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Abstract— It is well known that sports skill learning for trainees is facilitated via video observation of the players’ actions and the 

overall flow of competition on the playing field. A video zoomed in on a player’s actions is suitable for learning the player's technical 

skills, and a video showing all the players on the competition court is suitable for learning tactical skills such as player formation. This 

study aims to establish a method that can make narrow field-of-view videos available for observing the player positioning throughout 

the competition court. This paper focuses on karate competition videos and proposes an image processing method that extracts the 

image of the player area from the video frame and superimposes it on a standard karate court model image. Before the superimposition, 

the court model image is homographically transformed to fit the court in the video image. Using this approach, a player-focused video 

is reconstructed as a video of the entire competition field. For the reconstruction, a vertex matching method is developed for 

homography matrix calculation, and another calculation method for homography matrix calculation using only two straight lines is 

also developed for images that lack vertex information. Finally, an experimental result shows that a karate player-focused video is 

transformed successfully into a video of the entire karate competition field. Future work will focus on experimentally verifying the 

effectiveness of the method for skill learning. 
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I. INTRODUCTION

It is well known that a Sport's technical/tactical skill 

development is facilitated by video observation of the players’ 

actions and the overall flow of competition on the playing 

field [1], [2]. However, when the video camera zooms in on a 

player to observe her/his action, it may become difficult to see 

the entire flow of the competition. To support narrow field-
of-view video observation, this study develops a method that 

extracts the image of the player area from a zoomed-in video 

frame and superimposes this area on a model image of the 

entire Sports court. This way, a video of part of the real court 

can be converted into a video of the entire court, making it 

easier to observe the players’ actions and the overall flow of 

competition. 

Before the superimposition, the court model image must be 

homographically transformed to fit the court in the video 

image. Numerous studies have used homography matrix 

calculations for Sports analysis [3]–[18]. Most of them have 
focused on Sports such as soccer and basketball; the 

competition court is assumed to be a plane, and the 

homography matrix between the court model and the court in 

the video images is calculated using a white line drawn on the 

court. However, there are two main issues on the homography 

matrix estimation that have been tackled by recent studies. 

The one is the estimation accuracy [5]–[8], and the other is 

the estimation with insufficient geometric information of the 

court [9]–[18]. The proposed method mainly addressed the 

latter problem. 

When the video images lack geometric information about 

the court due to a narrow field-of-view or occlusion, it is 

difficult to match the white lines (or intersections of white 
lines) seen by the video camera on the playing field with a 

standard court model. Thus, the homography matrix 

estimation may fail. Since the homography matrix calculation 

is almost equivalent to camera calibration, it is important to 

look at studies on camera calibration in Sports images. One 

promising technique reduced the number of white lines 

required for camera calibration by targeting the stadium 

broadcast camera. This camera can be treated as a fixed-

position pan-tilt-zoom (PTZ) camera, and consequently, the 

number of camera parameters to be estimated is reduced [9].  
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Using machine learning to tackle the lack of feature points, 

Chen et al. [10] estimated the camera pose using a random 

forest. The approach learned the relationship between the 

image coordinates of the feature points of a soccer court 

image recorded using a broadcast video camera and the 3D 

parameters of the feature points expressed in the camera 

coordinate system. As a result, calibration was possible even 

with only two feature points. Sharma et al. [11] were able to 

calibrate images with no feature points by using a large 

dictionary that collected pairs of court edge images and 

homography matrices of various camera views. Chen and 
Little [12] labeled each pair of court edge images as similar 

or dissimilar in terms of the pose of the camera that captured 

them and trained a Siamese network to learn the edge image 

pairs (as input) and their labels (as output). As a result, the 

network could estimate the camera pose for a target edge 

image. However, all of the abovementioned studies pertained 

to PTZ cameras and did not enable calibration for arbitrary 

camera poses.  

