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Abstract— The objective of this work is to automatically regulate glycemia of Type 1 Diabetes Mellitus (T1DM) avoiding both 

hyperglycemia and hypoglycemia risks. A positive state feedback controller was designed previously to regulate Blood Glucose 

Concentration (BGC) in the fasting phase maintaining the system in the positively invariant set (PIS). The drawback of this positive 

controller is that when tested in the postprandial phase it couldn’t avoid hyperglycemia. Therefore, in this work, the positive state 

feedback controller was developed to avoid both hypoglycemia and hyperglycemia maintaining the system inside the PIS. Meal 

disturbance is estimated by a sliding mode perturbation observer to be included in the control law. Such that meal effect is canceled 

early enough preventing glycemia from raising to hyperglycemia, but the positivity of the new controller isn’t guaranteed. Therefore, 

a hybrid controller is designed to switch to the previous positive controller whenever the new controller has a negative action. A positive 

control is essential in this problem since the control input (insulin) can only be infused and it cannot be taken back from the bloodstream 

in case of any overdoses. The hybrid positive controller is tested in silico on five virtual T1DM patients. The results shown that the 

average percentage of time for glycemia over 180mg/dl (3.6%), normal range (80-120mg/dl) (78.2%), and below (80mg/dl) (0%) from 

overall simulation time. In conclusion, the hybrid positive control law succeeded to maintain the system inside the PIS avoiding 

hypoglycemia and preventing hyperglycemia keeping BGC in normal range rejecting meal disturbance.  
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I. INTRODUCTION

Before the discovery of insulin in 1921, T1DM was a 

deadly illness. The current treatment consists of a series of 

regular insulin injections based on glycemia and carbohydrate 

(CHO) intake measurements or continuous subcutaneous 

insulin infusion (CSII) through a pump [1], [2]. The aim is to 

keep Blood Glucose Concentration (BGC) in a healthy range 

(80 mg/dl to 140 mg/dl) [3]. Hyperglycemia (BGC > 180 

mg/dl) must be prevented because cerebral stroke, cardiac 

arrest, renal failure, and vision loss become more likely when 
BGC levels exceed 180 mg/dl [4]. Exogenous insulin may be 

injected/infused to get glucose levels back to normal. Since 

insulin can only be injected, the controller must only have one 

direction of operation [5]. Any insulin overdose will result in 

hypoglycemia. Hypoglycemia has a faster onset and can 

quickly escalate to life-threatening levels, increasing the risk 

of diabetic coma [4]. 

Model Predictive Control (MPC) has gotten much attention 

in the last decade as an advanced control technique that can 
be used in an AP device [6], [7]. For people with (T1DM), 

zone model predictive control has proved to be an efficient 

closed-loop method of blood glucose regulation [8]. AP, in 

diabetes, refers to a closed-loop control to automate BGC 

regulation [9], [10]. The patient avoids manual insulin 

injections throughout the day [11]. MPC was chosen because 

of its demonstrated ability to estimate the best control action 

and deal with feedback, state constraints, and disturbances 

[12], [13]. These formulations, in general, use discrete-time 

control behavior and are based on the Bergman T1DM patient 

model and its linearization [14]. The disadvantage of these 

models, as shown by the Magdelaine et al. [2] model, is that 
this apparent model equilibrium in fasting periods so that a 

different insulin infusion rate is needed for each value of 

(BGC) in order to maintain a constant BGC level. Magdelaine 

et al. [2] demonstrated that this is not true in practice, with 

patients displaying only one single insulin infusion rate, 

known as the basal rate, independent of glycemia and capable 
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of maintaining equilibrium for any glycemia value during 

fasting periods. 

Since insulin can only be injected, the positive-control 

design was presented in Nath et al. [4]. Furthermore, since 

glucose and insulin are both positive factors, the positive area 

for the device model must be measured to ensure that these 

variables remain positive. The positive invariant set for the 

glucose-insulin dynamic was calculated in Mohammad Ridha 

et al. [15] for the Magdelaine dynamic. 

In addition, for glycemic regulation in the fasting phase, a 

positive Sliding Mode Control (SMC) was built in  Nath et al. 
[4]. Just two states were used to measure the PIS (plasma 

insulin and subcutaneous insulin). The tradeoff was relatively 

hard between maintaining positive i/p – o/p bounds and 

regulation speed. A positive state feedback control was then 

devised [16]. Hypoglycemia was avoided during the fasting 

phase, and the controller kept the system inside PIS. After 

meal intake, glycemia is raised because meal intake is a 

positive factor. Thus the positive properties for the system and 

control action will not change. 

