
Vol.12 (2022) No. 4 

ISSN: 2088-5334 

An Investigation of Computation Time Based on Domain Size in WRF 

Model 

Aisya Nafiisyanti a,*, Ibnu Fathrio a 
a Center of Athmospheric Science and Technology,National Institute of Aeronautics and Space, Bandung, 40173, Indonesia 

Corresponding author: *aisya.nafiisyanti@lapan.go.id 

Abstract— Estimating WRF model computation time is necessary because of the need for domain expansion for weather prediction. 

However, the optimum computation time is not simply gained by enlarging the domain and adding processor numbers. Thus, an 

investigation was carried out to determine the correlation between computation time on domain size, number of grids, and number of 

processors used to run the WRF model. This study uses a collection of computation time as the data input from running the WRF model 

with two domain group ratios, 2: 1 and 1: 1, and various processors. Negative Exponential Function (NEF) and Power Function (PF) 

as exponential decay functions are evaluated to represent the curve formed from the computation time against the number of processors 

in one domain case. This study also evaluates the speed up and efficiency of the use of processor numbers against the tested domains. 

NEF represents the decrease in computation time curve in a domain case better than PF since this function has a steeper slope, better 

initial value, and k constant that keeps the computation time falling below 0. The computation time can be optimally saved by adding 

approximately eight processors at the same domain ratio with four times larger grid size and the same amount of grid number. 

Investigations for other domain ratios need to be carried out to determine the characteristics of computation time on the number of 

processors, grid size, and domain size.  

Keywords— Computation time; NEF; ratio; processors; speed up. 

Manuscript received 4 Mar. 2021; revised 6 Jun. 2021; accepted 3 Aug. 2021. Date of publication 31 Aug. 2022. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Simulating atmospheric weather at various scales requires 

adequate computational resources, and the process should be 

carried out efficiently. This is because these simulations 

generally act as a prediction process for weather conditions. 

The computation speed to produce the results is very 

important because these results must be known before the 
predicted time occurs. One of the ways to optimize 

computation is to perform workload sharing management. 

The parallel computation process can be done with data 

parallelism and task parallelism [1]. This research analyzes 

computational performance with a parallelism data approach 

to the WRF model. 

Weather Research Forecast (WRF) is an atmospheric 

simulation model based on Numerical Weather Prediction 

(NWP) [2], [3]. In addition, the model, which has been built 

since 2000, is widely used for research. This model is used 

because of the increasing level of user confidence, which can 
be seen from the increase in the number of registrations, with 

a total of 3400 registrations from 2000 to 2014. The number 

of users increases in this model due to support from NCAR in 

the form of a website that continuously releases version 

updates and bug fixes and provides tutorials and a forum for 

the community to share knowledge and experience [4]. 

Moreover, the number of publications is 3200 in total until 

mid-2015 [5]. The community formed also shows that the 

model has been a promising tool and has contributed to the 

field of weather prediction [6]. Besides, a comparative study 

between WRF and other Numerical Weather Predictions 

(NWP) shows that this model has modules that can be coupled 

loosely. Thus, it can provide reliable and accurate results [7]. 
WRF provides two dynamic solvers: Advanced Research 

Weather (ARW) and the Nonhydrostatic Mesoscale Model 

(NMM). In addition, other simulation systems are extensions 

of this model: 1) WRF Data Assimilation System (WRFDA), 

2) WRF Atmospheric Chemistry Model (WRF-Chem), and 3)

WRF Hydrological Modelling System (WRF-Hydro). This

model provides customizable features and schemes according

to the research needs [8], where four different Planetary

Boundary Layer schemes are reviewed to find the best

configuration. The tool can model severe weather as typhoons,

tornadoes, and extreme rain on a large scale. Other than that,

1505



it is also capable of simulating local phenomena on a smaller 

scale that requires higher resolution, such as wind farms or 

airport areas. WRF accuracy in several studies has yielded 

satisfactory results because the model can simulate several 

examples of specific phenomena that impact the area being 

studied [9], [10].  

Basically, the more cores used will speed up the 

computation process, but at some point, the computation will 

experience overhead, that is the ineffective runtime due to the 

need for communication between cores and redundant 

computing [11], [12]. This is caused by using too many cores. 
Thus, the computation speed is not always determined by the 

number of cores used. So, it is important to have the ability to 

estimate the number of cores needed based on specific 

simulation settings.  