Other approaches employ the iterative closest point (ICP) 

algorithm [13], image stitching [14], [15], Markov Random 

Field (MRF) [16], and Deep Neural Network (DNN) [17], [18] 
have also been proposed. Lu et al. [13] proposed a method to 

calibrate the keyframes of a basketball video and applied the 

ICP algorithm to match these key frames and the remaining 

frames to calibrate the remaining frames using the court's 

edges. The method solved the problem of the lack of edge 

points due to occlusion by using the stable feature points of 

markers such as logos drawn on the court for point matching. 

However, no logos are present on martial arts courts, such as 

those of karate, which is the subject of this study. 

Wen et al. [14] utilized image stitching to generate a 

panoramic image from multiple frames of a basketball video. 
It was expected that a panorama would have sufficient 

information for finding correspondences between the image 

and the court model. The homographic transformation 

between each frame composing the panoramic image and the 

court model could be calculated from the panorama. Frames 

not showing the entire court could be calibrated via the 

panoramic image by calculating a homographic map to the 

calibrated images. However, image stitching requires the 

correspondence of four points between the frames, and if the 

number of correspondences is insufficient, image stitching 

cannot be performed. In the current study, we developed a 

method to calculate a homography matrix when no 
corresponding points are present, only two straight lines.  

Homayounfar et al. [16] employed a branch and bound 

inference in a MRF to detect four sidelines of the playing field 

to estimate the homography matrix. As a result, the method 

reduces the number of degrees of freedom of the homography 

from 8 to 4. First, they detect two vanishing points of the field 

by using a deep semantic segmentation network, and the 

vanishing points are used to constrain the search space for the 

inference. However, the estimation accuracy depends on two 

vanishing points. It can be said that there is a problem with 

robustness. Our method also uses vanishing points but for a 
different purpose. 

Citraro et al. [17] proposed a DNN that detects keypoints 

to compute the homography matrix. The key points consist of 

the intersections of white lines and the locations of players, 

and the player locations are used to refine the homography. 

Meanwhile, Nie et al. [18] employed a grid of uniformly 

distributed keypoints over the entire field instead of line 

intersections and proposed a DNN that detects the keypoints. 

The feature of the keypoint is defined as a normalized distance 

map to its nearest line and marking (e.g., yard-line number) 

on the field. The proposed method showed a robust 

homography estimation using the keypoints. However, 

applying these methods to karate video images is difficult, as 

karate players are often filmed with a narrow field-of-view. 

The player area in the image will interfere with the keypoint 

detection. 
This study is focused on martial arts such as karate, which 

have not been considered in previous studies. In this domain, 

there is more interest in the player's actions and eye 

movements than in Sports such as soccer and basketball; it is, 

therefore, necessary to film competitions with a narrow field-

of-view camera focused on the players (Fig. 1(a). Furthermore, 

because a player's movement out of the court causes a penalty, 

the positional relationship between the players is also 

important for observational learning. Thus, the study aims to 

develop a method in which player-focused video is 

reconstructed as a video of the entire competition field by 
superimposing the player area on a homographically 

transformed karate court model image (Fig. 1).  

In addition, the authors address the case in which an 

amateur karate-practitioner films competitions with a portable 

video camera or smartphone camera and uses this video for 

skill learning. Many amateur practitioners employ such 

techniques; as they film the competition from the seats in the 

auditorium (Fig. 2) with handheld cameras, the method 

developed for the PTZ camera cannot be applied. 

The video reconstruction consists of three main techniques: 

homography transformation, player extraction, and 
superimposition. Recent computer vision studies have 

proposed powerful human detection and segmentation 

frameworks based on deep learning, e.g., Mask R-CNN [13]. 

This framework can be applied to player extraction. The 

superimposition can be done easily if the homographically 

transformed court model image overlaps the court in the video 

image. 

 

 
Fig. 1  Overview of the video reconstruction: (a) video image; (b) court model 

image; (c) the court model image is homographically transformed so that the 

image fits the court in the video image; (d) player extraction and 

superimposition; (e) reconstructed video image. 
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Fig. 2  Karate tournament viewed from the auditorium seating. 

