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Abstract—We examined the first-order application of the generalized space-time autoregressive GSTAR (1;1) model. The 

autoregressive model was used and was performed simultaneously in multiple drill-hole locations. The GSTAR model was applied to 

data with absolute time parameter units, such as hours, days, months, or years. Here a new perspective on modeling space-time data is 

raised. We used the relative time parameter index as a discretization of the same drilling depth of mineralization through a porphyritic 

deposit. Random variables were the copper and gold grades derived from the hydrothermal fluid that passed through the rock fractures 

in a porphyry copper deposit in Indonesia. This research aims to model the vertical distribution of copper and gold grades through 

backcasting the GSTAR (1;1) model. Such results could help geologists to predict copper and gold grades in deeper zones in an ore 

deposit. Two spatial weight matrices were used in the GSTAR (1;1) model, and these were based on a Euclidean distance and kernel 

function. Both weight matrices were constructed from different perspectives. The Euclidean distance approach gave a fixed weight 

matrix. Meanwhile, the kernel function approach gave the possibility to be random since it is based on real observations. It is obtained 

that the estimated (in-sample) and predicted (out-sample) kernel weight approach was accurate. Copper and gold grades data could 

recommend the GSTAR (1;1) model with a spatial kernel weight for modeling the vertical continuity case. 
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I. INTRODUCTION

Hydrothermal alterations are mineralogical changes and 

compositions in rocks interacting with hydrothermal fluids. A 

hydrothermal fluid is a hot liquid derived from the earth's 

crust and moves upward with the components of the ore 

mineral. Hydrothermal fluids can be derived from magmatic, 

meteoric, or mineral-connated liquid that is produced during 
metamorphism and becomes hot inside the earth [1], [2]. 

Hydrothermal alteration is closely associated with 

mineralization because a typical primary mineralization will 

characterize a certain type of alteration. Mineralization is the 

process of forming minerals in the body of the rock and is 

caused by a magmatic process. Hydrothermal alteration is one 

of the processes that can cause mineralization. Hydrothermal 

fluid interacts with rock past which it moves, and carries 

anions or cations from these rocks, which can bind mineral-

forming compounds. During cooling, the fluids become 

saturated and later form mineral deposits that can bear ore or 

metal-containing minerals, such as copper, gold, silver, and 

molybdenum [3]. This mineralization process also relies on 

porphyry precipitation [4], [5]. Geological modeling aims to 

interpolate unobserved locations to locate exploration targets. 

For example, a porphyry exploration target deposit is based 

on metallic zonation [4]–[6]. Modeling is used to predict 

particular locations (laterally) and to predict subsurface 

(vertical) composition. In fact, a prediction of the mineralogy 
in deeper zones is important to locate exploration targets and 

determine the possibility of significant metal grades in these 

zones. 

The formation of subsurface mineral deposits meets the 

superposition principle of mineralization where the lower 

zone is older than the upper zones because the hydrothermal 
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fluid moves upwards. In the presence of hydrothermal 

alteration, a measure (data) can be obtained, one of which is 

the copper (Cu) and gold (Au) grades as determined from an 

analysis of the drill-core sample. By considering the depth as 

an index of time parameters and the number of drilling 

locations as an index of location parameters, the Cu (in %) 

and Au (in ppm) grades can be modeled in a stochastic process. 

A stochastic process of state space with an index of time and 

location parameters was analyzed by space-time analysis. The 

well-known linear space-time model was the space-time 

autoregressive (STARMA) model [7], [8]. One such model is 
the STAR model, which has the same autoregressive (AR) 

parameter for each location. A generalized model was 

developed to accommodate diversity among locations and 

was termed the generalized space-time autoregressive 

(GSTAR) model [9]. 

Suppose a stochastic process ���(�)� exists that represents 

an observation at location-i, where� = 1,2, . . . , �, and at time-

t, where� = 1,2, . . . , �. N represents the number of locations 

(spatial) and T represents the number of observations with 

time. This process follows the GSTAR(�; ��, ��, . . . , ��) 

model. It represents the autoregressive terms lagged in the p-

th order in time and the order of  (��, ��, . . . , ��) in space. If 

the column vector �(�) = (��(�), ��(�), . . . , ��(�))′  can be 
presented as: 

 �(�) = ���(� − 1) + ���(� − 2) + ⋯ + ���(� − �) + "(�)  (1) 

where#�, #�, … , #� are parameter matrices that define 

 �% = �%& + ∑ �%ℓ((ℓ))*
ℓ+&   

and ,(�) = (-�(�), -�(�), . . . , -�(�))′ .  

