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Abstract—Modeling the unprecedented traffic flow data generated by Intelligent Transportation Systems can boost the innovation-

capacity of the transportation management systems to drive informed decision-making. Thus, this paper attempts to simulate traffic 

forecasting techniques that can be adopted in the Philippines to make fact-based decisions into accurate and effective traffic 

management schemes. In this research, a schematic framework is introduced organized into three stages (Preprocessing, Model 

Identification and Estimation, and Model Checking) sequentially arranged to comprehensively estimate the best-appropriate model to 

forecast traffic flow using ARIMA and GARCH models. The Model Identification and Estimation is the conditional stage in the 

framework that pre-determines if hybrid modeling is necessary based on the given datasets. Various accuracy metrics are also used to 

find the “best” model and select the optimal values for ARIMA and GARCH models. The proposed framework is simulated in R 

Programming using the vehicular traffic flow datasets at North Avenue, EDSA northbound, Manila, Philippines. The resulting models, 

consist of the best fit ARIMA (1,1,3) and GARCH (1,2), are combined as the hybrid model and compared using its prediction results. 

Based on the visual simulation data, the prediction accuracy result of the ARIMA model outperforms the combined ARIMA-GARCH 

model given the actual data. Conclusively, the simulation performance provides proof to suggest that the forecasting models are timely 

tools to predict future traffic flow and aid in making better traffic inventions and schemes.  
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I. INTRODUCTION

The application of ICT in the transport sector or the so-

called intelligent transportation system (ITS) is strong 

evidence that these technologies are seen as the top relevant 

solutions to the challenges faced by the transport system. ITS 

is an advanced mechanism that integrates ICT, and road 

transport, and traffic management [1]. Examples of ITS are 

the RFID [2], smart cameras for traffic signals [3], GPS [4], 

IoT-based real-time traffic monitoring systems [5], and other 

traffic control systems that promise traffic efficiency and 

mobility [6]. As ITS usage begins to multiply, the traffic data 
generated have also raised exponentially to big data [7]. 

Unfortunately, the aspect of historically analyzing the 

potential of this vast decaying relevancy of traffic data into 

actionable information remains unpopular [8]. 

Driven mostly by advanced countries, ITS is also becoming 

increasingly popular in many developing countries. The 

Philippines followed the rest of the world to solve its traffic 

woes. Its government installed ITS around the major 

thoroughfares of Metro Manila to usher congestion-free 

roadways. But regardless, traffic congestion has become more 
intricate and difficult [9], [10]. Manila’s traffic ranked 

second-worst in the world according to TomTom Traffic 

Index since 2019. 

Despite these challenges, the Philippine government 

seemed slow to recognize potential solutions overclouding the 

transport system. For decades, its traffic administrators 

focused persistently on expanding roadways and using ICT-

based solutions to mitigate traffic volume. One emerging 

solution is the recent innovation in ITS, such as big data and 

analytics, to address the traffic volume challenges [11]. The 

key technology uses the voluminous traffic data in 
undertaking solutions to understand and predict the future 

traffic flow. Traffic prediction is perceived as the key solution 

to revolutionize the current transportation landscape [12], [13] 

ensuring benefits even to developing countries. However, to 
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capture the full potential of these technologies, the 

government needs to implement holistic approaches and 

invoke huge cooperation from other agencies. Academia, too, 

has been challenged to collaborate with the government to 

find appropriate solutions in this significant opportunity [14]. 

One particular technique on big data analytics that is now 

gaining attention across numerous practical disciplines is the 

time series (TS) method. TS analysis is the process of 

measuring observations over time to predict future values. 

However, diversified predictions using various traffic datasets 

and approaches make it difficult to clearly recognize the 
prospects and limitations of TS [15].  In this paper, extensive 

TS experiments are carried out using the traffic data in Metro 

Manila. This paper aims to give insight into finding the best-

appropriate traffic forecasting technique that can be adopted 

to make fact-based decisions into accurate and effective 

traffic management schemes in the Philippines. A schematic 

framework was also introduced using the Univariate ARIMA-

GARCH model to predict traffic flow. The paper also applied 

different performance indexes for model adequacy to identify 

the best-fit model. 

II. MATERIALS AND METHOD 

A. The ARIMA Model 

The Autoregressive Integrated Moving Average (ARIMA) 

model is fit for the non-stationary and non-seasonality data 

series. This simply means that an ARIMA model is 

considered when equally spaced TS of data exhibits patterns 

and random walk series (non-stationary series). Three (3) 

components characterize the ARIMA model: p 

(autoregressive parameter), d (no of times series is 

differenced), and q (moving average parameter) in general 
form as ARIMA(p,d,q).  The mathematical form of ARIMA 

(p, d, q) is written as follows [16]: 

 ∅�����1 − ����	
 − �� = 
�����
 (1) 

where ∅���� =  �1 − ��� −  ���� −  … − �����, 
���� =
�1 −  ��� − ����−. . . −����� are polynomial notations in 

terms of the Backward Shift Operator, � of � and �, and �
  is 

the white noise series.  

