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Abstract— Multiple linear interferences are a fundamental obstacle in many standard models. This problem appears as a result of linear 

relationships between two explanatory variables or more. Simulation results show that the generalized Liu regression model was the 

best and that the contraction parameter proposed was more efficient than the methods presented. As the error variance increases, the 

value (MSE) increases. When this problem exists in the data, the estimator of the ordinary least squares method will fail because one of 

the basic assumptions of the method has not been fulfilled. The normal least squares, which state that there is no linear correlation 

between the explanatory variables, will not get an estimator with the Best Linear Unbiased Estimator (BLUE) feature. The least-squares 

regression method and the generalized Liu regression method were compared by taking several methods for the generalized Liu 

parameters and selecting the best contraction parameter for the Liu regression model. The study aims to address the problem of 

multiple linear interferences by using the general Liu estimator and making a comparison between the methods for estimating the Liu 

parameter, where several methods were presented, and the best method for estimating the Liu parameter was chosen according to the 

standard of the sum of error squares as well as a comparison between these methods and the conventional method. Simulation results 

showed that the generalized Liu coefficient estimate was the best for having the lowest values (MSE) and that the best shrinkage 

parameter is (G4), the work-based approach. 
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I. INTRODUCTION

The regression analysis has become one of the most widely 

used statistical tools for multi-factor data analysis. It is 

desirable because it provides an easy and understandable 

method for investigating the semantic relationships between 

variables. The standard method in regression analysis is to use 

a sample of data to estimate the proposed relationship using 

statistics such as T, F, and R2. We applied regression analysis 

as a set of data analysis methods to help understand the 

internal relationships between a given set of variables. 

Multiple linear regression is the relationship between the 
interpreted variables and the dependent variable, and when 

the data is a normal distribution of the interpreted variables 

and the dependent variable [1], [2]. In linear regression, the 

ordinary least squares (OLS) estimator is used to estimate the 

unknown regression coefficients (LRM). The explanatory 

factors are believed to be unrelated to the LRM [3]. 

Nevertheless, a regular linear connection may discover that 

variables that lead to multicollinearity are the ones that must 

be explained; it is tricky [4]. 
The estimation theory is of great importance in practical 

applications. The main objective of any estimation process is 

to reach the best estimate of the unknown parameter among 

all possible estimations. Hence, the optimal method or the 

best formula for estimating the unknown parameter must be 

chosen. The estimation of the parameters of any regression 

model is an interpretation, and the relationship between the 

response variable and several explanatory variables is in a 

mathematical formula. There are several different methods 

for estimating the parameters of the general linear regression 

model. Autocorrelation or the problem of multicollinearity, as 
the estimation process differs from one case to another 

depending on the presence or absence of those problems that 

the model suffers [5]. 

2386



Many studies reported that the first to employ the term 

multicollinearity and give it a definition. If multicollinearity 

is present, the variance of the OLS estimates will be 

considerable, with an increased chance of erroneous wrong-

sign conclusions. The estimated confidence interval's 

regression coefficients are larger [6]. The risk of committing 

a type-II mistake has increased. Also, when multiple 

collinearities are present, OLS estimates from several LRMs 

cannot be trusted. The ML estimator has numerous sources of 

instability. Where a linear combination of the regressors fully 

predicts the dependent variable, a person may have an issue 
of separation. Many people talk about this issue, and it results 

in the elimination of the ML estimator. When the ML 

estimations are nearly flawless, the study results show that 

ML estimations might be unstable.  

The primary focus of this work is on a different source of 

instability: collinear regressors [6]. The matrix product XW is 

unconstrained and causes instability in the ML estimator, 

leading to a large variance. It is a widely used technique for 

dealing with multicollinearity. It is no secret that the vast 

majority of research for the linear model has been done and 

the well-known ridge regression estimator [7].  
The history of polylinearity can be traced back at least to 

the research presented by (Frisch) in 1934 AD. The principle 

indicates the existence of a linear relationship between two or 

more explanatory variables. The method that deal with this 

problem is the latter regression method. It was first introduced 

by Hoerl and Kennard in 1970 AD. The main interest at that 

stage focused on finding the value of the latter regression 

parameter that is symbolized by K. As the use of this method 

leads to a reduction of MSE, the variance limit of the 

estimator is greater than the increase in bias square. A new 

logit ridge regression parameter set was proposed. In this 
case, the estimated parameters are complex non-linear 

functions of the ridge parameter k, which range from zero to 

infinity [8]. Another estimator is another estimate with 

parameters that are linear functions of the shrinkage 

parameter d. The usage of the Liu estimator can be credited to 

the fact that it offers an advantage over ridge regression [9]. 

