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Abstract— Nowadays, most nonparametric regression research involves more than one predictor variable and generally uses the same 

type of estimator for all predictors. In the real case, each predictor variable likely has a different form of regression curve so that if it 

is forced, it can produce an estimation form that does not match the data pattern. Thus, it is necessary to develop a regression curve 

estimation model under the data pattern, namely the mixed estimator. The focus of this study is an additive nonparametric regression 

model, a mix of the Truncated Spline and Gaussian Kernel. There is a knot point in the Truncated Spline, while in the Gaussian Kernel, 

there is bandwidth. To choose the optimal knot point and bandwidth in a mixed estimator model, various methods can be used, including 

Cross-Validation (CV), Generalized Cross-Validation (GCV), and Unbiased Risk (UBR). This research proposes the optimal knot point 

and bandwidth estimation on the mixed estimator Truncated Spline and Gaussian Kernel model. Furthermore, the comparison between 

CV, GCV, and UBR is used to validate the proposed method. The simulation study was carried out by generating the Truncated Spline 

function and the Gaussian Kernel on a combination of sample size variations and variances. The simulation results show that the GCV 

method provides a higher coefficient of determination (R2) value and better accuracy for each combination of sample sizes and variance 

variations.  
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I. INTRODUCTION

Regression analysis is one of the statistical methods used 

to determine the pattern of relationships between one or more 

variables in the functional form [1]. The relationship formed 

can be expressed in an equation that states the functional 

relationship between the response and predictor variables [2]. 

Early identification of the relationship pattern can be made by 

looking at the scatter plot [3]. If the form of the relationship 

pattern is known, then the parametric regression approach is 

used. However, not all data patterns can be clearly identified 
as the relationship pattern, so using nonparametric regression 

was proposed [4].  

Along with the development of computing technology, 

nonparametric regression models, which generally require 

fairly difficult computational complexity, are being popular. 

The approach with the nonparametric regression model has 

advantages, such as being easy to use for data patterns with 

unknown patterns [2]. This approach has good flexibility so 

that the data is expected to adjust the form of regression curve 

estimation by itself without being influenced by the 
researcher's subjectivity [5]. The purpose of modeling using 

regression analysis is to find the appropriate form of 

regression curve estimation [6]. Many nonparametric 

regression curve estimators have been developed by 

researchers, including Spline [2], [7]-[11], Kernel [12]-[15], 

and Fourier series [16]-[20].  

Models with the nonparametric regression approach 

developed by previous researchers assume the pattern of each 

predictor is considered to have the same regression curve so 

that only one estimator form is used for each predictor 

variable. However, in the real case, each predictor variable 

likely has a different form of regression curve. Thus, if it is 
enforced, it can produce an estimation form that does not 

match the data pattern [3], [21]. So, it is necessary to develop 

a mixed estimator of nonparametric regression curves, where 

each data pattern in the model is approximated by the 

appropriate curve estimator [1], [3], [4], [20]-[24]. The mixed 
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estimator nonparametric regression model used in this study 

combines the Truncated Spline and the Gaussian Kernel. 

In nonparametric Gaussian Kernel regression, determining 

the right bandwidth is very important, while in the Truncated 

Spline, the important thing is determining the optimal knot 

point. The knot point and bandwidth in the future referred to 

as smoothing parameters can greatly affect the formed 

regression curve. The smoothing parameter that is too small 

can produce a very rough curve and tend to fluctuate. On the 

other hand, if it is too large, it can produce a curve that is too 

smooth which is not matched with the data pattern [13]. Thus, 
it becomes an interesting problem to determine the right and 

optimal smoothing parameter [1]. The optimal smoothing 

parameter can be determined using several methods, such as 

Cross-Validation (CV) [25], Generalized Cross-Validation 

(GCV) [7], and Unbiased Risk (UBR) [26]. 

In this research, the simulation of relationship pattern form 

between the response and predictor variables that follow the 

Truncated Spline and Kernel pattern characteristics is 

proposed. This proposed method is validated using many 

combinations of sample size variation and variance. 

Furthermore, the relationship pattern from the simulation data 
results was modeled using a mixed estimator of the Truncated 

Spline and Gaussian Kernel. Cross-Validation (CV), 

Generalized Cross-Validation (GCV), and Unbiased Risk 

(UBR) are used to determine the optimal smoothing 

parameter. This research aims to compare the performance of 

the CV, GCV, and UBR methods in estimating the optimal 

knot point and bandwidth in the mixed estimator model of 

nonparametric regression. Moreover, the coefficient of 

determination (R2) was used as the criteria for goodness. 

The structure of this paper is organized as follows: Brief 

explanation of material, such as the Truncated Spline, 
Gaussian Kernel, Mixed Estimator Nonparametric 

Regression, Cross-Validation (CV), Generalized Cross-

Validation (GCV), Unbiased Risk (UBR), and Research 

Methodology in Section II. Simulation results of several case 

studies are given in Section III, and Conclusions are given in 

Section IV. 