The matrices #%ℓ  and .(ℓ) define the autoregressive 

parameter matrix in the time lag k, spatial lag ℓ and the weight 

matrix on the spatial lagℓ. The simplest GSTAR model class 

is GSTAR (1;1), which assumes a time order � = 1 and a 

spatial order �� = 1. Based on Eq. (1), the model GSTAR 

(1;1) was formulated as: 

 �(�) = ���(� − 1) + "(�)  (2) 

in which #� = #�& + #��.and .(�) = . . We used the 
GSTAR (1;1) model to model the case study because it is 

based on a close location and time interval, i.e., 2 meters, 

therefore, this model can still represent the data. 

The GSTAR model applications have been used in varied 

applications, such as to model tea plantation production [9], 

[10]), the Gamma ray log [11], the Covid-19 data [12], [13], 

and the coffee borer beetle attacks[14]. This research used 

GSTAR to model the space-time data of the Cu and Au grades. 

Because hydrothermal fluid flowed from the deeper zone 
upward through the wallrocks, the time parameter was the 

depth of mineralization. The deeper mineralization became 

the starting time (elder), and the younger time [1] was that 

moving upward through the upper mineralization. This 

application is novel in space-time modeling research, 

especially when using the GSTAR model. This method used 

to model the vertical continuity of Cu and Au grades in a 

porphyry deposit in Indonesia and would enable geologists to 

predict Cu and Au grades in unknown deeper deposit zones. 

 

II. MATERIALS AND METHODS 

This section explains the comprehensive theoretical basis. 

The first subsection explains the general geology of 

porphyritic copper deposits. The second subsection 

introduces the generalized space-time autoregressive model. 

 

 
Fig. 1  Conceptual model of hydrothermal deposit system [15] 

A. Porphyritic copper deposit 

The porphyry deposit was derived originally from an acid-

intermediate intrusion, which occurs in contact with the wall 

rocks that produce mineralization. The main porphyry deposit 

product was a Cu-Au or Cu-Mo mineralization. Porphyry 

deposits were formed from several intrusion activities 

consisting of a collection of dike and intrusion breccia. The 
mineralization that resulted from alteration occurred as 

disseminated and stockwork ores. The alteration occurred 

intensively and extensively through the hostrock from 

hydrothermal fluids. Mining methods for such deposits 

commonly include open pit mines because the porphyry 

copper deposits tend to be large. Low to medium copper 

grades tend to be <1% Cu, whereas if the copper is combined 

with other elements, the Cu levels range from 0.6% to 

0.9%[15]. 

Fig. 1 provides a conceptual model of a hydrothermal 

deposit system in which the presence of a porphyritic deposit 

is associated with a low sulphidation vein and a high 
sulphidation massive sulphide lode. Spatial and temporal-

related relations with subduction may affect the rock 

characteristics in porphyry copper deposits. Therefore, 

subduction played a major role during the formation. This 

process always occurred in calc-alkaline to alkaline igneous 

rocks and resulted in a variation in the concentrations of 

metals. The chemical variations of intrusions showed that the 

most likely source of metals originated from the igneous rocks 

[15]. 

The porphyry deposit used in this study is located in North 

Sulawesi, Indonesia. According to [16], the geology at study 
site is dominated by the product of volcanic activity and 

intrusion. Intrusion rocks at this study site included quartz 

diorite to diorite that intruded the volcanic rock formation, 

and the mineralization was associated with intrusion rocks. 

The hydrothermal alteration was developed strongly with 
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types of stockwork silica K-silicate (quartz, magnetite, biotite) 

that were overprinted by moderate argillic (sericite, illite, 

chlorite), and then replaced by advanced argillic alterations 

(vuggy silica, alunite, kaolinite, some native sulfur). The local 

geology of the study site is depicted in Fig. 2. 