II. MATERIALS AND METHOD 

A. Overview 

This paper proposes two methods of image processing for 

the homography matrix calculation. One method is related to 

the correspondence between the video image and the court 

model. As shown in Fig. 1, a mat divided into two colored 

figures is used as the competition court of karate, and the 

vertices of these figures are used as the feature points. Many 

previous studies on ball games detected the vertex by 
calculating the intersection of white lines in the image for 

homography matrix calculation. However, in martial arts, the 

edge extracted from an image may be short owing to the 

players' narrow camera field of view and occlusion. 

Consequently, the accuracy of the direction of the straight line 

estimated from the edge becomes insufficient, leading to 

issues in the calculation accuracy of the vertex coordinates. 

Some corner detection methods using the Harris corner 

detector and other techniques have been proposed for vertex 

detection; however, they encounter difficulties in situations 

involving considerable noise. Template matching using a 
small square area surrounding a vertex as a template can help 

detect and identify vertices by using multiple templates 

according to the vertex type; however, this approach is not 

robust to image rotation or deformation. Thus, in this study, 

perspective distortion correction [14] is applied to transform 

the image to ensure that the edges of the colored figures are 

horizontal/vertical; subsequently, vertex detection is 

performed by template matching. Furthermore, by using the 

labels indicating the vertex types, the vertices in the image 

and the vertices of the court model are each represented by 

label sequences and associated by label sequence matching. 
This processing method is described in detail in sub-section 

B. 

In general, a homography matrix calculation requires at 

least four points. A second method proposed in this study 

addresses the situation where the four vertices are not in the 

image, owing to a narrow camera field-of-view and occlusion. 

Assuming that the homography matrices can be calculated for 

other images close to the image, we develop a method that 

enables homography matrix calculation if only two straight 

lines exist in the image. This is described in sub-section C. 

B. Homography Matrix Calculation by Vertex Matching 

The homography matrix between each video frame and the 

court model is calculated for transforming the court model. 

The court model is virtually placed to match the actual 

competition court position. To match the feature points 

required for the matrix calculation, template matching is 

performed using four or more vertices of the color figures of 

the court as the feature points. Figure 3 shows the general flow 

up to matching. First, the mat area of the image is extracted 

using the two colors of the mat and is binarized, with the two 

colors being black and white (see Fig. 3(c)). The vertices of 

the white blobs are the feature points. However, the vertices 

that occur when the player or referee overlaps with the color 

figures (yellow circles in Fig. 3(b)) are not used for vertex 

matching. The players and referees are extracted by human 

region extraction (Mask R-CNN was used in the study: see 

Fig. 3(d)). 
Eight types of vertices are present in the court model (Fig. 

3(f)), as shown in Fig. 4, and are used as templates. However, 

image rotation or deformation can lead to template matching 

failure. Therefore, the following image correction is 

performed as preprocessing for the template matching: 

The color figures of the court have two types of mutually 

perpendicular edges. Because it is impossible to film the court 

from directly overhead, distortion due to perspective always 

occurs, and the straight lines of these edges on the image meet 

at one of the two vanishing points. This perspective distortion 

is corrected by the homographic transformation using the 
vanishing points [14] (see Fig. 5). 

The vanishing points are obtained by applying the method 

of Wen et al. [14]. First, for each blob, the straight lines (ρi,θi) 

are detected by Hough transform for the contours of the blobs. 

Next, all the straight lines are clustered by θ using the k-means 

(k = 2) method. For these two clusters, the result of ST-

transformation (ρi,θi) of each cluster lies on a straight line in 

the ST space [14], and the parameters of the straight line are 

obtained by removing the outliers by RANSAC represent the 

vanishing points. However, those straight lines in the image 

with edge pixels that occur owing to the overlap of the players 
or referee with the color figures are removed. 

The sides of the color figures of the court become 

horizontal/vertical when a homographic transformation based 

on the vanishing point is performed (see Fig. 3(e)). 