Hyperglycemia under positive control in (Mohammad 

Ridha et al. [16] was not completely treated after meal intake. 
As a result, this is the primary issue discussed in this research. 

This depends on the controller's development in Mohammad 

Ridha et al. [16], by putting the estimated meal with a 

controller in the same channel. The meal intake is estimated 

via SMPO; it is a robust observer that is used to estimate the 

bounded disturbances. In other words, the development 

controller calculates the insulin amount required to minimize 

the expected meal's impact on BGC. In comparison, keeping 

the positivity constrained and also preventing hypoglycemia 

events. This paper is arranged as follows: in Section II, A. 

some useful preliminaries are presented, in B. the T1DM, in 
C. positive control problem, D&E. SMPO F. the control 

design and G. switching operation. Section III shows the 

results of simulation and discussion, and Section IV ends with 

a conclusion and future work. 

II. MATERIALS AND METHOD 

A. Preliminaries 

If the state variables remain nonnegative for all 

nonnegative inputs and initial conditions, the system is said to 

be positive. Therefore consider the autonomous linear system;  

 �̇��� = ����� + 	
���,  ��0� = ��  

 ���� = ����� (1) 

where � ∈ ℝ� , � ∈ ℝ�, 
 ∈ ℝ� , � ∈ ℝ�×� , 	 ∈ ℝ�×� � ∈ ℝ�×� 
Definition �: “[17] If for every �� ∈ ℝ�� , 
 ∈ ℝ�� , the state ���� ∈ ℝ��  and output trajectories ���� ∈ ℝ��  for any � ≥ 0, 

system (1), is named internally positive”. 

Definition 2:[17] “If �� ∈ �  implies ���, ��� ∈� for any � ≥ 0,  the nonempty set � ⊆ ℝ�  is a positively 
invariant set (PIS), for system (1)”. 

Corollary 1: “[17] System (1) is internally positive if and 

only if, �  is Metzler and 	 ≥ 0, � ≥ 0 (i.e. ��� ,  �� ≥0 ∀�", #�$”. 

 

B. Glucose – Insulin Mathematical Model 

The glucose-insulin dynamics were modeled by the 

Magdelaine model, which was used in the in-silico research. 

Clinical data from diabetic patients with T1DM are used to 

build this simulator [2]. After adjusting variables to give them 
a more physiological sense, the following model represents 

the glucose-insulin dynamics [18]. 

 %�&'�'(�')* = ⎝
⎛0 −.( 00 − &/0

&/00 0 − &/0⎠
⎞ % 3��4��5

* + 6 00&/0
7 
 + %.&00 * + %100* 9��� (2) 

Where, �&��� :;<=> ? is glycemia , x(JK. M"NO&P  is plasma 

insulin rate, x)JK. M"NO&P is the subcutaneous insulin rate. Θ&  : �RST.���U4 ?  the deference between liver production of 

glucose and its consumption by the brain. Θ(  : �RST.VU4?,  the 

insulin sensitivity factor, θ) JM"NO&P,  the transfer time of 

insulin [19]. 

The model was re-represented in [18], after some change 

of variable so that basal insulin (
X = /4/5� JK. M"NO&P  that 

keeps BGC level constant was lumped in the controller, 

plasma insulin and subcutaneous insulin [18]. In other words, 

that the basal insulin is continuously injected. 

 

⎩⎪⎨
⎪⎧6�]'&�]'(�]')7 = ⎝

⎛0 −.( 00 − &/0
&/00 0 − &/0⎠

⎞ %�]&�](�])
* + 6 00&/0

7 
] + %100*  9���
�] = ��], �]^ ≜ �]�0�

 (3) 

Via the following change of variables: 

   

�]& = �& − 3`�]( = �( − 
X ,�]) = �) − 
X ,
] = 
 − 
X
 (4) 

where � = �1 0 0�, 3`  :�RST ?  is the glucose reference 

level (i.e. 
&&�;<=> $ , 
X : a;bc?.  

C. Positive control and problem formulation 

The main problem of this model is that it is not a positive 

realization according to definition (1) and corollary (1) [15]. 

So, this leads to finding the positive invariant set (PIS) for this 

system where insulin and glucose remain positive. In 

Mohammad Ridha et al. [15], the authors found the PIS in an 

open loop. Then in Mohammad Ridha et al. [16], the authors 

found the PIS under a positive state feedback control. This 
controller showed a good performance in the fasting phase. 

