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Abstract— One of the challenges of mutation testing is fixing faults. In the debugging phase, all live mutants were repaired. Programs 

need high mutation scores to be declared reliable program codes. Each mutation test can allow the identification of multiple mutants. 

This is what confuses the faults fixing process. The objective of this research is to get the shortest route so that it can help in sorting the 

mutant types during application improvement after testing. The optimization is needed considering the number of mutants in each 

mutation testing. The problems related to optimization are very complex. It takes a suitable method to find the shortest path by paying 

attention to each point. There are 30 projects chosen randomly. The operator mutations that are often killed when testing mutations 

are AOIU and COI. The proposed optimization for mutant repair sequence is the ant colony system (ACS). The route selection using 

the Ant Colony System algorithm resulted in route optimization of 1.528254. Meanwhile, if the genetic algorithm is used, the score is 

1.767643. Optimization results are very helpful for developers in improving code in mutation testing. Research states the best order for 

handling mutants using ACS. This research can be further developed with the addition of class-level mutant cases which are produced 

using class mutation operators. Class mutation operators have different characteristics from traditional mutation operators. In 

particular, it requires changes to the program structure, such as the definition of class variables. 
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I. INTRODUCTION

Software testing is essential in creating high-quality 

software [1]–[3]. There are many types of testing software 

which include mutation testing. Mutation testing is a white 

box software testing technique based on faults [4], [5], which 

is used to assess the quality of a program's code. A number of 

mutants will be generated when testing a source code. Each 

mutant appears based on the manipulation of the original 

program through a transformed mutation operator [6], [7]. 

Mutation testing executes the mutants from the imitation 
program and determines whether the mutants can be killed. 

The test case generates a different set of tests that can be run 

to detect faults [8]. The results of the execution of an imitation 

program get a different value from the results of the original 

program execution, so it can be stated that the mutant status 

is killed [9], [10]. If the execution value is the same, the 

mutant is declared alive. Live mutants need to be evaluated 

where the original program with the imitation program has the 

same execution value even though they both have different 

codes. After testing, the mutation score can be calculated 

based on the number of live mutants and dead mutants. The 

mutation score is used in the research discussion. 
Mutation testing has problems with computational 

costs[11]. This makes it possible to generate a large number 

of mutants upon execution on a test suite. The cost of creating 

the mutants and repairing the program is expensive. 

Researchers have proposed many techniques to reduce their 

costs[12], such as weak mutation testing [13], selective 

mutation testing, high mutation testing, mutant relationship 

redundancy[14], Model-based testing (MBT)[15], 

classification, clustering, and the advantage of high fault 

localization accuracy[16]. However, the cost of the mutation 

process remains high. This study proposes how to optimize 

the repair sequence of the mutants that have been detected. 
The data was recapitulated based on the mutation score for 

each mutant. 

The mutant selection process is needed to measure the 

representation of the important selected mutants. In selective 

mutation testing, the selected mutants should represent all 

mutants that appear in the test series[17]. It gave effectiveness 

in testing capabilities that reveal the error code. Selecting 
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mutants to subsets that inspire new test case designs is helpful 

in mutation testing. Several algorithms were developed, such 

as Evolutionary Mutation Testing (EMT) [18]. In general, 

there are three categories of mutant selection techniques: 

random-based mutant selection, operator-based mutant 

selection, and element-based mutant selection. 

Some researchers optimize the creation of test cases to 

reduce costs using genetic algorithms[19]–[21]. Meanwhile, 

this algorithm still needs to be studied further, whether it has 

been presented in all mutants. An important step after 

mutation testing is code correction. Thus, this research tries to 
optimize the order of how mutant repair. Generally, mutation 

testing takes a lot of time for the programmer. Many test cases 

can be applied. Thus, testing gave rise to many mutants. This 

requires extra handlers. The selection of mutants is one thing 

that greatly affects the testing time and costs of mutation 

testing. The optimization technique used in this case is the Ant 

Colony System (ACS) algorithm. ACS found that the route 

cost and time are less than other optimization methods[22]. 

Ant Colony System (ACS) is an algorithm based on the route 

of the ants. In the ACS algorithm, the process of forming an 

ant travel path is applied to find a solution to the optimization 
problem. As a comparison of optimization, a genetic 

algorithm is chosen. A genetic algorithm is a solution-seeking 

technique that follows the natural selection of biological 

evolution [23]. 