Subsequently, the vertices of the corrected court image and 

the vertices of the court model are matched. This image 

correction makes the template matching robust and facilitates 

vertex registration. In other words, if, for example, the 

vertices in Fig. 4 are labeled from the left with an integer label 

starting from 1, the vertex arrangement of the court model can 

be represented by the two-dimensional (2D) character string 

shown in Fig. 6. The detected vertices in the image can also 
be represented in the same manner (for example, in Fig. 7), 

and the vertex matching can be executed as an elastic string 

matching. Consequently, the homography matrix between the 

court model and the court in the video image can be calculated 

based on the vertex matching result. However, as a result of 

this matching, multiple types of correspondence may be 

obtained. In this case, the image is homographically 

transformed based on each correspondence. Subsequently, the 

correspondence that maximizes the degree of coincidence 

between the color figures of the transformed image and the 

color figures of the court model is selected. The implemented 
vertex matching procedure is presented in Appendix A. 
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Fig. 3  Overview of the vertex matching preprocessing. 

 

 
Fig. 4  Vertex detection template. 

 

 
Fig. 5  Perspective distortion correction using vanishing points. Left: two 

vanishing points ��, �� from the straight lines extracted by Hough transform. 

Right: �� - �� are the four corner points of the image frame, and ��  - �� are 

the intersection points between ����������� and �����������, ����������� and ���	�������, ���	������� 

and ���	�������, ���	������� and �����������, respectively. The perspective distortion can be 

corrected through a homography transformation that matches ��  to ��, �� 

to ��, �	 to �	, and �� to �� [14]. Since there are other arrangements of 

vanishing points, an appropriate set of point matchings is employed 

corresponding to the arrangement. The vanishing point is a point at infinity if 

the parallel lines are horizontal or vertical. If �� in the figure is a point at 

infinity ����������� overlaps ������������ and ���	������� overlaps ���	��������. 

 

 
Fig. 6  Two-dimensional label array representing the court model. 

 

 
Fig. 7  Left: A binarized image with perspective distortion correction (yellow 

circles are added on vertices). Right: 2D label array representing the 

arrangement of vertices in the binarized image. 

C. Homography Matrix Calculation using Two Straight 

Lines 

The method described in the previous section is valid when 

the following conditions hold: 

Condition 1: Two clusters of two or more straight lines 

parallel to each other in the image, where the straight lines are 

determined for the sides in the color figures. 

Condition 2: A rectangle can be created with the vertices that 

have been matched. 

If an image that does not satisfy these conditions contains 

at least two straight lines, and another image that includes the 

same straight lines has a homography matrix that has been 

calculated, the matrix for the problem image can be calculated 

using the technique below. It is assumed that the camera 

position is fixed, and only the camera direction (camera pose) 
changes with the displacement of the players. By observing 

people filming from the auditorium, the author found that they 

tracked the individual players by performing wrist rotation 

with the handheld video camera. Therefore, the assumption 

can be considered reasonable. 

Let image_i' be an image that does not satisfy Conditions 

1 and 2. First, the method finds an image_i that matches 

image_i' for template matching using the circumscribed 

quadrangular region, including all blobs of the binarized 

image_i' as a template. The search is executed beginning with 

the image close to image_i' at the time and the image for 
which the transformation matrix has been obtained. Next, the 

straight-line detection and clustering described in the previous 

section are performed for the images, and a straight line of 

image_i and a straight line of image_i' are associated by a 

nearest neighbor search in the Hough space. 

Let O�-X�Y�Z� and O��-X��Y��Z�� be the camera coordinate 

systems when image_i and image_i' are captured, respectively. 

By the assumption that the camera position is fixed, O� � O��. 
We express the straight lines on image_i and image_i' as a� �b� � c � 0  and a��� � b��� � c� � 0 , using the 2D 

coordinate systems of image_i and image_i', respectively. 