Hypoglycemia is totally prevented, and the control action 

remained positive for all time because of the system inside the 

PIS. The state feedback control was obtained as in 

Mohammad Ridha et al. [16]: 

 
]��� = d. ���� (5) 

Where 

 d = e f &/5    − .)    − .)$ , e > 0 (6) 

The output of the positive controller is evaluated on the 

nominal system during the fasting phase and then under meal 
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perturbations, as described in Mohammad Ridha et al. [16]. 

The controller was active in preventing hypoglycemia in the 

fasting and postprandial phases, but it was unsuccessful in 

preventing hyperglycemia after meal intake. As known, meal 

intake is a positive disturbance. This results in glycemia 

remaining in the PIS, and the control action stays positive. 

Thus, the previous properties (in the fasting phase) are still 

true in a scenario that includes a disturbance meal [1]. 

 In this work, the controller in (5) is developed with the 

same positivity properties to include hyperglycemia 

avoidance. This is accomplished by enabling the meal effect 
in the controller after estimating it as shown in the flowchart 

below: 

 
Fig. 1  Flowchart of the proposed controller 

 

Therefore, the controller detects the amount and timing of 

the meal intake in this situation. The next section explains the 

meal estimation. 

D. Sliding Mode Observer (SMO) 

The Sliding Mode Perturbation Observer (SMPO) in this 

study will be used to estimate the disturbance meal D(t) based 
on equivalent control methodology. The control law will use 

this approximation after estimating D(t) to reduce its effect, 

shown later. To reconstruct the unknown input (the meal) for 

the (3), the following procedure uses the SMPO [20]. 

In the first step, with certain parameters let the observer 

dynamic be given by: �h'&��� = −.( �(��� + e ∗ jkN f �]&��� − �]l&���$ 

 �]l&���� = �]&���� (7) 

Where it is supposed that the only unknown element is the 

unpredictable meal. Then, the sliding variable s can be 

described as: 

 j��� = �]&��� − �]l&��� (8) 

And its time derivative as: 

 j'��� = �]'&��� − �]l'&��� (9) 

This leads to; 

 j'��� = 9��� − e ∗ jkN� j��� (10) 

Thus, during sliding mode j'��� = j��� = 0; ∀ � ≥ �� 

[21], 

 9��� = Je ∗ jkN� j���Pno (11) 

Where Je ∗ jkN� j���Pno   is the equivalent operator of the 

discontinue term. 

The meal D(t) estimate is obtained according to the 

equivalent control principle [21]. The following Low Pass 

Filter (LPF) mathematically approximates meal from (12): 

 p'��� = &q& f−p��� + e ∗ jkNrj���s$ (12) 

And according to Utkin et al. [21] 

 p��� ≈ 9��� (13) 

The value of k is selected such that Falah et al. [22] e > maxu |9|  
 or; e = e� + maxu |9���| , e� > 0 (14) 

Assuming that the meal disturbance is constrained by a 

positive real number, such as M (maxu |9���| ≤ �) hence we 

have; 

 e = e� + � (15) 

Only the perturbation is estimated using this form of 

SMPO. In addition, when deriving a controller for BGC, the 

first and second derivatives for the estimated perturbation rv���sare required, as shown in section F. 

E. SMO with Approximate Signum Function (ASMO)  

The chattering behavior is inherent in the sliding mode 

controller and observer. Hence the chattering will exist in 
observing the meal when it is estimated according to the 

above design. The sign function is replaced by an 

approximation signum function as follows in Falah et al. [22] 

and Al-samarraie [23], to remove the chattering that occurs in 

SMO. 

 jkN�j� ≈ (y  �zNO&�{j� (16) 

Where { ≥ 1 is a design parameter for the observer. By 

selecting the observer parameters k and { (see Appendix A), 

the error in estimating the meal | is given by [22]. 

 |}��� − || ≤ (q&~ tan y(�  � (17) 

Where � = supu 9���. 

In addition, the time derivative for the estimated 

perturbation ( p'���� is required when deriving a robust 

controller for BGC in the next section. This can be obtained 

from LPF in (12). 

F. Control Design 

In the construction of a realistic control problem, there will 

always be a discrepancy between the real model and the 

mathematical model used for the control strategy. These 

variations (or discrepancies) are caused by unknown input 

changes, model parameter variability, and unmolded 

dynamics. 