This study aimed to determine the effect of domain settings 

in the pre-processing and processing stages. The author 

evaluated the computations time and exhibited patterns 

formed during the study. Thus, model users can estimate the 

time required to perform computations based on specific 

domain settings. 

II. MATERIAL AND METHOD 

A. Material’s Configurations 

The computation in this study uses one Supermicro server 

node with AMD Opteron 6320 processor, which consists of a 

logical 16 CPUs. That is built from 2 sockets, four cores per 

socket, and 2 threads per core. This device operates with 2800 

MHz cycles, x86_64 architecture, and 2048 MB cache size 

per CPU.  

This study uses WRF version 4.0, which was released in 

June 2018. First, this study conducted configuration settings 
to determine the area to be reviewed and the input data to be 

used. Configuration is done on the WRF Pre-processing 

System (WPS), a collection of three tasks: geogrid, ungrib, 

and metgrid. Those are purposed to prepare input data to be 

used in the main simulation [13]. Global Forecast System 

(GFS) hourly data on June 9th to 10th 2020 (24 hours) is used 

as data input. The domain configuration is set on the 

namelist.wps file. This study uses Mercator as map projector. 

The latitude and longitude center are set to 8° 7' 24.672'' S and 

117° 2' 13.056'' E respectively, the geog data resolution is set 

to 5 minutes and the area size follows four scenarios: 1000 x 
500 km2, 2000 x 1000 km2, 1000 x1000 km2, 500 x 500 km2.  

There are possible resolutions to interpolate the geographic 

input data into static terrestrial data: 10 minutes (~19 km), 

5minutes (~9 km), 2 minutes (~4 km), and 30 seconds (~0.9 

km). Although it is recommended to choose a slightly better 

resolution than the grid resolution for the interpolation [14], 

where the domain resolution is set to the closest option, this 

study chose the resolution at 5 minutes for all grid sizes 

because the accuracy of the simulation is not the focus on the 

research. This configuration is also supported by part of the 

results of this study which is explained in the results and 
analysis section. The after-mentioned reason is also applied to 

the data and coordinate selection. 

As aforementioned, the study performed four scenarios of 

two dimensions simulation area. Furthermore, to see the 

pattern of required time computation for each area, different 

grid settings are applied but still follow the size of the area 

determined. Each grid setting has a different resolution to 

follow the condition previously mentioned. The settings are 

described in Table 1. 

TABLE I  

DOMAIN SIZE SCENARIO WITH DIFFERENT RATIO 

2:1 1:1 

Grid set  Grid resolution (each 

side) 

Grid set Grid resolution (each 

side) 

1000 x 

500 km2 

2000 x 

1000 km2 

1000 x 

1000 km2 

500 x 500 

km2 

20x10 50 100 10x10 100 50 

40x20 25 50 20x20 50 25 

50x25 20 40 30x30 33.3 16.67 

80x40 12.5 25 40x40 25 12.5 

100x50 10 20 50x50 20 10 

160x80 6.25 12.5 80x80 12.5 6.25 

200x100 5 10 100x100 10 5 

250x125 4 8 125x125 8 4 

300x150 3.33 6.67 160x160 6.25 3.125 

320x160 3.125 6.25 200x200 5 2.5 

350x175 2.857 5.71 250x250 4 2 

400x200 2.5 5 300x300 3.33  

450x225 2.22 4.4 320x160 3.125  

500x250 2 4 350x350 2.857  

 

The scenario set in Table 1 runs on sets of processors: 1, 2, 

4, 8, 16, 32, 40, and 48. This setting must follow WRF data 

distribution provision on a parallel scheme. WRF applies 

grids decomposition in the parallelization process. First, the 

domain is divided into tiles, which depend on the total used 

processors number. Each tile has minimum 5 grids on each 

side, both rows, and columns. This is called the “halo regions”, 

which function as an information channel to the neighboring 

tile. The region with 5x5 grids is a full halo region and must 

be avoided since it does not have space for computation. It 

can cause a crash or unrealistic output. The concept of the halo 
region is applied in WRF and in every parallel computation 

where the input/data is spatial and divided into neighboring 

data chunks [15]. A calculation between grid size and 

processors number is performed to work on this. The grid 

length in the west-east direction is divided by the number of 

tiles to get the tile's x-direction length. The same calculation 

applies to the grid length in the north-south direction to get 

the tile's y-direction length. The resulting number must be 

greater than 10 to achieve a successful run.  