II. MATERIAL AND METHOD 

A. Mutation Operator 

The mutation operator is the rule for the changes that 

produce mutants [24]. This change is intended to prove the 

reliability of the program code. The mutation operator 
demands the adjustment of the programming language written 

on the program under test. This change can be the deletion, 

insertion, or replacement of an operator from the program 

statement. After the mutant is created, the original test suite 

will execute all its test cases on the modified version of the 

project [25]. Table 1 shows several types of mutation 

operators that can be used for testing. 

TABLE I 
MUTATION OPERATOR TABLE 

Code Mutation Operator   

AOIS Arithmetic Operator Insertion Short-cut 
AOIU Arithmetic Operator Insertion Unary 
AORB Arithmetic Operator Mutation Operator Description 
AORS Arithmetic Operator Replacement Short-Cut 
ASRS Short-Cut Assignment Operator Replacement 
COD Conditional Operator Deletion 
COI Conditional Operator Insertion 
COR Conditional Operator Replacement 

IOD Overriding Method Deletion 
JID Member Variable Initialization Deletion 
JSI Static Modifier Insertion 
JTD This Keyword Deletion 
JTI This Keyword Insertion 
LOI Logical Operator Insertion 
OAN Argument Number Changed 

B. Mutation score 

Mutation score can indicate a low or high value. The 

developer works hard to improve the program when the 

mutation score is low. Where the test found many errors by 

marking the number of mutants alive. A high mutation score 

means that the program has a good test suite [22] and a good 

code structure. The mutation score (MS) using the calculation 

formula is as follows [6] [23]: 

 MS = 100 * D / N (1) 
Where N is the total of mutants; D is the number of killed 

mutants. The high mutation score value is the mutation score 

getting closer to 1. The test data set shows that most of the 

mutants were killed. 

C. Mutation testing challenge 

Mutation testing has several research approaches. The 

approach is a mutant generation, test generation and 

execution, and Evaluation [20]. Figure 1 shows the mutation 

testing challenge. The emphasis of the study is the 

optimization of fixing the program through mutant sequences 

were found. 

 

 
Fig. 1  Mutation Testing Challenge 

D. How the Ant Algorithm Works to Find the Optimal Path. 

Ants can sense their complex environment in search of 

food. Then the ants return to the nest through the path at the 

mark of the pheromone substance left behind. Pheromones are 

chemical substances that come from endocrine glands. The 

process of pheromone inheritance is known as stigmergy. It is 

marking an area to create a route to the nest. Another goal is 

also to facilitate communication between ants and the colony. 

The pheromone trail will evaporate and reduce its power of 

attraction [26]. The longer it takes an ant to commute through 

this path, the longer it is for the pheromone to evaporate. In 
order for the ants to get the optimal path, several processes are 

needed. The ACS pheromone control method focuses more 

on developing and utilizing the best historical pathways than 
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the Ant system. There are three main characteristics of ACS: 

status transition rules, local pheromone update rules, and 

global pheromone update rules.  

E. Status transition rules 

The state transition rule that applies to the first ACS is that 

the ant placed at point t chooses to go to point v. Then it is 

assigned a random fractional number q where 0≤q≤1. q0 is the 

probability that the ants explored each stage. pk (t, v) is the 
probability that ant k chooses to move from point t to point v. 

When q ≤ q0, the selection of the point to be addressed uses 

the following equation: 

 �������� ��, �� =  ����, ���. ����, �����       � = 1, 2, 3. . . " (1) 

 # =  �$%����, ���. ����, �����& (2) 

whereas if q> q0, the following equation is used: 

 # =  '(��, #� =   �)�*,+��.�,�*,+�-�
∑ �)�*,/��.�,�*,/0�-�1023

 (3) 

 ���, ��� =  4
5�6*789:�*,/0� (4) 

Where (t, u) is a heuristic function that is chosen as the 

inverse of the distance between points t and u. (t, u) is the 

value of the pheromone trace at point (t, u).  is a parameter 

that considers the relative importance of heuristic 

information. The value for the parameter β is ≥ 0. 

