that was compared later as ground truth should be measured
not only based on cohen kappa but also using other measuring
tools such as calculating the "Area Under the Curve" (AUC)
of the "Receiver Characteristic Operator" (ROC) to
emphasize how well segregated each group is.

ACKNOWLEDGMENT

This work is part of "Requirement Traceability Adoption
Research in Agile Environments to Detect Defects" supported

1419

by Saintek Scholarship, Indonesian National Research and
Innovation Agency, in collaboration with Institut Teknologi
Sepuluh Nopember (ITS).

REFERENCES

[1] N. N. Hidayati and S. Rochimah, "Requirements traceability for
detecting defects in agile software development," EECCIS 2020 - 2020

10th Electr. Power, Electron. Commun. Control. Informatics Semin.,

pp. 248–253, 2020, doi: 10.1109/EECCIS49483.2020.9263420.
[2] B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, "Requirements

traceability technologies and technology transfer decision support: A

systematic review," J. Syst. Softw., vol. 146, pp. 59–79, 2018, doi:
10.1016/j.jss.2018.09.001.

[3] T. Vale, E. S. de Almeida, V. Alves, U. Kulesza, N. Niu, and R. de

Lima, "Software product lines traceability: A systematic mapping
study," Inf. Softw. Technol., vol. 84, pp. 1–18, 2017, doi:
10.1016/j.infsof.2016.12.004.

[4] C. Mills, J. Escobar-Avila, and S. Haiduc, "Automatic traceability
maintenance via machine learning classification," Proc. - 2018 IEEE

Int. Conf. Softw. Maint. Evol. ICSME 2018, pp. 369–380, 2018, doi:

10.1109/ICSME.2018.00045.
[5] D. Nanang, P. L. Penelusuran, and P. L. Penelusuran, “Pembangunan

Link Penelusuran Kebutuhan Fungsional Dan Method Pada Kode

Sumber Dengan Metode Pengambilan Informasi,” ELTEK, vol. 16, pp.
151–165, 2018, [Online]. Available:
https://doi.org/10.33795/eltek.v16i2.106.

[6] A. S. Ahmadiyah, R. Sarno, and F. Revindasari, "Adopted topic
modeling for business process and software component conformity
checking," Telkomnika (Telecommunication Comput. Electron.

Control., vol. 18, no. 6, pp. 2939–2947, 2020, doi:
10.12928/TELKOMNIKA.v18i6.13381.

[7] S. Rani and M. Kumar, "Topic modeling and its applications in

materials science and engineering," Mater. Today Proc., vol. 45, pp.
5591–5596, 2021, doi: 10.1016/j.matpr.2021.02.313.

[8] J. Zhao, Q. P. Feng, P. Wu, J. L. Warner, J. C. Denny, and W. Q. Wei,

"Using topic modeling via non-negative matrix factorization to
identify relationships between genetic variants and disease phenotypes:
A case study of Lipoprotein(a) (LPA)," PLoS One, vol. 14, no. 2, pp.

1–15, 2019, doi: 10.1371/journal.pone.0212112.
[9] R. Albalawi, T. H. Yeap, and M. Benyoucef, "Using Topic Modeling

Methods for Short-Text Data: A Comparative Analysis," Front. Artif.

Intell., vol. 3, no. July, pp. 1–14, 2020, doi: 10.3389/frai.2020.00042.
[10] Y. Chen, H. Zhang, R. Liu, Z. Ye, and J. Lin, "Experimental

explorations on short text topic mining between LDA and NMF based

Schemes," Knowledge-Based Syst., vol. 163, pp. 1–13, 2019, doi:
10.1016/j.knosys.2018.08.011.

[11] Q. Fu, Y. Zhuang, J. Gu, Y. Zhu, and X. Guo, "Agreeing to Disagree:

Choosing Among Eight Topic-Modeling Methods," Big Data Res., vol.
23, p. 100173, 2021, doi: 10.1016/j.bdr.2020.100173.

[12] H. Kaiya, A. Hazeyama, S. Ogata, T. Okubo, N. Yoshioka, and H.