The next step is decomposing the number of processors. It 

is determined by the closest 2 factors of the processor number. 
For example, if 8 processors are used, the decomposition 

would be 2x4, and 16 processors would have 4x4 

decomposition. Using 13 processors is not recommended 

since the decomposition would be 1x13. It is suggested to 

have squared decomposition. However, it is still possible to 

have un-squared ones. According to that, some domains can 

only be run using 1 processor, and in the contrary, there are 

domains that can be run using 32 processors or more.  

The node runs simulations using Simple Linux Utility for 

Resource Management (SLURM). SLURM is a cluster 

workload manager for the Linux operating system [16]. This 
facility implements three main functions. Firstly, allocating 

jobs to resources. Secondly, providing a parallel job 

framework for the cluster to start, execute and monitor work, 

and thirdly parsing jobs when pending conditions are needed. 

This service is used since it is open-source, has a large 

community, and is used worldwide [17]. There is a possibility 

1506



that a process may have a waiting state if the computer 

resources are insufficient because there are a number of other 

processes run at the same time. If a process is on hold, the 

waiting time is counted as part of the total processing time. 

Therefore, the running process must be carried out without 

sharing resources with another job. SLURM used Process 

Management Interface (PMI) to allow process managers to 

interact with the MPI library [18].  

B. Methods 

1)  Negative exponential function (NEF): This function 

plots a graph of computation time towards the number of 

processors. NEF is chosen because the growth of computation 

time tends to decay exponentially. The modified NEF 
proposed by [19] has the equation 1  

���� = � × 	
��� + � (1)

Where � is the initial increment value, � is the slope of the 

curve, � is the minimum increment width, � is the number of 

processors and ���� is the computation time towards number 

of processors. 

2)  Power Function (PF): Along with the Negative 

Exponential Function, Power Function is also chosen because 

it is able to describe the exponentially decayed graph. Besides, 

it is also widely used in analyzing scheduling algorithms [20], 

where the processors’ computation time is reviewed and is in 

line with this study. The traditional power function has the 

following formula 

���� = ���  (2)

Where ����  is the processing towards the processor's 

number, �  is the number of processors, �  and �  are initial 

value and constant that defines the slope of the curve, 

respectively. 

3)  Linear Interpolation: Linear interpolation is applied to 

expand the computation time data. This function estimates 

computation time in between two known values from two 

computed domains in a scenario from a processor set. This 

interpolation type is chosen since the trend of computation 
time of a domain tends to grow linearly towards the total 

number of grids. The equation is described in equation 3 

� = �� + �
 − 
��
�� −  ��


� −  
�

 (3)

Where � is the unknown computation time, �� and �� are 

the known computation time where � lies in between, 
 is the 

untested domain, and 
�  and 
�  are the tested domains. 

Although this method is firstly used for ancient astronomy, 

linear interpolation remains relevant to providing solutions to 

modern problems [21], [22].  

Assume a data grid is defined in � × � . Firstly, we 

increment � by 20 grids. So that, if there are 120x60 and 

200x100 scenarios with a 2: 1 ratio, the added scenario 
extensions are 140x70, 160x80, and 180x90. The same 

treatment is applied in other domain scenarios with different 

ratios. 

4)  Speed up and Efficiency: We investigate the speed up 

of each domain scenario parallel performance. The method is 

denoted in equation 4 [23] 

��×� =
������� �×�

�������� �×�

 (4)

Where ������� �×�  is the serial computation time for 

domain � × �  and �������� �×�  is the parallel computation 

time for domain � × �. The efficiency of each domain from 

the scenarios is evaluated to see the most optimum number of 

processor usage. The formula is denoted in equation 5 

 �×� =
������� �×�

�������� �×�  ×  �
=

��×�

�
 (5)

Where �  is the number of processors and ��×�  is the 

speedup of � processors. 

III. RESULT AND DISCUSSION 

A. Pre-processing 

The WRF running process for gaining computation time 

against a set of data scenarios has been done on a number set 

of processors. As mentioned in the Material Configuration 

section, the pre-processing step is performed on each data set. 

Table 2 is the example of WPS configuration computation 

time on data in which grid length is set to 50x25, and the size 

of each grid is 200 x 200 m2.  