B. Generalized Space-time AR Model 

 If we consider a stochastic process ���(�)� in which� =1, . . . , �, � = 1, . . . , �, T represents the number of observations 

in time and N represents the number of locations (spatial). The 

first order of GSTAR (1;1) model is given by[10]: 

 ��(�) = /&���(� − 1) + /�� ∑ 0�1�1(� − 1) + -�(�)�1+�  (3) 

where ��(�) is the observation at time t in location i, /&� and /�� represent autoregressive parameters for time and location, 

respectively, 0�1

 

is the spatial weight, and -�(�)
 
is the model 

error at time t in location i. As an illustration, assume that ��(�) represents the Cu grades in drill-hole-i at a relative time-

t. The relative time t was obtained by discretizing the depth 

with the same intervals. Therefore, the Cu grade in the deepest 

zone will be the first observation in drill-hole-i, termed��(1), 

and the Cu grade in the top zone (nearest the plant view) will 

be the last observation in drill-hole-i, termed��(�). If ��(�) 

Following the GSTAR (1;1) model, the Cu grades in drill-

hole-i at a relative time-t will be influenced by the Cu grades 

in the previous (lower) zone of the same drill-hole and the 

nearest-neighbor drill-holes. 

The spatial weight matrix with element 0�1  is nonzero at a 

measurement of different locations� ≠ 3. The uniform weight 

is defined as0�1 = �45 , in which 6� denotes the number of 

locations i. This weight gives the same values for all elements 

in the same row, except for the main diagonal, and these 
values are influenced by the number of locations within an 

observed spatial lag. The binary weight has a value of 0 and 1 

in each row, except for the main diagonal, which is 0. The 

value 1 represents that location j that gives the greatest weight 

(dominant) to location i. The spatial weights as based on 

Euclidean distances (7�1) is defined as 0�1 = 859∑ 85:;:<= . 
The three spatial weights are given (fixed) and subjective. 

We introduced a new method to construct the spatial weight 

matrix. This method uses observed data that becomes the 

domain of the kernel function. Usually, the kernel functions 

were used to estimate the probability density function and 

regression function. Research on the kernel has been 

investigated ([17]–[20]). In this paper, we propose a new 
approach to determine the spatial weight matrix of the 

GSTAR (1;1) model by using a kernel function ([20], [21]). 

The obtained spatial weights may be random (they depend on 

an observed value) and are no longer subjective in this 

research. By using the mean value of each location�� , the 

location weights j to i can be written as: 

 0�1 = %>?5@?9
ℎ

A
∑ %>?5@?ℓ

ℎ
A;

ℓ<=
ℓB5

  (4) 

where h is the bandwidth that controls the smoothness level 

and k is the kernel function. 

The parameter of estimation of GSTAR (1;1) will be 

modeled by the least-squares method. The following equation 

represents the linear regression of the GSTAR (1;1) model. 

For � = 1,2, . . . , �, a GSTAR (1;1) model can be expressed 
simultaneously as the following linear model: 

 � = C� + " (5) 

The response vector � = (��, ��, . . . , ��)′
 
in Eq. (5) with 

elements �� = (��(1), . . . , ��(�))′   for � = 1,2, . . . , �  has a 

size of(�� × 1).  

 
(a) 
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(b) 

Fig. 2  The location of five drill-holes that contained Cu (black) and Au (red) grades in (a) plan view and (b) cross-section of DD07, DD19, and DD23. The 

location coordinates of this study were close together, therefore a first order of spatial lag can be represented, and the GSTAR (1; 1) model was used. 

 

The explanatory matrix F = 7�GH(F�, F�, . . . , F�)  is a (�� × 2�) -block diagonal matrix that is defined as: 

 C� =
⎝
⎜⎛

��(0)         ∑ 0�1�1(0)1∈N5��(1)       ∑ 0�1�1(1)1∈N5⋮ ⋮��(� − 1) ∑ 0�1�1(� − 1)1∈N5 ⎠
⎟⎞  (6) 

Parameter # = (S�, S� , . . . , S�)′
 
is a (2� × 1)  -vector 

with S� = (/&� , /��)′ . Furthermore, error vector , =(,�, ,�, . . . , ,�)′  is a (�� × 1)  -vector with ,� =(-�(1), -�(2), . . . , -�(�))′. Therefore, parameter #
 
in Eq. (5) 

can be estimated through the least-squares method.  