F. Local pheromone update rules 

The ants' tour for a solution, but the ants also visit the 

internodes and change the pheromone levels on them by 

applying local pheromone renewal rules. The following 

equations are used for local update updates: 

 ���, #� ← �1 < =�. ���, #� >  =. ∆���, #� (6) 

 ∆���, #� =  4
@11.A (7) 

Where Lnn is the length of the tour obtained; C is the 

number of location points; ∆ τ is the change in pheromone. ρ 

is the amount of pheromone evaporation coefficient with a 

value of 0 to 1. Each ant's path can be different when the 

pheromone evaporation takes a long time. It is possible to 

come up with more alternative solutions. Thus, location 

points that have previously been traversed by ant tourism can 

be traversed by other ant tourism. 

G. Global pheromone Update Rules 

Pheromone points are updated by applying global 

pheromone renewal rules. All tracks are recapitulated and 

sorted based on the shortest length of the track. Global 

pheromone renewal was carried out only in the shortest path 

since the experiment began. 

 ���, #� ← �1 < =�. ���, #� >  =. ∆���, #� (8) 

 ∆���, #� =  BCDEF4
0   �G��, #� ∈  I�J� �����   (9) 

t, v is 1/Lgb if the path (t, v) is the best route that has 

been travelled and otherwise t, v 0. Lgb is the length of 
the best tour globally since the start of the experiment. The 

global pheromone update is intended to provide more 

pheromones on shorter tours. 

III. RESULT AND DISCUSSION 

The reference point is the number of mutant operators. 

Where one line of code can include several mutants. Projects 

are taken randomly obtained on the internet. The ACS 

algorithm requires data that contains the shortest distance 
between the average scores for each operator mutation. ACS 

is used to optimize the search for the shortest route. Figure 2 

describes the mutation score from the mutant data. The 

highest value identifies that many mutants were killed in the 

mutation operator. In the sample program, as many as 30 

source codes show that AOIU and COI have the highest 

average scores. 
 

 

Fig. 2  Mutation Operator Distribution 

Figure 2 illustrates the distribution of mutation operators. 

It shows that COI obtains the highest point. Operators with 

high scores stated that many were killed during testing. The 

next calculation is to get the temporary value (t, u) and the 

probability value based on the starting point (t) to the next 

untreated point (u). The temporary value is used to determine 

the points that would be headed next. 

 '��I�I�K���J ��, �� =  �L�*,+��.�,�*,+�-�
∑ �L�*,/��.�,�*,/0�-�1023

 (10) 

After completing the calculation process, a probability and 
accumulative probability is obtained as shown in the table II. 

TABLE II 

PROBABILITY AND ACCUMULATIVE PROBABILITY 

 Probability Accumulative probability 

AORB 0,0000000 0,0000000 
AORS 0,0000417 0,0000417 
AOIU 0,0001758 0,0002175 

AOIS 0,0073918 0,0076093 
ROR 0,0002554 0,0078647 
COR 0,0000324 0,0078971 
COD 0,0000324 0,0079295 
COI 0,0001175 0,0080470 
LOI 0,9916805 0,9997275 

ASRS 0,0000556 0,9997831 
IOD 0,0000324 0,9998155 
OAN 0,0000284 0,9998439 

JTI 0,0000457 0,9998896 
JTD 0,0000457 0,9999352 
JSI 0,0000324 0,9999676 
JID 0,0000324 1,0000000 
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Table II is a table of assistance in recording probability 

calculations and the accumulated probability that is useful for 

choosing the next location. The highest probability value as a 

target location is LOI. Optimization of mutation testing using 

ACS produces the recommended route in table III. 

TABLE III 
RECOMMENDATION ACS ROUTE 

Mutation Operator Track 

AORB 0,002 

LOI 0,020 
AOIS 0,082 
ROR 0,221 
AOIU 0,027 
COI 0,362 

ASRS 0,022 
JTI 0,000 
JTD 0,011 

AORS 0,033 

COR 0,000 
COD 0,429 
IOD 0,000 
JSI 0,000 
JID 0,019 

OAN 0,300 
length of track 1,528 

 
The route of fixing faults is shown in the flow graph in 

Figure 3. The value of the furthest distance between mutants 

was obtained from the mutant operator from COR to COD 

with a value of 0.429. Meanwhile, the shortest distance 

between mutants is ASRS-JTI, AORS-COR, COD-IOD, and 

IOD-JSI. 
 