Thus, the expression for the normal vector of the plane, 

including the straight line in image_i and the origin in the 

camera coordinate system  O� - X�Y�Z� is � �a, b, c �⁄ �� ��  . 

Similarly, the normal vector of the plane, including the 

straight line in image_i' and the origin in the camera 

coordinate system O��-X��Y��Z�� is �  �a�, b�, c� �⁄ ��� �! (see 

Fig. 8). Here, ��∙�  indicates the normalization into a unit 

vector. Furthermore, we define the world coordinate system 

as O#-X#Y#Z# at the real court plane. Let $�#  and $��#  be the 

coordinate transformation matrices from O� -X�Y�Z�  to O# -X#Y#Z#  and O�� - X��Y��Z��  to O# - X#Y#Z# , respectively. 

Because the two normal vectors expressed in the world 

coordinate system are the same, 

 $��# ���a�, b�, c� �⁄ ��� % $�# ���a, b, c �⁄ ��� � &, (1) 

The previously calculated homography matrix ' from the 

court model to image_i is 

 ' � (� 0 )*0 � )+0 0 1 - � $. )/0�1�#� $. )/0�2�#� 2�→#� � (2) 

where $#� � $�# �, col(i) is the i-th column of the matrix,  2�→#�  denotes the O�O#44444444444⃑  expressed by O�-X�Y�Z� and is 

calculated as 
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 6(� 0 )*0 � )+0 0 1 -7� '8 . )/0�3� (3) 

 :)* , )+; is a principal point calibrated in advance, and � is 

the focal length calculated using the world coordinates of the 

vertices of the color figures in the video images. $. )/0<=>�2�#�  is calculated as 

$. )/0�3�#� � 6(� 0 )*0 � )+0 0 1 -7� '8 . )/0�1� 

 ? 6(� 0 )*0 � )+0 0 1 -7� '8 . )/0�2�, (4) 

$�#  is obtained using Eqs. (2) and (4). 

For another pair of straight lines associated with each other 

in the two images, 

 $��# ���g�, h�, i� �⁄ ��� % $�# ���g, h, i �⁄ ��� � &, (5) 

is also obtained in the same manner. $��#  is determined using 

Eqs. (1) and (5). In other words, the Euler angles C ≡:E*, E+ , EF;�
 of $��#  are obtained using Gauss-Newton 

method. Consequently, the homography matrix '� for 

image_i' is 

 '� � (� 0 )*0 � )+0 0 1 - ∙ : $. )/0�1�#�� $. )/0�2�#� � $#� � $�# 2�→#� ;  (6) 

 
Fig. 8  Relationship among the camera coordinate systems; normal vector of 

the plane that includes the origin of the camera coordinate system; and the 

straight lines on the court, in the image, when the camera origin is fixed. 

III. RESULTS AND DISCUSSION 

As an experiment to validate the proposed method, video 

reconstruction using a video of a karate competition was 

performed. The video was filmed using a smartphone camera 

(1280 x 720). The reconstruction was performed on a PC 

(Windows OS, 2.7 GHz Intel Core i5 CPU). The 

reconstruction (except for player extraction for each image) 

required, on average, approximately 300 msec. In this study, 
robust template matching for homography matrix calculation 

has been realized by correcting the distortion of the image due 

to perspective. The implemented elastic matching eliminates 

the incorrect vertex correspondence at the end; however, it 

would be possible to improve the efficiency through pruning 

in the middle of the matching process, and as a result, the 

calculation time can be expected to be shortened. 

The result is shown in Fig. 9. Fig. 9(d) does not satisfy 

Conditions 1 or 2, owing to the occlusion by the players. Thus, 

the matrix for the image was calculated using the proposed 

method based on two straight lines. The two orthogonal sides 

of a color figure of the karate court were selected for this 

calculation. 