The next step was to validate the model by using the 

inverse of the Auto-covariance Matrices (IAcM) approach 

and a residual test. This stage was used to show the stationary 

GSTAR (1; 1) model through IAcM that would look for 
linkages between the sums of the residual squares and IAcM. 

Then, each IAcM element was established as an explicit 

function of the model parameter. The estimation and 

validation of the procedure were done using the inverse of the 

IAcM approach which has been discussed extensively by 

previous studies [9], [20]. The performance of the generalized 

space-time model with its spatial weights was tested via a 

normality test, and a root mean squares error (RMSE).  

III. RESULTS AND DISCUSSION 

We applied the GSTAR (1;1) model to Cu and Au grades 

from five drill-holes (Fig. 2(a)). By discretizing the depth with 

the same interval of 2 m, an index of time parameters was 

established as a function of depth. The same relative time was 

set for each drill-hole based on the same lithology as shown 

in Fig. 2(b). For the Cu (as a random variable denoted��(�)) 

and Au (as a random variable denotedT�(�)) grades at an 

unobserved depth for drill-hole DD23 with the support of 

other drill-holes (i.e., DD07 and DD19).  

Geologists use common modeling to interpolate 

unobserved locations. For example, in Fig. 2(a), the metal 

grade was predicted between DD37 and DD23. In this 

modeling, we introduced a new breakthrough with the 

concept of a time series and location dependence to predict 

the unexamined borehole that is based on Cu and Au grade 

data (i.e., ��(�)  andT�(�) ) (Fig. 2 (b)). The possibility of 
unexamined metal grades in the deeper drill-holes is essential 

to exploring the substantial potential of the mineral deposit. 

By assuming the existence of location dependence, each depth 

from the lower to the upper zones is considered as a relative 

time, and therefore, space-time modeling for back-casting 

purposes can be conducted. 

The data set consisted of Cu and Au grades with a depth 

cut off up to 50 m for each drill-hole (location) is described in 

Fig. 2. This dataset contained 53 observations for five 

locations (Fig. 3). For back-casting extrapolation purposes, 

the data were grouped into in- and out-sample data. In-sample 
data were the first 50 observations used for model 

development, and out-sample data were the last three data 

used to compare the back-casting performance. The initial 

GSTAR (1;1) step was to inspect the stationary data visually 

and the data mean and variance were not stationary. Therefore, 

a transformation through differentiation was essential (Fig. 3). 

This differentiation was carried out by reducing the current 

observation with the previous observation (Yi(t)-Yi(t-1)). 

From the differentiation, the mean became constant, but the 

variance did not. Because the variance did not occur 

constantly during a very short time, we assumed that the data 
were stationary against the mean and variance. 
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Fig. 3  (a) Plot of Cu grades and their differences, and (b) plot of Au grades and their differences. The data appear to be stationary against the mean and thus were 

assumed to be stationary for the variance. 

TABLE I 

LEAST-SQUARES ESTIMATORS AND SIGNIFICANCE TEST FOR THE GSTAR(1;1) PARAMETERS. 

Data Type of 

spatial 

weight 

Estimation of AR parameters in time 

term 

Estimation of AR parameters in spatial 

term /U�& |�W | CI 95% /U�� |�W| CI 95% 

Cu Based 

distance 

weight 

0.012 

-0.012 

0.027 

-0.050 

-0.058 

33.45 

41.76 

85.79 

45.49 

18.71 

[-0.046, 0.070] 

[-0.060, 0.035] 

[0.005, 0.049] 

[-0.096, -0.005] 

[-0.169, 0.053] 

-0.020 

0.026 

-0.063 

0.006 

-0.033 

30.03 

20.88 

17.92 

25.64 

29.42 

[-0.086, 0.047] 

[-0.065, 0.118] 

[-0.179, 0.053] 

[-0.070, 0.082] 

[-0.103, 0.035] 

Gaussian 

Kernel 

weight 

0.015 

-0.013 

0.028 

-0.050 

-0.055 

51.95 

63.84 

131.56 

69.74 

28.43 

[-0.022, 0.052] 

[-0.044, 0.018] 

[0.033, 0.131] 

[-0.079, -0.020] 

[-0.130, 0.018] 

-0.025 

0.082 

-0.150 

-0.004 

-0.020 

55.68 

36.59 

34.47 

61.32 

72.18 

[-0.061, 0.011] 

[0.0097, 0.0014] 