TABLE II 

WPS COMPUTATION TIME IN SECONDS 

Proses/static 

terrestrial data 

resolution 

 10m   5m   2m   30s  

geogrid 23.92 17.62 19.09 20.61 
ungrib 1503.71 1460.22 1308.95 1342.88 
metgrid 48.14 36.44 36.8 35.980 
real 8.72 4.36 4.37 5.05 

wrf 421.88 415.75 423.61 416.41 

 

There are no significant time differences among different 

static terrestrial data resolutions in the geogrid process. 
However, the computation time varies in ungrib process. The 

highest difference is 194.76 seconds, or equal to 3.5 minutes, 

which is between 10m and 2m data resolution. The difference 

is tolerable since the biggest time difference is not in a matter 

of hours. Resolution in 5m is chosen because it has to cover 

all scenario data size. 

B. Selection of Representative Function 

Negative Exponential Function and Power Function are 

applied to gain computation time from untested processors. 
Since the processor numbers range between 1 to 48, the 

functions are applied to set of untested number of processors 

!� = {3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 

23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 

42, 43, 44, 45, 46, 47}. 

The initial values in all domain groups and sizes have the 

same tendency, and the value increases as the grid numbers 

increase. However. NEF has a wider slope range rather than 

PF both in the domain group with a 2:1 ratio and 1:1 ratio. 

Other than that, the NEF slope values tend to increase. In 
contrast to PF, where the slope value tends to decrease 

regularly as the number of grids increases. Both initial values 

and slope in NEF shift irregularly as the grid numbers increase, 

as shown in Fig. 1(a) to 4(d).  

 

1507



 

Fig. 1  (a) Initial value for domains group in 2:1 ratio scenario; (b) Initial value for domain group with 1:1 ratio; (c) Slope value for domains group in 2:1 ratio; 

(d) Slope value for domain group with 1:1 ratio 

 

This difference occurs even though these two functions 

represent the same curve. This is because the NEF value 

determination uses the probability of the smallest difference 

between the actual and the generated computation time by the 

function. So that the results of value determination of 

variables �,  � , and �  are uncertain. On the contrary, the 

variable's value in PF tends to be stable because the values 

determination process does not use probability. Thus, the 

slopes of curves in PF (�) tend to be more stable than NEF.  
This section divided the number of processors into 3 parts: 

initial, middle, and final. The initial, middle and final parts are 

represented by the set of processor number 1 to 3, 4 to 10, and 

16 to 48, respectively. Table 3 shows the performance of the 

two functions in all data scenario. Columns 3 and 4 show the 

number of functions that give the approximate value of 

computation time with less difference to the original value. 

NEF shows better performances in approximating initial 

values in all domain group. This function also performs better 

in the middle part, except for 500x500 data group. Also, in the 

final part, NEF performs better except for 1000x1000 data 
group. Even though both functions start at not much different 

initial values, PF slope values are generally smaller than NEF, 

resulting in a gentler curve for PF computation time 

estimation. This produces a smaller initial value than the 

original value and a wider gap between PF curves and original 

curves in the middle part. This slope value factor makes a 

significant difference so that most of the PF computation time 

estimation results produce greater error than NEF. 

TABLE III 

NEGATIVE EXPONENTIAL FUNCTION AND POWER FUNCTION PERFORMANCE 

ON DIFFERENT DOMAIN GROUP 

 

In addition. the steeper slope of the NEF brings the NEF 

curve closer to the original curve, which indicates a smaller 

error in the middle part. This is because NEF has a constant � 

which prevents the computation time from falling below 0 

(computation time cannot be negative). Generally, constant � 

keeps the estimated value at the end close to the original value 

so that the difference between the NEF value and the 

original’s is better than PF. The power function does not have 

this constant, so the greater the number of processors tested, 

the farther the difference will be. Because the exponential 

function is intended to generate the untested computation time, 

most of the untested data is data from the number of 
processors, 11 to 31, located in the middle and final curve. 

Domain 

Group 
Processor PF NEF Choices 

1000 X 500 

Initial 27 40 

NEF Middle 30 59 

End 16 60 

2000 X 1000 

Initial 27 40 

NEF Middle 25 65 

End 34 41 

1000 X 1000 

Initial 12 34 

NEF Middle 11 50 

End 51 13 

500 X 500 

Initial 13 14 

NEF Middle 22 15 

End 0 36 

1508



The NEF function is chosen to represent the computation time 

formula towards the number processor.  