The general linear regression model is: � = �� + �  (1) 
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Whereas: u with a dimensional array (n x ҏ), � is a

dimensional vector (ҏ x 1) representing the unknown 

regression coefficients, � is a vector with a dimension (n x 1)

representing a random error where ���� = 0 , ����′� = �! and ! represent the unit array (n x n). The parameters �
are found using the least-squares (OLS) method according to 

the following formula [10], [11]: �" #$% = ��′��&��′� (2) 

II. MATERIALS AND METHOD

The problem of multilinearity may not constitute a 

worrisome case, as the goal of building the model is to predict 

the values of the dependent variable based on the values of 

the explanatory variables because the predictive values still 

have a high degree of accuracy, and the values of the 

coefficient of determination or the modified coefficient of 
determination measure well to what extent the model predicts 

the values of The dependent variable. 

However, suppose the goal of designing the multiple linear 

regression model is to find estimates for the parameters of the 

multiple linear regression model or to know the relative 

importance of the contribution of any of the explanatory 

variables to the variance of the dependent variable. In that 

case, the linear multiplicity is a serious problem facing the 

linear regression model, as it leads to the instability of the 

parameters of the regression model capabilities. Linearity and 

amplitude cause a sampling error for the estimators of the 
ordinary least squares method. Practically in regression 

analysis, researchers often encounter multicollinearity, where 

the problem of multicollinearity occurs when the explanatory 

variables are linearly related to each other.  

Moreover, this problem appears in the case of the tendency 

of the variables to move together with increase or decrease or 

in the case of using time-shifting variables (Lagged 

Variables). When there is a problem of multiple linear 

relationships, then applying the least-squares method leads to 

a problem of inflation in the variations of the estimated 

regression coefficients, and diagonal elements represent this 

inflation. For the (u'u), we use biased methods to eliminate 
this problem. There are two types of multiple linear 

relationships. First, the Perfect Multicollinearity here, the 

matrix of information is an incomplete rank, and the method 

of ordinary least squares cannot be applied, meaning that the 

regression coefficients cannot be found or determined. 

Second, the Semi-Perfect Multicollinearity occurs when the 

explanatory variables function in the same combination of 

other variables. Here, the information matrix (u'u) parameter 

is small or close to zero regression coefficients can be found 

or estimated.  

However, these estimates will be inaccurate. The reality of 
the problem being studied is not represented since the 

variations of the capabilities are very large [12]. There are 

several ways to detect linear plurality, including the 

Correlation Matrix, where Compute the correlation 

coefficients between any two explanatory variables. A high 

significant value of the correlation between two variables may 

indicate that the variables are collinear [13]. This method is 

easy, but it cannot produce a clear estimate of the rate of 

multicollinearity. Condition Number, where the correlation 

matrix's eigenvalues can also be used to measure the presence 

of multicollinearity. If multicollinearity is present in the 
predictor variables, one or more eigenvalues will be small. Let '�, '�, … , '� be the eigenvalues of the correlation matrix. The

condition number of the correlation matrix is (� = ')*+/')-� , If the condition number is less than 100, there is no

serious problem with multicollinearity, and if a condition 

number is between 100 and 1000 implies a moderate to strong 

multicollinearity.  

Also, if the condition number exceeds 1000, severe 

multicollinearity is indicated. In 1967, the two researchers 
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presented Ferrar and Glaube the variance inflation factor 

method, which is considered one of the basic and widely used 

methods for detecting the problem of multilinearity. It 

measures the extent to which the variances of the estimated 

regression parameters are inflated in the presence of a linear 

correlation between the explanatory variables. The diagonal 

elements of the inverse of the system information matrix are 

useful in revealing Polylinearity; the variance inflation factor 

can be found is VIF=(1-Hi)-1 , Where H is the coefficient for 

determining the regression model of the explanatory variable 

i on the remaining explanatory variables.  
Moreover, that its value is greater than or equal to one. The 

largest value of the variance inflation factor is often used as 

an indicator of unwanted polylinearity, and if its value 

exceeds 10, it is considered an indication of the possibility of 

an unacceptable effect of high polylinearity on the estimations 

of ordinary least squares. If there is a complete correlation 

between the independent variables, then the variance inflation 

factor goes to infinity. If one of the independent variables is 

perpendicular to the other independent variables, then the 

value of the inflation factor is equal to one [14], [15], [16]. 