[-0.214, -0.083] 

[-0.036, -0.028] 

[-0.048, 0.008] 

Au Based 

distance 

weight 

-0.019 

0.021 

-0.039 

0.020 

-0.035 

50.91 

32.46 

99.40 

81.99 

80.62 

[-0.058, 0.020] 

[-0.038, 0.080] 

[-0.060, -0.019] 

[-0.003, 0.044] 

[-0.095, 0.014] 

0.018 

-0.015 

0.059 

-0.039 

-0.040 

40.21 

44.95 

32.11 

39.21 

37.39 

[-0.030, 0.066] 

[-0.060, 0.029] 

[-0.002, 0.117] 

[-0.091, 0.013] 

[-0.095, 0.014] 

Gaussian 

Kernel 

weight 

-0.017 

0.021 

-0.037 

0.021 

-0.034 

93.88 

59.75 

184.05 

150.92 

147.51 

[-0.038, 0.0044] 

[-0.011, 0.053] 

[-0.048, -0.026] 

[0.008, 0.034] 

[-0.048, -0.020] 

-0.0034 

-0.0088 

0.017 

-0.030 

-0.042 

78.74 

94.02 

115.14 

120.36 

61.41 

[-0.022, 0.028] 

[-0.030, 0.012] 

[0.00007, 0.034] 

[-0.046, -0.013] 

[-0.075, -0.008] 

After transforming the data, the next step was established 

as a spatial weighting matrix. In this study, we used the spatial 

matrix that was based on the distance and Gaussian kernel 

function. The Gaussian kernel function was defined as: 

 X(Y) = �
√�[ \Y� ]− ^_

� `  (7) 

Based on the distance weight, .8�ab, we used the same spatial 

matrix for Cu and Au grades, but Gaussian kernel spatial 

weight differed from the following matrix: 

From the spatial weight matrix based on distance, the 

distance of DD19 to DD57 was closest, whereas the distance 

of DD07 to DD37 was furthest. This weight matrix was the 

same for the Cu and Au grades because each drill-holes 

produced Cu and Au grades together. The spatial weight 

matrix through the Gaussian kernel produced different weight 

matrices for the Cu and Au grades. This occurred because the 

determination of the kernel weight matrix is based on the data 

of each observation for Cu and Au. In DD07, the Cu grade 

was almost similar to the data in DD19, whereas the most 

dissimilar Cu grade occurred between DD07 and DD37. This 

condition was similar to the weight matrix through the 

distance for the last weight. Similar Au data existed in DD23 
to DD37, whereas the most dissimilar data occurred between 

DD19 and DD23 and DD19 and DD37. Consequently, a large 

significant difference existed for the size of the proximity 
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between the weight matrix based on distance with the 

Gaussian kernel. 

The next step was estimating the parameters using the 

least-squares method for the GSTAR(1;1) model [10]. Per the 

procedure described in the before section, the least-squares 

estimator for each spatial weight matrix GSTAR (1;1) model 

was obtained (see Table 1). If we consider a null hypothesis c&: /U%ℓ = /%ℓ, and an alternative hypothesis c�: /U%ℓ ≠ /%ℓ, 
then the statistics test is: 

 �W = fg:ℓhf:ℓ

ijkl(fg:ℓ)  
which follows the t-distribution and degree of freedom, n =�(� − 2). oGp(/U%ℓ) represents the corresponding diagonal 

element of the matrix q�(F′F)h� . For any level of 

significance r < 10%, the null hypothesis c& was rejected, 

i.e., |�W| > �v/�,x . The confidence interval, /%ℓ is defined by:  

/U%ℓ − �v/�,xioGpy (/U%ℓ) ≤ /%ℓ ≤ /U%ℓ + �v/�,xioGpy (/U%ℓ)The 

hypothesis test of the AR estimator significance resulted in 

large t-statistics for all parameters, which implied very small 

p-values. In this case, the null hypothesis was rejected. We 

conclude that all estimated parameters were significant. In 

addition, the diagnostic test through the eigenvalues of a 

parameter matrix gave absolute values of less than one, and 

IAcM yielded positive values for all principal sub-

determinants. Based on [20], both approaches gave the same 

conclusion that the data were stationary. 