II.  MATERIAL AND METHODS 

A. Truncated Spline  

The spline is a segmented polynomial model. The 
Truncated Spline function is a function that still maintains the 

properties of the polynomial function [6]. In general, a 

Truncated Spline nonparametric regression model can be 

written as follows: 

( )
i i i

y f x  
 

(1) 

where 
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 is the Truncated Spline function with degrees m 

and 
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Suppose given a paired data xi and yi, where i=1,2,…,n  

follows a Truncated Spline nonparametric regression model: 
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with a Truncated Spline function: 
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the regression model in Equation 4 can be written in matrix 

form as: 
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so, 

( ) y X β ε
 (5) 

Where y is the vector of the response variable of size (n x 1), 

X() is a matrix of size n x (m + r + 1),  is the vector of the 

regression coefficient parameter to be estimated and size        

(m + r + 1) x 1, and Ɛ is a random error vector of size (n x 1). 

B. Gaussian Kernel 

Suppose given a paired data ti and yi, where i=1,2,…,n. So, 
a Gaussian Kernel nonparametric regression model can be 

written: 

( )
i i i

y h t  
 

(6) 

The Kernel estimator has advantages, such as flexible, easy 

mathematical form, and faster convergence [13]. 

The regression curve of h(ti) it to be approximated by the 

Kernel Function, the regression curve estimation can be 

presented in Equation 7. 
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where: 
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The kernel function used is the Gaussian Kernel: 
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Based on the kernel function in Equation 7 that applies to 

each t=t1, t=t2, …, t=tn, then it can be written in matrix form 

as follows: 
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             ( ) G y
 (9) 

Where y is the vector of the response variable of size (n x 1), 
G(α) is a matrix of size (n x n). 

C. Mixed Estimator Nonparametric Regression 

The nonparametric regression mixed estimator is a 
multipredictor nonparametric regression model whose 
regression curve is additive, where the regression curve was 
approximated by two or more types of estimators [3], [27]. 

For example, given paired data (xi ,ti ,yi) where the 
relationship between the predictor variables (xi , ti) and the 
response variable (yi) follows a nonparametric regression 
model. 

( , )
i i i i

y x t  
 

(10) 

And then, the regression curve µ(xi, ti) is assumed to be 
additive such that µ(xi, ti) can be written into the form: 

( , ) ( ) ( )
i i i ix t f x h t  

 
(11) 

The mixed estimator model used in this study is a combination 
of the Truncated Spline and the Gaussian Kernel. Furthermore, 
Equation 10 can be written in matrix based on Equation 5 and 
9 form as follows: 

( ) ( )   y X β G y ε
 (12) 

Error can be written as follows: 
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The estimation of  can be obtained through LS optimization 
as follows: 

     min ( ) ( ) ( ) ( )
T

      
β

I G y X β I G y X β (14) 

Based on Equation 14, the sum squared of error can be written: 
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To get an estimator of , obtained by using a partial derivative 

of 
( )Q β

to  as follows: 
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And then, Equation 16 equal to zero. Estimate results from 
β̂

 
is: 
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Equation 17 can be written as: 
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Equation 19 can be written as 
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.   
As a result, the Gaussian Kernel estimator can be written as 
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Based on Equation 17 and the estimator form of each 
component, a mixed estimator of the nonparametric 
regression Truncated Spline and Gaussian Kernel were as 
follows: 
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(20) 

Matrix 
( , ) B

 is highly dependent with smoothing 
parameter (knot point and bandwidth). 

D. Cross-Validation (CV) 

Cross-Validation (CV) is a method developed by Craven 
and Wahba [25]. The formula developed is still limited to a 
single estimator form. Furthermore, the CV method can also 
be generalized to the mixed estimator form. The modified CV 
method formula for the mixed estimator form can be written: 
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(21) 

The CV method does not require variance information 
2 . 

The matrix 
( , ) B

 can be searched based on Equation 20. 
The CV method gives different weights to each observation 
according to its contribution [28]. 

E. Generalized Cross-Validation (GCV) 

Generalized Cross-Validation (GCV) is a generalization of 
the CV method developed by Wahba [7]. The GCV method 
formula developed by Wahba is still limited to a single 
estimator form. The GCV method can be used in the form of 
a mixed estimator, where the modified GCV method formula 
can be written: 
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with, 
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I   : Identity matrix 
GCV method is same as the CV method that does not require 

variance information 
2 [29]-[30]. 