Designing a control law that provides the desired output to 

the closed-loop system in the event of disturbance (input 

disturbances/parameter uncertainty) is a critical task for a 

control engineer. One design principle for this situation is to 
cancel the perturbation term after estimating it. 

The Mohammad Ridha et al. [16] controller is used in this 

study to avoid hypoglycemia and hyperglycemia after meals. 

The system in equation (3) gets a new variable change. This 

is to add the meal with the controller designed in Mohammad 

Ridha et al. [16], with the same channel. The new control 

design will reduce the meal's action on the BGC. The variable 
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change begins with the assumption that: 

 �&��� = �&��� (18) 

and  

 �&' ��� =  −.2 �(��� (19) 

from equation (19) �'&��� = �'&���, and from equation(3) 

  �&' ��� =  −.( �(��� + D�t� (20)  

Equating equation (20) with equation (3), leads to: 

 �(��� = �(��� − ��u�/(        (21) 

Assume that �(��� dynamic as follows;  
 �(' ��� =  − �5�u�/) + �0�u�/)  (22) 

From equation (3); 

  �(' ��� =  − �5�u�/) + �0�u�/)  (23) 
Differentiating equation (21), and equating with equation 

(22), and from equation (23), get:  

 �)��� = �)��� − ��u�/( −  9' ��� /)/(     (24) 

Differentiating equation (24): 

 �)' ��� = − �0�u�/) + ���u�/) − ��u�/(∗/) −  �' �u�/( −  9� ��� /)/( (25) 

Design u]��� such that the dynamics of �) is similar to the 

dynamics of �) in fasting phase as follows:      �)' ��� = − �0�u�/) + ��u�/)  (26) 
Where 
���� is the new controller, 
 

 
���� = ���� + .3 ∗ |r9, 9' , 9� s (27) 

Note that 
]���� = 
]��� in (5), when D(t)=0. 

Equation (27), express the new controller including the 

meal input and its derivative with the ����  is the same 

controller in the fasting phase but with a new state variable, 

where; 

 ���� = d. ����  (28) 

d = e f &/5    − .)    − .)$ , e > 0     
 |r9, 9' , 9� s = ��u�/(∗/) +  �' �u�/( +  9� ��� /)/( (29) 

Equation (29) represents the amount of meal disturbance to 

be estimated. The new system after the change of variables 

become: 

 

�'& = −.(�(                                  �'( = − &/) �( + &/) �)                   
�') = − &/) �) + &/) 
 + |r9, 9' , 9� s (30) 

The system then becomes similar to the system in equation 

(3) in the fasting phase after applying the new controller in 

equation (27). The new controller in (27) containing the 

positive controller in (28) and the estimated meal to cancel the 

effect of the meal intake. As a result, the new controller 

reduces the effect of the meal intake on the system in equation 

(6). While preserving the good propriety of the fasting 

controller [16].  

The controller in equation (26) is composed of  ����  ≥ 0 

and |r9, 9' , 9� s , is prevented both hypoglycemia and 

hyperglycemia completely.  The derivative of meal intake 

isn't always positive. As a result, the control action cannot be 

guaranteed to remain positive for all times. Therefore, the 

next section will demonstrate a switching operation that 

results in a hybrid positive controller. The second derivative 

of meal intake is calculated numerically by Matlab Simulink 

in this study. 

G. Switching Operation 

Switching control is a term used to describe time-

dependent optimal control problems with a vector-valued 

control system in which only one variable should be active at 

any given time [24]. Switching control theory is used in multi-

objective control systems to solve regulation and safety 

control problems; figure (2) illustrates the architecture of a 

multi-controller [25]. 

 

 
Fig. 2  Architecture of multi-controller 

 

The main goal of this activity is to keep the system 

trajectory within the PIS. As discussed in the previous section, 

there are no guarantees that the controller 
���� in (27) will 
remain positive at all times. As a result, there's a chance that 

the system trajectory will leave the PIS. As a result, switching 

operations must be performed between the new controller 
���� in equation (27) and the original controller 
]��� =F. x�t�, which is positive, in equation (7). This ensures that the 

state trajectory stays inside the PIS. The switching operation 

is based on the condition that before the new controller's value 

drops below zero (negative control), the control is 

automatically switched to the controller in the previous 

position in (7). 

 
���� = �
����            ; "� 
���� ≥ 0
]���           ; "� 
���� � 0  (31) 

Where, 
���� the switching control or the hybrid control. 