    The modeling results for the Cu and Au grades based on the 

distance weight are as follows, respectively: �g(�) = {S�&(|)8�ab + S��(|)8�ab.8�ab}�(�-1) and  �g(�) = {S�&(�)8�ab + S��(�)8�ab.8�ab}�(�-1) 

 

where 

S�&(|)8�ab =
⎝
⎜⎛

0.01 0 0 00 −0.01 0 00 0 0.03 00 0 0 −0.05
     0     0     0     0   0            0         0         0 −0.06⎠

⎟⎞ , S��(|)8�ab =

⎝
⎜⎛

−0.02 0 0 00 0.03 0 00 0 −0.06 00 0 0 0.01
     0     0     0     0   0            0         0         0 −0.03⎠

⎟⎞,  

S�&(�)8�ab =
⎝
⎜⎛

−0.02 0 0 00 0.02 0 00 0 −0.04 00 0 0 0.02
     0     0     0     0   0            0         0         0 −0.04⎠

⎟⎞, 

S��(�)8�ab =
⎝
⎜⎛

0.02 0 0 00 −0.02 0 00 0 0.06 00 0 0 −0.04
     0     0     0     0   0            0         0         0 −0.04⎠

⎟⎞, and 

.8�ab =
⎝
⎜⎛

0 0.26 0.30 0.120.19 0 0.20 0.210.25 0.23 0 0.180.13 0.33 0.25 0
 

0.320.400.340.290.21 0.36 0.26 0.17 0 ⎠
⎟⎞. 

The results for the modeling of Cu and Au grades with a 

Gaussian kernel weight are as follows, respectively: �g(�) = {S�&(|)�k�aa + S��(|)�k�aa.�k�aa}�(�-1)  
and �g(�) = {S�&(�)�k�aa + S��(�)�k�aa.�k�aa}�(�-1) 

where 

S�&(|) �k�aa =
⎝
⎜⎛

0.02 0 0 00 −0.01 0 00 0 0.03 00 0 0 −0.05
     0     0     0     0   0            0         0         0 −0.06⎠

⎟⎞ , 

S��(|) �k�aa =
⎝
⎜⎛

−0.03 0 0 00 0.08 0 00 0 −0.15 00 0 0 0.01
     0     0     0     0   0            0         0         0 −0.02⎠

⎟⎞,  

S�&(�) �k�aa =
⎝
⎜⎛

−0.02 0 0 00 0.02 0 00 0 −0.04 00 0 0 0.02
     0     0     0     0   0            0         0         0 −0.04⎠

⎟⎞, and 

.�k�aa =
⎝
⎜⎛

0 0.84 0.10 0.010.74 0 0.15 0.030.06 0.10 0 0.360.01 0.02 0.44 0
 

0.050.080.480.530.03 0.05 0.48 0.44 0 ⎠
⎟⎞. 

 

A plot of the estimation model and the original data are 

given in Fig. 4. Fig. 4 shows the fitting results of the Cu and 

Au grades as calculated from the GSTAR (1;1) model based 

on distance and Gaussian kernel weight. The red line 

represents the results as computed by the GSTAR (1;1) model, 

and the black line represents the original data. These results 

show that the pattern in the GSTAR (1;1) model is similar to 

the original data. Table 2 shows the GSTAR (1;1) model with 

a kernel spatial weight that has a smaller RMSE than the other 

spatial weights. As a result, the new kernel spatial weight 

method was chosen as the best approach. The last step was 
checking the RMSE and Shapiro -Wilk test of the residual as 

summarized in Table 3. The errors have an independent and 

identical normal distribution for the confidence interval 5%. 

TABLE II 

COMPARISON OF RMSE VALUES OF ESTIMATION RESULTS FOR EACH DRILL-
HOLES AND GSTAR (1;1) MODEL. 

Data Method DD07 DD19 DD23 DD37 DD57 

Cu GSTAR 

(1;1) 

distance 

0.2526 0.2718 0.3796 0.3277 0.2588 

GSTAR 

(1;1) kernel 

0.1397 0.1760 0.3030 0.2122 0.0913 

Au GSTAR 

(1;1) 

distance 

0.1922 0.1720 0.2659 0.2055 0.2246 

GSTAR 

(1;1) kernel 
0.0789 0.0354 0.1764 0.0917 0.1439 
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(a) (b) 

 

Fig. 4  Original data (black line) and estimations (red line) for each drill-hole. The estimation appears to follow the original data, where (a) modeling is based on 

the distance spatial weight, and (b) modeling using Gaussian kernel weight. 