C. Speed Up and Efficiency 

Assume we have a domain with 100x50 grids. According 

to WRF decomposition setup, where a tile at least has 10 grids 

at both x and y directions, the maximum processors to run the 

process should be [x-grids/10] x [y-grids/10] which is 50 

processors. However, this amount is not necessarily the 
optimal number to use. This study examines the computation 

time to the number of processors used based on the ratio and 

area size of the domain.  

The speed up on domain with 2:1 ratio is reviewed. As 

shown in Fig. 2(a) and 2(b), the speed up on domains 

1000x500 with large grid size (100x50 to 200x100) in average 

reach a maximum on 16 processors. Meanwhile, domains 

with smaller grid sizes (220x100 to 500x250) reach maximum 

on 30 to 32 processors. Increasing the number of processors 

does not make the computation time faster. In some cases, the 

computation time actually slows down. On domain 
2000x1000 which is 4 times bigger than domain 1000x500, 

the speed up still seems be able to be optimized by increasing 

the number of processors, as shown in Fig. 2(b). The domains 

with smaller size have not reached the optimal speed up 

because the difference between speed up to 40 processors and 

48 processors is still more than 0.5. Likewise, the optimum 

average speedup is at 24 processors in larger domains.  

The same pattern is shown in the calculation of speed up in 

the domains with a ratio of 1: 1 as shown in Fig. 2(c) and 2(d). 

In the 500x500 scenario size, domains that have a smaller grid 

size reach a maximum speed up at 24 processors. While in 

1000x1000 scenario size, they can reach a maximum at 32 

processors.  

For example, on two domains with 250x125 grids, one has 

4km2 and the other has 16km2 grid size. Domain with a larger 

grid size has more spaces to perform calculations even though 

the number of halo regions to transfer information to the 

neighboring tiles are the same. This makes the computation 

process faster and less time-consuming for information 

exchange. Besides, MPI has tendencies to experience 

bottleneck when a processor has small amount of workload 
but large amount of communication process [24]. The same 

pattern is shown on two domains with same grids number in 

1:1 ratio.  

Some cases in all scenario sizes show unsteady increase in 

speed up value. This happened because the computing process 

is affected by the condition of the device. At certain times, the 

device experiences queue to get resources because the 

simulated model runs simultaneously with other processes, so 

that at certain running results, the time needed is greater than 

the running result with fewer processors. 

Although there is a slight increase in the speed-up value in 
the figure, the time saved in actual computation time is around 

30 seconds to 1.5 minutes. The computation time to extract 

the model results is reduced, but the time consumed by the 

halo regions increases, then the time saved is used for 

information exchange. So, increasing the number of 

processors is not recommended if a scheme has achieved its 

peak speed. The use of up to 48 processors only provides an 

average efficiency of 0.23 in all scenario sizes.  

 

 

Fig. 2  (a) Speed up for 1000x500 domain group; (b) Speed up for 2000x1000 domain group; (c) Speed up for 500 x 500 domain group; (d) Speed up for 1000 x 

1000 domain group

1509



The model may perform with different computation times 

when applied to multiple computation devices, especially on 

devices with fewer processors than in this study, because 

additional time will be required to exchange information 

between devices. This research also evaluates the 

computation time in grid scenarios at the same ratio with the 

same length on x and y-direction; and in different sizes, for 

example, a 250x125 grid with a grid size of 16 km2 and 64 

km2 (See Table 2). Mean Average Percentage Error (MAPE) 

is used to perform the evaluation. The results then act as the 

difference average between two domains plotted in Figures 3 
and 4.  

 
Fig. 3  Difference average on a domain with 2:1 ratio 

 

 
Fig. 4  Difference average on a domain with 1:1 ratio 

 

As seen in Fig. 3, the calculation results show the average 

difference variation, ranging from 0.04 to 0.17 with an 

average difference of 0.10. Even though the calculation gives 
varying results, the average difference tends to go up with the 

growth of the grid number—for example, two different 

domain groups at the same ratio. The first group has two 

domains with a large grid size, which means fewer grid 

numbers. For example, in domains with 100x50 grids, the first 

and second domains have 10,000 km2 and 40000 km2 grid 

sizes, respectively. Then the second group has two domains 

with small grid sizes, which means more grid numbers. For 

example, in domains with 250x125 grids, the first and second 

domains have 4 km2 and 8 km2 grid sizes, respectively. It is 

shown that the computation time differences in the first group 

are smaller than in the second group. This is in line with the 

statement above that the smaller the grid size, the higher the 

computation time needed. Since the first group has a larger 

grid size, the number of grids inside halo regions is fewer; 

thus, less time is needed for information exchange on both 

domains. Also, the enlargement of the value of the difference 

is in line with the increase of computation time for the domain 

that the second group represents.  