Washizaki, "Towards a knowledge base for software developers to

choose suitable traceability techniques," Procedia Comput. Sci., vol.

159, pp. 1075–1084, 2019, doi: 10.1016/j.procs.2019.09.276.
[13] A. Guo and T. Yang, "Research and improvement of feature words

weight based on TFIDF algorithm," Proc. 2016 IEEE Inf. Technol.

Networking, Electron. Autom. Control Conf. ITNEC 2016, pp. 415–
419, 2016, doi: 10.1109/ITNEC.2016.7560393.

[14] H. Suhartoyo and S. Rochimah, “Membangun Hubungan Kerunutan

Artifak Pada Lingkungan Pengembangan Cepat,” SYSTEMIC, vol. 02,
no. 01, pp. 1–17, 2016.

[15] P. M. Prihatini, I. Putra, I. Giriantari, and M. Sudarma, "Indonesian

text feature extraction using gibbs sampling and mean variational
inference latent dirichlet allocation," QiR 2017 - 2017 15th Int. Conf.

Qual. Res. Int. Symp. Electr. Comput. Eng., vol. 2017-Decem, pp. 40–

44, 2017, doi: 10.1109/QIR.2017.8168448.
[16] P. Suri and N. R. Roy, "Comparison between LDA & NMF for event-

detection from large text stream data," 3rd IEEE Int. Conf. , pp. 1–5,

2017, doi: 10.1109/CIACT.2017.7977281.
[17] T. D. Hien, D. Van Tuan, P. Van At, and L. H. Son, "Novel algorithm

for non-negative matrix factorization," New Math. Nat. Comput., vol.

11, no. 2, pp. 121–133, 2015, doi: 10.1142/S1793005715400013.
[18] H. Dalianis and H. Dalianis, "Evaluation Metrics and Evaluation,"

Clin. Text Min., no. 1967, pp. 45–53, 2018, doi: 10.1007/978-3-319-

78503-5_6.
[19] S. Vanbelle, "Comparing dependent kappa coefficients obtained on

multilevel data," Biometrical J., vol. 59, no. 5, pp. 1016–1034, 2017,

doi: 10.1002/bimj.201600093.
[20] E. Bagli and G. Visani, "Metrics for Multi-Class Classification : an

Overview," arXiv, vol. abs/2008.0, pp. 1–17, 2020.

[21] S. A. Curiskis, B. Drake, T. R. Osborn, and P. J. Kennedy, "An
evaluation of document clustering and topic modelling in two online
social networks : Twitter and Reddit," Inf. Process. Manag., vol. 57,

no. 2, p. 102034, 2020, doi: 10.1016/j.ipm.2019.04.002.
[22] D. Braun and M. Langen, "Evaluating Natural Language

Understanding Services for Conversational Question Answering

Systems," Proc. 18th Annu. {SIG}dial Meet. Discourse Dialogue, no.
August, pp. 174–185, 2017.

[23] M. Belford, B. Mac Namee, and D. Greene, "Stability of topic

modeling via matrix factorization," Expert Syst. Appl., vol. 91, pp.
159–169, 2018, doi: 10.1016/j.eswa.2017.08.047.

[24] R. M. Suleman and I. Korkontzelos, "Extending latent semantic

analysis to manage its syntactic blindness," Expert Syst. Appl., vol. 165,
no. January 2020, p. 114130, 2021, doi: 10.1016/j.eswa.2020.114130.

[25] A Amalia et al, "Automated Bahasa Indonesia essay evaluation with

latent semantic analysis Automated Bahasa Indonesia essay evaluation
with latent semantic analysis," J. Phys. Conf. Ser. 1235 012100, pp. 0–
8, 2019, doi: 10.1088/1742-6596/1235/1/012100.

[26] J. A. Lossio-Ventura, S. Gonzales, J. Morzan, H. Alatrista-Salas, T.
Hernandez-Boussard, and J. Bian, "Evaluation of clustering and topic
modeling methods over health-related tweets and emails," Artif. Intell.

Med., vol. 117, no. March, p. 102096, 2021, doi:
10.1016/j.artmed.2021.102096.

1420