TABLE  III 

P-VALUE OF DIAGNOSTIC TEST USING THE SHAPIRO-WILK NORMALITY TEST 

Data Method DD07 DD19 DD23 DD37 DD57 

Cu GSTAR 

(1;1) 

distance 

8.161 

x 10-7 

5.25 x 

10-4 

3.112 x 

10-12 

1.78 x 

10-3 

3.67 x 

10-1 

GSTAR 

(1;1) 

kernel 

1.51 x 

10-6 

3.64 x 

10-4 

1.71 x 

10-11 

2.42 x 

10-3 

2.91 x 

10-1 

Au GSTAR 

(1;1) 

distance 

1.28 x 

10-6 

6.65 x 

10-3 

1.78 x 

10-3 

1.09 x 

10-6 

3.56 x 

10-2 

GSTAR 

(1;1) 

kernel 

1.22 x 

10-6 

2.18 x 

10-4 

2.09 x 

10-3 

1.66 x 

10-6 

3.63 x 

10-2 

 

The result from the GSTAR (1;1) modeling with a Gaussian 

kernel weight matrix was more accurate. The estimated 

parameter shows a significant result. The curve of estimation 

results is significantly close to the original value. For back-

casting goals, the best estimated model can be used to estimate 

Cu and Au grades in the lower zone. Because the data were 

confirmed as a stationary process, m-steps are required to 

predict the initial Cu and Au grades as defined, respectively, 

by: �U�(�) = Sg�&�U�(� + 1) + Sg��0��g(� + 1) and T��(�) =Sg�&T��(� + 1) + Sg��0T�g (� + 1). 
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(a) (b) 

Fig. 5 Comparison of back-casting results of GSTAR (1;1) model (a) based on distance weight, and (b) Gaussian kernel weight. The black curve represents 

original data and the red curve represents back-casting results. 

TABLE IV 

COMPARISON OF RMSE VALUES OF PREDICTION RESULTS FOR EACH DRILL-

HOLES AND GSTAR (1;1) MODEL. 

Data Method DD07 DD19 DD23 DD37 DD57 

Cu GSTAR 

(1;1) 

distance 

1.3564 1.4323 0.9375 1.0456 0.9295 

GSTAR 

(1;1) kernel 
1.1488 0.5120 0.1134 0.0121 0.0240 

Au GSTAR 

(1;1) 

distance 

0.8081 0.9809 0.8118 0.6922 0.6407 

GSTAR 

(1;1) kernel 
0.0556 0.0029 0.0952 0.0765 0.0627 

 

A comparison of back-casting results by using the three 

previous observations of the GSTAR (1:1) models is 

described in Fig. 5. From the back-casting results (out-sample 

data), the result for the GSTAR model with a Gaussian kernel 
weight was very accurate (see Table 4). This corresponds to 

estimated data (in-sample data) that were improved when 

using the distance weight matrix. Prediction results indicate 

that DD07 (West) and DD19 (South) potentially have a Cu 

grade continuity as the grades exceeded 0.5% Cu. The Au 

grade also indicated a similar continuity in DD19 (South). 

IV. CONCLUSION 

The fundamental characteristic of space-time modeling is 

the spatial weight matrix. We constructed a standard formula 

to determine the spatial weight matrix that is based on the 

sample observations data, by using the kernel function as a 

weight with the mean of the sample observed for each 

location (the drill-holes) as its domain. To prove the 

suitability of this new approach, two types of spatial weights 
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of the GSTAR (1;1) model were compared by using space-

time data of Cu and Au grades. The first type was fixed spatial 

weights, whereas the latter type was a random spatial weight. 

The kernel weight produced the best results. The kernel 

weight yielded accurate results in terms of parameter 

estimation (in-samples) and prediction (out-samples). This 

result represents a breakthrough in the determination of the 

spatial weight matrix through the kernel function approach. 

For Cu and Au grades data, the GSTAR (1;1) model with a 

spatial kernel weight could be recommended for modeling the 

vertical continuity. In geosciences, this modeling could be 
used as a quantitative analysis to predict the vertical 

continuity of any metal grades in any deposit types. 
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