The method for calculating the homography matrix with 

two straight lines would be the use of two arbitrary straight 
lines (unless the two lines are parallel and the relationship 

between O� -X�Y�Z�  and O�� -X��Y��Z��  is the rotation of the 

optical axis in the direction of the lines). However, in practice, 

the calculation accuracy seems to be better when the two 

orthogonal straight lines are selected; therefore, this technique 

has been employed in the experiment. If the number of 

straight lines is less than two, the method cannot be used to 

calculate the homography. However, if the camera's field of 

view is enough for both players to be in view, such a problem 

hardly ever occurs in the real world. However, even if the 

problem does occur, the image (image_i') can be used without 

any processing as a part of reconstructed video images. 

We used the intersection over union (IoU) score to evaluate 

the accuracy of the reconstruction. Thus, the input image 
(image of karate competition) was transformed using the 

inverse matrix of the homography matrix H, which is the 

transformation matrix from the court model to the input image 

(see Fig. 10). Using this transformed image, IoU was 

calculated by Eq. (7). 

 IoU � :'JKLM;NOP�LQ��'JKLM�RS�LQ� , (7) 

where LT  and LU  denote the colored figure of the karate 

competition court of the input image and the figure of the 

court model, respectively. However, the occlusion area of the 

figure of the input image by players was manually repaired. 

The average of IoU calculated by 17 images from different 

competition scenes was 0.924. Most of the related studies are 

on soccer and basketball competition scenes, and the latest 

study for improving transformation accuracy showed 0.975 

[8]. Since the size and shape of the competition courts are 

different, it is not possible to simply compare our results with 

them, but it is difficult to obtain the information necessary for 
homography transformation because the proportion of the 

competition area occupied by karate players is larger than that 

of ball games such as soccer. With that in mind, the result of 

our study is at a high level. 

Next, a Full HD movie created from the reconstruction was 

shown to a university karate club coach. He gave his 

impression as a simple evaluation: he was satisfied because 

the players' positioning and detailed actions could be 

observed simultaneously, and nothing extra was present in the 

reconstructed images. 

In addition, the proposed method has the potential to be 
expanded to other martial arts. The method can be applied 

without any modification for competitions that use a court 

similar to karate (e.g., judo). It can be said that this study has 

contributed to expanding the scope of research on 

homography matrix calculation for Sports analysis, from ball 

games to martial arts. 
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Fig 9. Original video images ((a)-(f)). Reconstructed images ((g)-(l)). 

 

 

Fig 10. Karate competition image (left) was transformed by inverse 

homography matrix H-1 for IoU calculation. The red figures in the visible area 

surrounded by the green line are the target area of IoU (right).  

IV. CONCLUSION 

A novel video reconstruction method to observe players’ 

motion and the flow of karate competition has been proposed 

in this paper. The method transforms the karate court model 

image to fit the court in the video image and superimposes 

images of the players extracted from the video image onto this 

transformed court model image. A vertex matching method 

using perspective distortion correction for homography 

matrix calculation and another homography matrix 

calculation method using only two straight lines for images 

that lack vertex information were developed in this study. As 

the result of the experiment using images extracted from a 
karate competition video, the image transformation accuracy 

of the method was approximately 92%. Since the latest studies 

have targeted soccer images, it is difficult to obtain the 

information necessary for homography transformation 

because the proportion of the competition area occupied by 

karate players is larger than that of ball games such as soccer. 

It can be said that the result of our study is at a high level. 

Through this study, we could extend the research of 

homography matrix calculation for Sports analysis for ball 

games to martial arts. Further work will focus on 

experimentally verifying the effectiveness of the video 

observation method. 
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APPENDIX A 

 

Vertex matching 

 

Procedure 1: The detected vertices are clustered by their x and y coordinates, 

and the cluster numbers are assigned in ascending order of the coordinate 

values. Let c and r be the number of clusters for the x and y coordinates, 

respectively. The vertex labels are stored in the matrix V  of size r × c 

according to each cluster number, where the cluster numbers for the x and y 

coordinates are the column and row numbers, respectively (e.g., see Fig. 7). 