 
Fig. 3  The Recommended Mutation Testing Route 

 
The comparison between ACS Algorithm and Genetic 

Algorithm (GA) has a difference of 0.239389. ACS obtains 

the shortest distance with a value of 1.528254. Meanwhile, 

the GA trajectory is 1.767643. the comparison of results and 

paths between ACS and GA is shown in Table IV. 

TABLE IV 
OPTIMIZATION LENGTH COMPARISON 

 ACS GA 

Result 1,528254 1,767643 

Path AORB -> LOI -> AOIS -> ROR 

-> AOIU -> COI -> ASRS ->

 JTI -> JTD -> AORS 

-> COR -> COD -> IOD -> JSI -

> JID -> OAN -> AORB 

AORS -> AOIU -> 

AOIS -> ROR -> COD 

-> COI -> LOI -> 

ASRS -> JTI -> JSI -> 

JID 

IV. CONCLUSIONS 

The effectiveness of fixing faults is an important issue for 

developers. This paper proposes an optimization using the ant 

colony system algorithm method to solve the priority problem 

of very many mutant sequences. This smart method can be 

immediately applied to software testing. The route selection 

using the Ant Colony System algorithm resulted in route 
optimization of 1.528254. Meanwhile, if the genetic 

algorithm is used, the score is 1.767643. Optimization results 

are very helpful for developers in improving code in mutation 

testing. Research states that the best order to handle mutants 

arises from mutation carriers. The project is selected 

randomly. Meanwhile, operator mutants that are often killed 

when mutation testing are AOIU and COI. This research can 

be further developed with the addition of class-level mutant 

cases which are produced using class mutation operators. 

Class mutation operators have different characteristics from 

traditional mutation operators. In particular, it requires 
changes to the program structure, such as the definition of 

class variables. 

 ACKNOWLEDGMENTS 

This research was supported by Universiti Tun Hussein 

Onn Malaysia (UTHM) and Universitas Putera Batam 

Indonesia. Computer laboratories are available specifically 

for the process of researching software testing, and hardware 

and software can be used to achieve research objectives. 

REFERENCES 

[1] A. Aghamohammadi, S. H. Mirian-Hosseinabadi, and S. Jalali, 

“Statement frequency coverage: A code coverage criterion for 

assessing test suite effectiveness,” Inf. Softw. Technol., vol. 129, no. 

September 2020, p. 106426, 2021. 

[2] A. Mustafa, W. M. N. Wan-Kadir, and N. Ibrahim, “Comparative 

evaluation of the state-of-art requirements-based test case generation 

approaches,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4–2 Special 

Issue, pp. 1567–1573, 2017. 

[3] F. F. Ismail, R. Razali, and Z. Mansor, “Considerations for cost 

estimation of software testing outsourcing projects,” Int. J. Adv. Sci. 

Eng. Inf. Technol., vol. 9, no. 1, pp. 142–152, 2019. 

[4] P. Delgado-Pérez and F. Chicano, “An experimental and practical 

study on the equivalent mutant connection: An evolutionary 

approach,” Inf. Softw. Technol., vol. 124, no. April, 2020. 

[5] X. Dang, X. Yao, D. Gong, T. Tian, and B. Sun, “Multi-Task 

Optimization-Based Test Data Generation for Mutation Testing via 

Relevance of Mutant Branch and Input Variable,” IEEE Access, vol. 

8, pp. 144401–144412, 2020. 

[6] P. Pinheiro et al., “Mutating code annotations: An empirical 

evaluation on Java and C# programs,” Sci. Comput. Program., vol. 

191, p. 102418, 2020. 

[7] N. Gupta, A. Sharma, and M. K. Pachariya, “Multi-objective test suite 

optimization for detection and localization of software faults,” J. King 

Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020. 

[8] A. Usman, N. Ibrahim, and I. A. Salihu, “TEGDroid: Test case 

generation approach for android apps considering context and GUI 

events,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 1, pp. 16–23, 

2020. 

[9] S. A. Arnomo and N. Binti Ibrahim, “Priority path for mutant repairs 

on mutation testing,” Proc. ICAITI 2019 - 2nd Int. Conf. Appl. Inf. 

Technol. Innov. Explor. Futur. Technol. Appl. Inf. Technol. Innov., pp. 