 

Appendix A  

Appropriate selection of { and e are obtained according to 

Eq. (15) and inequality (17). The SMO gain e is set equal to 

(Eq. (17)) ),[ the max bound on the disturbance meal as max |9| ≤ 2P; 
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e = e^ + supu  9���= 0.2 + 1.1372= 1.3372 � (32) 

Now set the maximum estimation error to 

0.1 in inequality (17) yield; 

 

|}��� − || ≤ (q~ tan y(� supu  9���
0.1 = (q4∗~ tan y(� supu  9���

⇒ { = (��.�� tan y(∗&.))�( ∗ 1.1372{ = 5.8298 ⎭⎪
⎬
⎪⎫

  (33) 

 

Appendix B 

For the new hybrid controller, a Luenberger observer is 

used to estimate the insulin states �(, �): 

 �]' = ��¡ + 	
]��� + ¢�r�] − �]ls (34) 

The observer gain matrix L was generated using the pole 

placement method with the following poles: 

 £¤ = − f10¥  &/0   &/0$ , that resulted in relatively fast 

convergence. 

III. RESULTS AND DISCUSSION  

This section compares the performance of the control 

strategies, taking into account the rejection of unannounced 

meal disturbances, the percentage of time spent within and 
outside the normoglycemia region, hypo and hyperglycemic 

incidents, and so on.  

Lehmann and Deutsch [26] presented the function as a 

disturbance meal as in Fadhel and Raafat [27]. It gives a 

Gaussian shape meal operation, as shown in figure (3) 

 9��� = f�uX5 $ ¦§U¨55©5ª
  (35) 

Where �"M¦ � is in �min� and 9��� is in �Mk/¬­. M"NO& ) , M denoted the quantity of the carbohydrate in the meal f�RST $, 

and �� = 80� is the constant value taken from Lehmann and 

Deutsch [26]. The ASMPO parameters are listed in table (1), 

[see appendix A]. 

TABLE I 
ASMPO PARAMETERS 

Parameter Value Unite 

K 1.3372 ------- ®& 0.08 min 

 
Figure (3) displays the chatter elimination result using the 

Approximated Sliding Mode Observer ASMO. 

Note that BGC1 means, blood glucose concentration under 

fasting phase positive state feedback controller. BGC2 means 
the blood glucose under a postprandial positive hybrid 

controller. 
����  means the positive hybrid controller, 

switched controller means a positive controller that the new 

postprandial controller switched to it when it has a negative 

action, and 
]���is the fasting phase positive state feedback 

controller. 

 
Fig. 3  Meal estimated using ACSMO 

 
For the fasting phase equation (5), with 9��� = 0 . The 

conventional positive state feedback controller steering 

glucose concentration (G= �]& + 3` � to normal zone as fast 

as possible as shown in figure (4). While preventing 

hypoglycemia occurrence. This is true for patient 1. The 

virtual patient parameters are given in [18], where θ( =10.78, .) = 122 min  , with initial glucose concentration  f3�0� = 140 ;<=° $. 

 

 
Fig. 4  Closed-loop response for all patients in the fasting phase 

 

A 1-day virtual protocol taken from Sereno et al. [19] is 

used to evaluate the control strategies' effectiveness. Assume 
that the patients are given a different starting level of BGC at 

00 hours and that the control loop is then closed. The patient 

took a breakfast (40g) of glucose at 7:00h, lunch (50g) at 

13:00h, and dinner (70g) at 21:00h. After 24 hours, the virtual 

scenario ends. This scenario is shown simultaneously in 

figure (5-a) after meal estimation, under the new and 

conventional controller, and the control action for this process 

is also shown in figure (5-b). The hybrid controller 
���� 

gives an adequate action (depending on the ASMPO accuracy 

estimation) that reduces the effect of the meal and keeps BGC 
in the normal zone. In contrast to the conventional positive 

state feedback controller 
]��� . The state feedback gain is 

designed as; K = 0.05 [18]. The 
���� remain positive for this 

scenario. Thus, the switching operation is not activated.  

Figure (6) shows the Luenberger observer result for the 

insulin subsystem �(, �). See that the initial starting point for 

the original state and estimated state are different. This is due 

Patient3 

Patient4 

Patient5 

Patient2 

Patient1 

Meal D(t) 

Estimated 

meal 
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to the fact that the original state is unknown. Therefore, the 

starting point is chosen arbitrarily. [ see Appendix B]. 