Meanwhile, in Fig. 4, the difference average slightly 

increases, although the characteristics of the average 
difference trend toward the increase in the number of grids are 

the same as in the domain group with 2: 1 ratio. 

IV. CONCLUSION 

The computation time curves obtained from the study 

decay exponentially as the number of processors used 

increases in each scenario domain. The curves have slopes 

represented well by the NEF since this function has a steeper 
slope, better initial value, and k constant that keeps the 

computation time falling below 0 in general. The computation 

time can be optimally saved by adding approximately 8 

processors at the same domain ratio with 4 times larger grid 

size and the same amount of grid number. The results 

obtained in this study are limited to the domain group with a 

ratio of 2: 1 and 1: 1, so investigations for other domain ratios 

need to be carried out to determine the characteristics of 

computation time on the number of processors, grid size, and 

domain size. Also, it would be better if the object of study was 

expanded by increasing the number of devices and the size of 

the domain. 

ACKNOWLEDGMENT 

The authors thank the Center of Atmospherics Science and 

Technology- Indonesian National Institute of Aeronautics and 

Space (LAPAN) for providing a High-Performance 

Computing server for simulating this study.  

REFERENCES 

[1] P. Pacheco, “Why Parallel Programming?,” in An Introduction to 

Parallel Programming, P. S. Pacheco, Ed. San Francisco: Elsevier, 

2011, pp. 1–14. 

[2] W. C. Skamarock et al., “A Description of the Advanced Research 

WRF Model Version 4,” Boulder, CO, USA, 2019. doi: 

http://dx.doi.org/10.5065/1dfh-6p97. 

[3] B. C. Ancell, A. Bogusz, M. J. Lauridsen, and C. J. Nauert, “Seeding 

chaos: The dire consequences of numerical noise in NWP perturbation 

experiments,” Bull. Am. Meteorol. Soc., vol. 99, no. 3, pp. 615–628, 

2018, doi: 10.1175/BAMS-D-17-0129.1. 

[4] NCAR|UCAR, “WRF scaling and timing _ Computational and 

Information Systems Laboratory,” cisl.ucar.edu, 2020. 

https://www2.cisl.ucar.edu/resources/wrf-scaling-and-timing#scaling 

(accessed Oct. 26, 2020). 

[5] J. G. Powers et al., “The weather research and forecasting model: 

Overview, system efforts, and future directions,” Bulletin of the 

American Meteorological Society, vol. 98, no. 8, pp. 1717–1737, 2017. 

[6] Y. Li et al., “High-resolution regional climate modeling and projection 

over western Canada using a weather research forecasting model with 

a pseudo-global warming approach,” Hydrol. Earth Syst. Sci., vol. 23, 

no. 11, pp. 4635–4659, 2019, doi: 10.5194/hess-23-4635-2019. 

[7] A. Z. Abualkishik, “A comparative study on the software architecture 

of WRF and other numerical weather prediction models,” J. Theor. 

Appl. Inf. Technol., vol. 96, no. 24, pp. 8244–8254, 2018. 

[8] Y. Kim, K. Sartelet, J. C. Raut, and P. Chazette, “Evaluation of the 

Weather Research and Forecast/Urban Model Over Greater Paris,” 

1510



Boundary-Layer Meteorol., vol. 149, no. 1, pp. 105–132, 2013, doi: 

10.1007/s10546-013-9838-6. 

[9] H. Duan, Y. Li, T. Zhang, Z. Pu, C. Zhao, and Y. Liu, “Evaluation of 

the Forecast Accuracy of Near-Surface Temperature and Wind in 

Northwest China Based on the WRF Model,” J. Meteorol. Res., vol. 

32, no. 3, pp. 469–490, 2018, doi: 10.1007/s13351-018-7115-9. 

[10] S. Sharma, R. Siddique, S. Reed, P. Ahnert, and A. Mejia, 

“Hydrological model diversity enhances streamflow forecast skill at 

short-to medium-range timescales,” Water Resour. Res., vol. 55, no. 2, 

pp. 1510–1530, 2019, doi: 10.1029/2018WR023197. 