F. Unbiased Risk (UBR) 

Unbiased Risk (UBR) method was introduced by Wang [26] 
which can be used to determine the optimal smoothing 

parameter when information about 
2  or 

2  is known. The 
same thing as the CV and GCV methods, the UBR method 
can be generalized into a mixed estimator form so that it can 
be written: 
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with, 
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G. Research Methodology 

In this section, the step of the proposed method is presented 

as follows: 

1. Defining a nonparametric regression model mixed 

estimator of the Truncated Spline and Gaussian Kernel 

( , )
i i i i

y x t  
 

(25) 

with 
( , ) ( ) ( )

i i i i
x t f x h t  

.  

Where 
( )

i
f x

 and 
( )

i
h t

 are smooth functions. 

2. 
( )

i
f x

 is a smooth function defined as a Truncated Spline 

component with 

2 4

2

sin( )
( )

sin( )

i

i

i

x
f x

x




. 

Variable i
x

 for the Spline, generated independently of the 

Uniform Distribution 1
~ (0,1)x U

. 

3. 
( )

i
h t

 is a smooth function defined as a Gaussian Kernel 

component with 
2

( ) sin
i i i

h t t t
. 

Variable i
t
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4. An error i
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 is generated follows the Normal Distribution 
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, where 1, 2,...,i n . 

5. The response variable from the mixed estimator model 

was as follows: 
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6. Making a sample variation size with n that was tested on 

25, 50, 100, and 200. For the error variance 
2  were 

tested on 0.05, 0.5 and 1. 

7. Replicating each generated data 20 times. 

8. Making a scatter plot between response variable and each 

predictor variables. 
9. Modeling the generated data in steps (1-8) with a 

nonparametric regression model mixed estimator 

Truncated Spline and Gaussian Kernel. 

Equation 10 can be written in matrix form as: 

( ) ( )   y X β G y ε
 (27) 

and error is: 

 ( ) ( )   ε I G y X β
 

(28) 

Estimation of parameter 
β

 can be obtained using the 
Ordinary Least Squares (OLS) method, where estimate 

results from  is in Equation 17.  

10. The number of knot points tested is only 1 knot, for a 
variable set as a Truncated Spline. 

11. Determining the optimal smoothing parameter using CV, 

GCV, and UBR. Moreover, CV, GCV, and UBR formula 

have been modified based on the use of a nonparametric 

regression model mixed estimator. 

12. Calculate the Coefficient of Determination (R2) for each 

modeling process carried out. 

2
1

SSE
R

SST
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(29) 

with, 

2
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SSE y y

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2

1

( )
n

i

i

SST y y

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. 

13. Calculate the average from CV, GCV, UBR, and 

Coefficient of Determination (R2) for each combination of 

sample size variation and error variance. 

III. RESULTS AND DISCUSSION 

This section describes a simulation study of a 

nonparametric regression model using a mixed estimator. The 

proposed method is a combination of the Truncated Spline 

and Gaussian Kernel. 

( ) ( )
i i i i

y f x h t   
 

(30) 

with 1, 2,...,i n . 
And f (x1) is a smooth function defined as a Truncated Spline 

component, h(ti) is a smooth function defined as a Gaussian 

Kernel. 

Simulations are carried out under various regulated 

conditions. In this study, the sample size variations with n to 

be tested is 25, 50, 100, and 200. The combination of the error 

variance 
2  to be tested is 0.05, 0.5, 1, and replication for 

each generated data is 20 times. 
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For example, a scatter plot between the response variable 

and each predictor variable with a sample size of  n = 50 and 
2

0.05   shown in Fig. 1.  

 
Fig. 1 Scatter plot between predictor and response variable with n=50 

 

Furthermore, Fig. 2 shows the scatter plot with a sample size 

of 200n   and 
2

0.05  . 
 

 
Fig. 2 Scatter plot between predictor and response variable with n=200 

 

Fig. 1 and Fig. 2 show that each predictor variable has a 

different form of regression curve. Variable x1 shows the 

characteristics of the Truncated Spline estimator, which has a 

changing data pattern at certain sub-intervals. In comparison, 

variable t1 shows a data pattern that does not have a certain 

pattern, so that it was modeled with the Kernel estimator. 

Furthermore, based on the scatter plot in Fig. 1 and Fig. 2, a 
nonparametric regression model was applied using a mixed 

estimator of the Truncated Spline and Gaussian Kernel.  

The number of knot points to be tested is only one-knot 

point for variables defined as a Truncated Spline component. 

The simulation results in the form of the average CV, GCV, 

UBR, and coefficient of determination (R2) are presented in 

Tables 1, 2, and 3. 