 

 

Fig. 5  Virtual protocol response for patient 1 a-BGC and b-control action 

 

Fig. 6  Luenberger Observer behavior: insulin states and their estimation in 

closed-loop 

 

The same scenario is repeated to patient 2 with initial glucose 

concentration f3�0� = 70 ;<=° $  and .( = 10.0634, .) =58.5 M"N . Figure (7-a), shows the glucose concentration 

behavior, and figure (7-b), shows the control action behavior. 

 

 
Fig. 7  Virtual protocol response for patient 2 a-BGC and b-control action 

 

The figures below show the response behavior for the other 

three patients with the same protocol scenario. the 

information for each patient is listed in the caption of the 

figure. 

 

Fig.8  Virtual protocol response for patient 3 with f3�0� = 100 ;<=° $, .( =17.0154, .) = 88 M"N 

 

Fig. 9  Virtual protocol response for patient 4 with f3�0� = 150 ;<=° $, .( =45.22, .) = 74 M"N 

 

 
Fig. 10  Virtual protocol response for patient 5 with f3�0� = 240 ;<=° $, .( =83.079, .) = 70 M"N 

70g 50g 
40g 

70g 50g 
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70g 50g 40g 
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���� 
]��� 
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control 


���� 
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control 


���� 
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X3 X3, 

estimated 

X2, 

estimated 

199



The results for the five T1DM patients show that the hybrid 

controller reduced the effect of disturbance meal at any time. 

It is preventing both hypos and hyperglycemia episodes. 

Moreover, it is keeping the system inside the PIS with positive 

action. The -tables below illustrate the statistical results for all 

patients with the two controllers. 

TABLE II 

STATISTICAL RESULTS WITH 
]��� 

BGC 

mg/dl 

    

Pat.1 Pat.2 Pat.3 Pat.4 Pat.5 Avg. 

<80 0% 0% 0% 0% 0% 0% 

80-120 10% 16% 17% 19% 14% 15.2% 

120-140 23% 30% 22% 20% 24% 23.8% 

140-180 36% 30% 33% 28% 32% 31.8% 

>180 31% 24% 28% 33% 30% 29.2% 

TABLE III 

STATISTICAL RESULTS WITH 
���� 

BGC 

mg/dl 

    

Pat.1 Pat.2 Pat.3 Pat.4 Pat.5 Avg. 

<80 0% 0% 0% 0% 0% 0% 

80-120 69% 79% 76% 82% 85% 78.2% 

120-140 26% 11% 14% 10% 10% 14.2% 

140-180 3% 4% 5% 6% 2% 4% 

>180 2% 6% 5% 2% 3% 3.6% 

 

In table (II & III) the initial point was taken into account. 

The conventional positive state feedback controller success in 

preventing hypoglycemia events only. It is failed in 

preventing the risk of hyperglycemia. The percentage of 

glucose concentration in the range (80-120 g/dl) overall 

patients (15 % of simulation time), while in the range over 
180 mg/dl (30% of simulation time). 

The hybrid positive controller success in preventing both 

hypoglycemia and hyperglycemia. The overall percentage of 

glucose concentration in the safe zone (80-120 mg/dl) for all 

patients (75 % from the simulation time), and (16% of the 

time) in the range (120-140 mg/dl). Also, it is good to note 

that the percentage of glucose concentration below 80 mg/ dl 

is (0%). For all patient responses, the control action (insulin 

injection) remains positive for all times. This is due to the 

technique of the hybrid controller. 

IV. CONCLUSION  

A previous design positive state feedback controller is 

developed in this work to include meal effect estimation. The 

postprandial controller reduces the meal effect to prevent 

hyperglycemia, which was the main drawback of the previous 

positive controller. This development depends on meal 

disturbance estimated using SMPO and included in the 

control law (controller and disturbance in the same channel) 

such that the meal effect is canceled and hyperglycemia is 
prevented. Also, a Luenberger observer is used to estimate 

unmeasured system states that need in the feedback control.  

This postprandial control law does not guarantee positivity; 

thus, a hybrid controller is designed. Therefore, whenever the 

new postprandial controller has a negative action, the hybrid 

controller switches to the original fasting phase positive state 

feedback controller. The overall hybrid controller is positive, 

and the system remains inside PIS. From the simulation 

results, the new hybrid positive controller has the advantages 

of the previous design, avoiding hypoglycemia (average 

percentage of glycemia below 80mg/dl is 0%), and the new 

achievement prevents hyperglycemia (average percentage 

glycemia over 180mg/dl is 3.6%). In the end, to complete the 

design. It would be appropriate to test controller robustness 

against parameter change. 
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