Several studies were conducted on the general linear model to 
overcome this problem, where several methods were 

proposed to solve this problem. In 1993, Liu proposed a new 

estimator to overcome the problem of linear polymorphism, 

defined according to the following formula [17]:  �.$/ = ��′� + !�&���′� + 0!��. (3) 

Whereas 0 < 0 < 1 it is a known constant parameter

representing the bias parameter of the Liu estimator. �.
represent the ordinary least squares estimator. 

In 1995 Akdeniz and Kaciranlar proposed a new estimator 

(GL). It is defined as follows [19], [20]. 234$ =  �5 + !�&�6�∗′� + 823#$%9 234$=  �5 + !�&�6 523#$%+ 823#$%9 234$=  �5 + !�&�� 5 + 8�23#$% 234$=  �! − �5 + !�&�� ! − 8��23#$%
(4) 

Whereas: 8 = ;<=0�0-�,     �>?@ < 0- < @�>, where

in5 = �∗′�∗, �∗ = �A , V represents an orthogonal matrix

whose columns are eigenvectors corresponding to the Eigen 

roots of the information matrix ��′��and that the least squares

of�2� are given as follows:2B#$% =  ��∗′�∗�&��∗′ � (5) 

Moreover, the expected value, the amount of bias, the 
variance matrix, and the mean square error matrix of an 

estimator are shown in the following equations [19], [21] : �234$ = 6! −  �5 + !�&�� ! − 8�9�23#$% �234$= 6! − �5 + !�&�� ! − 8�92 (6) 

C<=D�234$� = �6234$ − 29  C<=D�234$� = 6− �5 + !�&�� ! − 8�9  (7)

�=?6234$9 = 6! − �E�! − 8�9�=?623FGH96!− �E�! − 8�9I
  =  .��! − J�5&��! − J�I (8) 

KLM�234$� =  .��! − J�5&��! − J�I + J22′J′ (9)

Whereas J = �5 + !�&��! − 8�

III. RESULTS AND DISCUSSION

To estimate the optimum value in equation (5), there are 

several methods suggested. The first and second estimators 

based on the work) [22] are as follows:  8� = NBOP&�QRBOSNBOP (10) 

8� = KTU V�>?@, NBWXYP &�QRBWXYSNBWXYP Z (11) 

As ' represent the eigen roots of the matrix ��′��,23)*+�  and '[)*+ represent the largest component of 23\� and '\
respectively. The third estimator was based on the idea of 

agencies [23], [24] : 8 =  ]BO6NBOP&"̂P96]BONBOPS"̂P9 (12) 

The fourth estimator was proposed as follows [25] : 

8_ =  − `a"̂P6�S]BO9P
]BONBOPS"̂P − 1b (13) 

The fifth and sixth estimator is based on the idea of Kibria 

as follows [22], [24] :  

8c = KTU `�>?@, d>;<=� V&��&NBOP�QRBOSNBOP Zb (14) 

8e = KTU `�>?@, �f V∑�\h� NBOP&�QRBOSNBOPZb (15)

Finally, the seven and eighth estimator was suggested [26], 

[27]  

8i = KTU `�>?@, KTU V&��&NBOP�QRBOSNBOP Zb (16)

8j = KTU `�>?@, K<� V&��&NBOP�QRBOSNBOP Zb (17) 

A. Simulation

In this section, the previous paragraphs were applied to

generate data where explanatory variables were created by 
using the following equation:[28] �k\ = l�1 − m��nk\ + mnk� (18)

Where o = 1,2, . . . , � & r = 1,2, . . . , s, m represent the

relationship between variables,  n tOwhich are standard

semi-random indices and are independent. The observational 

dependent variable is generated from the general regression 

model as follows [29], [30]: �k = �F + ∑f\h� �\�k\ + �k (19) 

Where ∑ �\ = @�>f\h� Since two values are taken to 

represent the sample size: 50, 100, and 200. In addition, the 

number of explanatory variables ҏ =5 and ҏ =8 is taken. 