TABLE I 

SIMULATION RESULTS WITH THE CV METHOD 

Variance Average 
Number of Samples 

n=25 n=50 n=100 n=200 

2

0.05   

CV 0.136 0.120 0.110 0.109 

R2 85.65% 84.75% 84.33% 84.45% 

2

0.5   

CV 0.393 0.374 0.371 0.364 

R2 66.38% 65.12% 61.84% 61.02% 

2

1   

CV 1.128 1.133 1.133 1.087 

R2 40.86% 37.42% 38.05% 35.41% 

TABLE II 

SIMULATION RESULTS WITH THE GCV METHOD 

Variance Average 
Number of Samples 

n=25 n=50 n=100 n=200 

2

0.05   

GCV 1.473 2.733 5.010 8.403 

R2 86.48% 85.30% 85.26% 85.34% 

2

0.5   

GCV 1.475 3.197 4.436 10.153 

R2 71.26% 67.25% 63.38% 61.89% 

2

1   

GCV 2.168 4.033 8.096 15.192 

R2 56.70% 44.86% 41.18% 37.15% 

 

TABLE III 

SIMULATION RESULTS WITH THE UBR METHOD 

Variance Average 
Number of Samples 

n=25 n=50 n=100 n=200 

2

0.05   

UBR 0.009 0.008 0.004 0.004 

R2 83.71% 82.74% 82.72% 82.59% 

2

0.5   

UBR 0.014 0.007 0.005 0.004 

R2 64.23% 62.38% 59.42% 59.78% 

2

1   

UBR 0.016 0.009 0.006 0.004 

R2 38.28% 35.75% 36.19% 34.04% 

 

For the various sample sizes n, such as 25, 50, 100, and 

200, with all variations of the variance tested, the GCV 
method provides better knot point and bandwidth estimation 

results compared to the CV and UBR methods. This is 

indicated by the value of the coefficient of determination (R2) 

obtained from each experiment with GCV, which is higher 

than the other two methods. Furthermore, the residuals of 

each modeling results for each combination of sample size 

variation and variance follow a normal distribution. 

For example, the number of samples n=25 and the error 

variance is , using the GCV method in selecting the optimal 

knot point and bandwidth, the average GCV value is 1.473 
with an R2 value of 86.48%. Meanwhile, using the CV 

method and the same conditions obtained an average CV 

value is 0.136 with R2 value is 85.65%. Using the UBR 

method, it was obtained an average UBR value of 0.009 and 

R2 value is 83.71%. 

The impact of the variation variance measures σ 2 in this 

study has an effect on the simulation results. It can be seen 

that the increase of the variance tested, the value of R2 for all 

methods used both CV, GCV, and UBR tend to decrease.  The 
variance shows the deviation of the data from the average, so 

that the higher the variance value that is tried, then there was 

a tendency for the data spread far from the average value. The 

illustration of generated data with n=200 and various variance 

conditions are shown in Fig. 3. 

 

2404
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(c) 

Fig. 3 Illustration of impact by variance (a) σ2  = 0.05; (b) σ2  = 0.5; (c) σ2  = 1 

 

Based on Fig. 3, Thus, it can be concluded that the size of 

the sample tested and the variance size is important. Moreover, 

it can be seen that in the variance σ2  = 0.05, the Truncated 

Spline component has clearly shown a changing pattern at 

certain sub-intervals. While the Gaussian Kernel component 

does not appear to have a certain pattern. The increasing of 

the variance value, for example σ2  = 1, the data pattern for 

Truncated Spline component implicitly still has shown a 

changing pattern in certain sub-intervals, but there is a 

tendency for the pattern to spread. While the Gaussian Kernel 

component looks more spread out and doesn’t have a pattern. 

Based on the impact of the variance size and sample size, it 

can be seen that the GCV method still gives the correct 

estimation of knot point and bandwidth, so it can provide 

better coefficient of determination (R2) value compared to the 

other two methods for each condition. 

Based on the simulation results, the knot point and 

bandwidth estimation results from the CV, GCV, and UBR 
methods are quite good. However, the GCV method provides 

better performance and accuracy for each combination of 

sample sizes and variance variations tried. The GCV method 

produces optimal knot point and bandwidth to obtain the 

largest coefficient of determination (R2) for each combination. 

As a result, the GCV method is more suitable for estimating 

the knot point and bandwidth in the nonparametric regression 

model mixed estimator of the Truncated Spline and Gaussian 

Kernel.  

IV. CONCLUSION 

Simulation studies on the nonparametric regression model 

mixed estimator of the Truncated Spline and Gaussian Kernel 

to compare the performance of the Cross-Validation (CV), 

Generalized Cross-Validation (GCV), and Unbiased Risk 

(UBR) methods in estimating the optimal smoothing 

parameter (knot point and bandwidth) have been successfully 

carried out. Based on the simulation results, with an error 

following the Normal distribution and in a combination of 

sample size variation and error variance. The GCV method 
provides better result performance and accuracy than the CV 

and UBR methods. The GCV method produces optimal 

smoothing parameters so that the largest coefficient of 

determination (R2) is obtained for each combination. The 

results obtained in this study have the potential to contribute 

to the development of statistics, especially in the field of 

nonparametric regression. 
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