71–76, 2019. 

[10] J. A. do Prado Lima and S. R. Vergilio, “A systematic mapping study 

on higher order mutation testing,” J. Syst. Softw., vol. 154, pp. 92–109, 

2019. 

[11] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro, 

“A systematic literature review of techniques and metrics to reduce the 

cost of mutation testing,” J. Syst. Softw., vol. 157, p. 110388, 2019. 

2441



[12] A. M. Kazerouni, J. C. Davis, A. Basak, C. A. Shaffer, F. Servant, and 

S. H. Edwards, “Fast and accurate incremental feedback for students’ 

software tests using selective mutation analysis,” J. Syst. Softw., vol. 

175, p. 110905, 2021. 

[13] X. Yao, G. Zhang, F. Pan, D. Gong, and C. Wei, “Orderly Generation 

of Test Data via Sorting Mutant Branches Based on Their Dominance 

Degrees for Weak Mutation Testing,” IEEE Trans. Softw. Eng., vol. 

5589, no. c, pp. 1–17, 2020. 

[14] R. Gheyi et al., “Identifying method-level mutation subsumption 

relations using Z3,” Inf. Softw. Technol., vol. 132, no. April 2020, p. 

106496, 2021. 

[15] L. Villalobos-Arias, C. Quesada-López, A. Martínez, and M. Jenkins, 

“Evaluation of a model-based testing platform for Java applications,” 

IET Softw., vol. 14, no. 2, pp. 115–128, 2020. 

[16] H. Wang, B. Du, J. He, Y. Liu, and X. Chen, “IETCR: An Information 

Entropy Based Test Case Reduction Strategy for Mutation-Based 

Fault Localization,” IEEE Access, vol. 8, pp. 124297–124310, 2020. 

[17] J. M. Zhang, L. Zhang, D. Hao, L. Zhang, and M. Harman, “An 

empirical comparison of mutant selection assessment metrics,” Proc. 

- 2019 IEEE 12th Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 

2019, pp. 90–101, 2019. 

[18] L. Gutierrez-Madronal, A. Garcia-Dominguez, and I. Medina-Bulo, 

“Combining Evolutionary Mutation Testing with Random Selection,” 

2020 IEEE Congr. Evol. Comput. CEC 2020 - Conf. Proc., 2020. 

[19] M. B. Bashir and A. Nadeem, “Improved Genetic Algorithm to 

Reduce Mutation Testing Cost,” IEEE Access, vol. 5, no. c, pp. 3657–

3674, 2017. 

[20] N. Jatana and B. Suri, “Particle Swarm and Genetic Algorithm applied 

to mutation testing for test data generation: A comparative 

evaluation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 4, pp. 

514–521, 2020. 

[21] M. Nosrati, H. Haghighi, and M. Vahidi Asl, “Test data generation 

using genetic programming,” Inf. Softw. Technol., vol. 130, no. 

September, p. 106446, 2021. 

[22] R. Jangra and R. Kait, “Analysis and comparison among Ant System; 

Ant Colony System and Max-Min Ant System with different 

parameters setting,” 3rd IEEE Int. Conf. , pp. 1–4, 2017. 

[23] D. N. Mudaliar and N. K. Modi, “Design and Application of m-

Mutation Operator in Genetic Algorithm to Solve Traveling Salesman 

Problem,” 8th Int. Conf. Comput. Power, Energy, Inf. Commun. 

ICCPEIC 2019, pp. 94–96, 2019. 

[24] Q. Zhu, A. Zaidman, and A. Panichella, “How to kill them all: An 

exploratory study on the impact of code observability on mutation 

testing,” J. Syst. Softw., vol. 173, p. 110864, 2021. 

[25] Z. X. Lu, S. Vercammen, and S. Demeyer, “Semi-Automatic Test Case 

Expansion for Mutation Testing,” VST 2020 - Proc. 2020 IEEE 3rd 

Int. Work. Validation, Anal. Evol. Softw. Tests, pp. 1–7, 2020. 

[26] N. Yang and Y. Shi, “Research on Tourist Route based on a Novel Ant 

Colony Optimization Algorithm,” 2019 IEEE Int. Conf. Power, Intell. 

Comput. Syst. ICPICS 2019, no. 3, pp. 160–163, 2019. 

 

 

2442