Moreover, because we are concerned with the effect of the 

multicollinearity problem where correlation scores are more 

important, two values of the correlation coefficient u =� 0.95, 0.99�are taken. Besides, five values were taken for  �
2.5, 5, 10, 15, 25. The generation process was repeated 1000 
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times by taking different values from and where the mean 

error square (MSE) was calculated as follows: dL���.x� = ����� ∑����-h� ��.x − ��y��.x − �� (20) 

Whereas: �.xThe generalized Liu estimator obtained with a

different shrinkage parameter is the 8� , 8� , 8 , 8_, 8c, 8e , 8i, 8j and the least squares estimator.

Table (1) show MSE values obtained from the Monte Carlo 

simulation study. 

We conclude from the results of tables (1) that the 

generalized Liu estimator possesses less (MSE) compared to 

the OLS method in the case of multicollinearity. As the 
correlation coefficient value increases, the MSE value 

increases when all probabilities of the number of explanatory 

variables (ҏ) and the sample size (n) are taken. The rated 

performance (GL) is also better than the OLS estimators. The 

higher the number of explanatory variables (ҏ), the greater the 

value (MSE), and this increase affects the number of 

estimators. However, the estimated performance (GL) is 

better than that of the OLS. The best performance is the G4 

performance shrinkage parameter of the Liu estimator. 