The vertex labels of the court model are stored in an 8 × 6 or 6 × 8 matrix VW: the size of VW is selected manually according to the court orientation. 

Zero is inserted into each empty element. 

 

Procedure 2: The function elasticMatching is executed to obtain a matrix VXY 

with the rows and columns stretched so that the non-zero elements of V 

match VW . /* Because V is a matrix obtained by removing the rows and 

columns with 0 elements from VXY, V and VW correspond to each other. */  

 

Function elasticMatching (V, VW){ 

matrix VXY 

for Z � 1, 2 do{ 

if V�0,0� ≠ 0 then VXY = ex00(V, VW) 

else if V�0, c % 1� ≠ 0 then VXY = ex01(V, VW) 

else if V�r % 1,0� ≠ 0 then VXY = ex10(V, VW) 

else if V�r % 1, c % 1� ≠ 0 then VXY = ex11(V, VW) 

} 

return VXY /* the matrix indicates matching result */ 

} 

 

Function ex00(V, VW){ 

dynamic array �], ��, �, ^ 

for � � 0, ⋯ , VW. rowa % 1 do{ 

for � � 0, ⋯ , VW. columns % 1 do{ 

if V�0,0� � VW��, �� && � � r ≤ VW . rowa && � � c ≤VW. columns then{ 

createMatrix(VXY , �r � ��rows, �c � ��columns) /* 

initialized with zero */ 

copyMatrix(V, VXY:range��, � � r % 1�, range��, � � c %1�; /* copyMatrix(source, destination) */ �]. push�VXY� VXY. release 

} 

/* Column extension */ 

for j � 0, ⋯ , �]. size % 1 do{ ��. push��]ljm� 

for � � 1, ⋯ , c % 1 do{ 

for n � 0, ⋯ , ��. size % 1 do{ 

if V�0, �� ≠ 0 then{ 

for all �W such that: V�0, �� ≡ VW:�XY, �W�≥ �XY�;, 

where the �yXY, �XY� element of ��lnm corresponds to the �0, �� element of V. 

copyMatrix(��lnm, VXY) 

/* insertColumns(destination, column, number of 

columns) inserts the specified number of zero-padded 

columns before the specified column. */ 

insertColumns(VXY, �XY, �XY % �W) 

^. push�Vq*� Vq* . release 

} 

else{ 

for all �W such that: V�y_nz, �� ≡ VW:y_nzXY �∆y�> 0�, �W�≥ �XY�;, where the �y_nz, �� element of V 

is the first nonzero element at the � column and the �y_nzXY, �XY� element of ��lnm corresponds to the �y_nz, �� element of V. 

copyMatrix(��lnm, VXY) 

insertColumns(VXY, �XY, �XY % �W) ^. push�VXY� VXY. release 

}      

} ��. clear 

for n � 0, ⋯ , ^. size % 1 do{ ��. push�^lkm� 

} ^. clear 

} 

for n � 0, ⋯ , ��. size % 1 do{ �. push���lnm� 

} ��. clear 

} 

 �]. clear 

 

for j � 0, ⋯ , ��. size % 1 do{ �]. push��ljm� 

} �. clear 

 

 /* Row extension */ 

for j � 0, ⋯ , �]. size % 1 do{ ��. push��]ljm� 

for � � 1, ⋯ , r % 1 do{ 

for n � 0, ⋯ , ��. size % 1 do{ 

(omitted) 

} 

} 

} 

 

if �. size > 1 do 

filter(�) /* The image is homography transformed based on each 

correspondence that �lnm indicates, then the correspondence that 

maximizes the degree of coincidence between the color figures of 

the transformed image and the color figures of the court model is 

selected. Finally, copy it to �l0m. */ 

 

return �l0m 
}   

 

Function ex01(V, VW){ 

(omitted) 

return �l0m 
} 

 

Function ex10(V, VW){ 

(omitted) 

return �l0m 
} 

 

Function ex11(V, VW){ 

(omitted) 

return �l0m 
} 
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