[11] S. Höfinger, T. Ruh, and E. Haunschmid, “Fast Approximate 

Evaluation of Parallel Overhead from a Minimal Set of Measured 

Execution Times,” Parallel Process. Lett., vol. 28, no. 1, pp. 1–12, 

2018, doi: 10.1142/S0129626418500032. 

[12] W. Wu, L. He, W. Lin, R. Mao, and S. Jarvis, “SAFA: A semi-

asynchronous protocol for fast federated learning with low overhead,” 

IEEE Trans. Comput., vol. 70, no. 5, pp. 1–16, 2019, doi: 

10.1109/tc.2020.2994391. 

[13] D. Meyer et al., “WRF-TEB: Implementation and Evaluation of the 

Coupled Weather Research and Forecasting (WRF) and Town Energy 

Balance (TEB) Model,” J. Adv. Model. Earth Syst., vol. 12, no. 8, p. 

18, 2020, doi: 10.1029/2019MS001961. 

[14] A. Golzio, S. Ferrarese, C. Cassardo, G. Adele, and D. Manuela, 

“Land-Use Improvements in the Weather Research and Forecasting 

Model over Complex Mountainous Terrain and Comparison of 

Different Grid Sizes,” Boundary-Layer Meteorol., p. 33, 2021, doi: 

10.1007/s10546-021-00617-1. 

[15] H. Schmitz, “Schnek: A C++ library for the development of parallel 

simulation codes on regular grids,” Comput. Phys. Commun., vol. 226, 

pp. 151–164, 2018, doi: 10.1016/j.cpc.2017.12.023. 

[16] D. Koo et al., “An empirical study of I/O separation for burst buffers 

in HPC systems,” J. Parallel Distrib. Comput., vol. 148, pp. 96–108, 

2021, doi: 10.1016/j.jpdc.2020.10.007. 

[17] C. Hollowell, J. Barnett, C. Caramarcu, W. Strecker-Kellogg, A. 

Wong, and A. Zaytsev, “Mixing HTC and HPC Workloads with 

HTCondor and Slurm,” J. Phys. Conf. Ser., vol. 898, no. 8, p. 8, 2017, 

doi: 10.1088/1742-6596/898/8/082014. 

[18] N. Malitsky et al., “Building near-real-time processing pipelines with 

the spark-MPI platform,” in 2017 New York Scientific Data Summit 

(NYSDS), 2017, pp. 1–8, doi: 10.1109/NYSDS.2017.8085039. 

[19] E. R. Cook, S. G. Shiyatov, V. S. Mazepa, A. Ecology, and U. Branch, 

Treering standardization and growth-trend estimation . In .: Cook E . 

Kairiukstis L . ( eds .), no. April 2016. Springer-Science+Business 

Media, B. V., 1990. 

[20] P. Singh, B. Khan, A. Vidyarthi, H. H. Alhelou, and P. Siano, “Energy-

aware online non-clairvoyant scheduling using speed scaling with 

arbitrary power function,” Appl. Sci., vol. 9, no. 7, 2019, doi: 

10.3390/app9071467. 

[21] Y. Monno, D. Kiku, M. Tanaka, and M. Okutomi, “Adaptive residual 

interpolation for color and multispectral image demosaicking,” 

Sensors (Switzerland), vol. 17, no. 12, pp. 1–21, 2017, doi: 

10.3390/s17122787. 

[22] E. V. Konopatskiy and A. A. Bezditnyi, “Geometric modeling of 

multifactor processes and phenomena by the multidimensional 

parabolic interpolation method,” J. Phys. Conf. Ser., vol. 1441, no. 1, 

2020, doi: 10.1088/1742-6596/1441/1/012063. 

[23] Z. Ye, W. Zhou, L. Zhang, Y. Ge, K. Xiao, and Y. Deng, “Multi-user 

mobile sequential recommendation: An efficient parallel computing 

paradigm,” in Proceedings of the ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 2018, pp. 

2624–2633, doi: 10.1145/3219819.3220111. 

[24] R. Moreno et al., “Analysis of a New MPI Process Distribution for the 

Weather Research and Forecasting (WRF) Model,” Sci. Program., vol. 

2020, no. i, p. 13, 2020, doi: 10.1155/2020/8148373. 

 

1511