TABLE I 
AVERAGE MSE VALUES FOR DIFFERENT VALUES OF Σ2,Ρ ,N AND P. 8� 8� OLS u  � n ҏ 

5.5235 5.0804 5.8536 0.95 2.5 50 5 

27.2271 23.9339 28.8511 0.99 

23.5888 22.8442 23.9249 0.95 5 

113.304 108.385 115.006 0.99 

96.2477 95.286 96.692 0.95 10 

458.756 452.72 459.857 0.99 

221.526 22.0494 221.754 0.95 15 

993913 987.533 996.193 0.99 

601.485 600.380 601.871 0.95 25 

2856.9 2850.1 2857.6 0.99 

2.8954 2.6859 2.9731 0.95 2.5 100 

12.5202 11.2929 13.3406 0.99 

11.4797 11.1619 11.5989 0.95 5 

52.3056 50.3647 53.3108 0.99 

43.355 42.939 43.481 0.95 10 

212.598 210.167 213.545 0.99 

101.004 100.558 101.053 0.95 15 

491.398 488.760 492.263 0.99 

276.523 276.037 276.789 0.95 25 

1331.0 1328.2 1332.0 0.99 

10.4746 9.4087 11.1494 0.95 2.5 50 8 

49.9722 42.9693 52.2022 0.99 

42.5666 40.9171 43.2316 0.95 5 

212.331 202.116 214.4291 0.99 

184.556 182.475 185.111 0.95 10 

867.509 855.18 869.735 0.99 

385.134 382.931 386.001 0.95 15 

1881.7 1868.8 1884.7 0.99 

1099.8 1097.4 1100.9 0.95 25 

5368.9 5355.3 5370.8 0.99 

4.9215 4.4694 5.1418 0.95 2.5 100 

22.1534 19.4960 23.5144 0.99 

19.2050 18.5114 19.4527 0.95 5 

93.8991 89.8405 95.2853 0.99 

77.6 76.721 77.965 0.95 10 

394.616 389.623 396.159 0.99 

179.494 178.545 179.822 0.95 15 

860.32 854.985 861.925 0.99 

489.461 488.451 489.52 0.95 25 

2424.2 2418.6 2425.7 0.99 

8c 8_ 8 u  � n ҏ 

4.1690 1.5296 3.30446 0.95 2.5 50 5 

14.1426 6.6938 14.0953 0.99 

19.4407 5.3469 11.4704 0.95 5 

85.2945 25.4855 54.571 0.99 

87.861 21.9686 46.7490 0.95 10 

413.653 103.929 221.716 0.99 

212.678 49.485 106.036 0.95 15 

940.997 212.402 461.911 0.99 

587.77 130.981 283.938 0.95 25 

2787.4 626.640 1351.1 0.99 

2.6139 0.8668 1.6545 0.95 2.5 100 

7.9215 3.1594 6.5824 0.99 

10.1844 2.8059 5.8118 0.95 5 

40.3756 11.8366 25.3749 0.99 

40.599 9.303 20.169 0.95 10 

192.949 46.642 100.63 0.99 

97.136 22.156 47.871 0.95 15 

465.956 110.605 236.158 0.99 

271.851 60.7655 130.804 0.95 25 

1299.7 291.453 629.547 0.99 

7.2352 2.6071 5.4659 0.95 2.5 50 8 

24.4115 11.6037 24.7929 0.99 

33.4257 9.4948 20.4592 0.95 5 

162.861 46.8804 101.142 0.99 

168.978 42.417 90.4 0.95 10 

794.985 190.311 410.058 0.99 

369.591 82.671 179.121 0.95 15 

1799.2 408.85 884.924 0.99 

1081.2 249.617 528.586 0.95 25 

5290.0 1185.3 2543.1 0.99 

4.3071 1.3011 2.6603 0.95 2.5 100 

12.8133 5.1525 11.1053 0.99 

16.5832 4.2779 9.1771 0.95 5 

72.4800 20.5008 44.4934 0.99 

72.017 16.579 36.054 0.95 10 

362.712 86.886 187.832 0.99 

172.74 39.179 84.783 0.95 15 

825.028 183.567 400.152 0.99 

482.018 105.278 228.429 0.95 25 

2386.5 522.422 1133.8 0.99 8j 8i 8e u  � n ҏ 

3.9762 5.4438 3.9805 0.95 2.5 50 5 

6.4268 25.6184 6.8333 0.99 

15.6473 23.4471 16.1382 0.95 5 

26.202 111.273 38.9634 0.99 

64.874 96.097 71.639 0.95 10 

148.969 456.650 253.326 0.99 

158.185 221.362 178.029 0.95 15 

411.778 991.752 642.718 0.99 

465.270 601.321 520.815 0.95 25 

1640.8 2854.7 2200.7 0.99 

2.6009 2.8843 2.6009 0.95 2.5 100 

5.9425 12.0976 5.9735 0.99 

9.5751 11.4536 9.6109 0.95 5 

22.6125 51.7148 24.6708 0.99 

35.607 43.32 36.662 0.95 10 

98.266 211.956 124.254 0.99 

83.672 100.968 87.354 0.95 15 

255.039 490.753 329.108 0.99 

237.838 276.486 251.645 0.95 25 

824.394 1330.3 1033.6 0.99 

7.0019 10.2954 7.0027 0.95 2.5 50 8 

10.5387 47.1657 11.2565 0.99 

26.8282 42.3241 27.6469 0.95 5 

43.7831 209.055 73.408 0.99 
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115.858 184.283 132.828 0.95 10 

239.198 864.065 477.959 0.99 

254.068 384.851 300.891 0.95 15 

670.987 1878.4 1252.0 0.99 

797.257 1099.5 940.975 0.95 25 

2661.0 5365.6 4188.8 0.99 

4.3032 4.8974 4.3032 0.95 2.5 100 

9.7039 21.4204 9.7075 0.99 

15.7464 19.1594 15.7850 0.95 5 

38.6850 92.9770 43.2455 0.99 

62.309 77.543 64.018 0.95 10 

169.497 393.651 232.28 0.99 

14.779 179.438 153.355 0.95 15 

410.045 859.360 589.328 0.99 

407.049 489.404 437.229 0.95 25 

1377.4 2423.2 1913.4 0.99 

IV. CONCLUSION

In this paper, the least-squares and the generalized Liu 

regression methods were compared by taking several 

generalized Liu parameters and selecting the best contraction 

parameter for the Liu regression model. Simulation results 

show that the generalized Liu regression model was the best 

and that the contraction parameter was more efficient than the 

methods presented. As the increase the error variance  �, the
increase in the value (MSE), and as the sample size increases, 

the value of (MSE) decreases when taking different values for 

each correlation coefficient, the number of explanatory 

variables, and error variance. 
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