B. The GARCH Model 

Since the ARIMA models do not model conditional 

heteroscedasticity, the GARCH with the p and q parameters 

solves this problem. The GARCH (p,q) model is indicated by 

the notation [17] : 

 ℎ
 = �� + ∑ �!"
#!� + ∑ �$ℎ
#$�
$%�

�
!%�  (2) 

where ℎ
  is the conditional variance, and �!  and �$  are 

parameters of the model.  In the equation, {"
}  is a 

generalized autoregressive conditionally heteroscedastic 

model of order p, q, denoted by GARCH(p,q).  

C. Accuracy Metrics of TS Forecast 

To fully evaluate the potential of the three forecasting 

approaches, the performance criterion needs to be established 
to measure the discrepancy between the actual fully and 

predicted values. The ARIMA and GARCH performances are 

evaluated using the following (1-2) error criteria and (3) 

selection criteria, respectively: 

1)  Mean Absolute Error (MAE):  measures how the 

prediction varies from actual values without considering their 

direction, given as [18]:  

 ()* = �
+ ∑ ,	$ − 	-$,+$%�  (3) 

2)  Mean Squared Error (MSE):  also measures the magnitude 

of error between actual and prediction values by taking the 

square root of the average squared errors. Doing so magnifies 

which model generally holds the highest error point. The 

formula is given as [18]. 

 (.* =  /�
+ ∑ �	$ − 	-$��+$%�   (4) 

3)  Akaike Information Criterion (AIC):  used for selection 

and parameter estimation. According to this criterion, the best 

fit model should be the one with the smallest value based on 

the formula [19]. 

 )01 =  −2 log�6� +  27 (5) 

D. The Proposed Hybrid Model 

This paper proposes sequentially using ARIMA and 

GARCH models and then examining the hybrid’s 

performance against its non-hybrid counterparts in 

forecasting traffic flow. The logic behind this scheme is to 

avoid biased estimation when modeling time-dependent 

volatility and nonlinearity TS data with ARIMA. Thus, an 

extension approach using GARCH was embedded in the 

framework of ARIMA to accommodate this problem, which 

is similar to the work of Yaziz [16], as shown in Figure 1 
below. 

 
Fig. 1 Schematic representation of the Hybrid ARIMA-GARCH Model 
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GARCH is best used to model heteroscedasticity in time 

series data, such as the increasing and decreasing volatility. 

Therefore, combining these two models overcomes each 

component’s limitations to better characterize the statistical 

features of the TS data, in this case, the traffic flow series. The 

flowchart in Figure 1 outlines the procedure fitting of the 

proposed hybrid model. 

The hybrid model framework is divided into three (3) 

stages identified as (1) Preprocessing, (2) Model 

Identification and Estimation, and (3) Model Checking. The 

sequence of stages for the hybrid framework should be 
observed correspondingly, from the first stage until the last, 

especially when a cluster of volatility is detected in the TS 

plots (from stage 2). This is to avoid biased estimates and 

wrong forecasts. The framework’s major highlight is 

particularly the GARCH model incorporated in the last stage- 

Model Checking. The addition of GARCH notation in the 

process is necessary to check whether conditional variance 

exists in the series. Moreover, this added process could 

potentially generate and reveal novel learning in the 

estimation given the time-varying volatility in the TS. 

The first stage of the conceptual model is called the 
Preprocessing labeled as (1). The task is to make the TS data 

stationary. Here, the TS data is differenced d number of times 

depending on the complexity of the series, also referred to as 

the “Apply preprocessing” in the diagram. Therefore, the 

value of d is the number of differencing needed until the series 

is stationary. 

After transforming the TS data to stationary, the next stage 

is the (2) Model Identification and Estimation or fitting a 

satisfactory ARIMA model. This means that the order values 

of p and q parameters are estimated from the ACF and PACF 

plots. Assuming that the optimal model is identified, the next 
step is to detect periods of conditional heteroscedasticity in 

the model. If there is no heteroscedastic series in the model, 

then no further modeling is needed except to plot the forecast. 

However, if there is heteroscedastic series in the model, 

proceed to the last phase as described in the framework to find 

a more appropriate model. 

If the model still displays high and low volatility via 

successive lags, this suggests that the GARCH model fitting 

is appropriate. GARCH fitting is done in the third and last 

stage- (3) Model Checking. This approach requires the use of 

AIC to compare models with different orders p and q. Finally, 

the chosen model is subjected to model checking to ensure the 
correctness of the fitted model. If its P-value is statistically 

significant, residuals appear to be low and unstructured, and 

randomly distributed then the model fits well. After this point, 

the model can now be used for forecasting. 

E. Research Design 

This exploratory-qualitative research primarily deals with 

validating the best-fit model to forecast traffic flow using the 

TS dataset and analysis procedures. An exploratory technique 
was employed to describe the behavior of the models- 

ARIMA, GARCH, and the hybrid ARIMA-GARCH as 

predictive models. On the other hand, the qualitative method 

presents the results to understand which model is adequate 

and approximate to predict the future vehicular traffic volume. 

F. Research Setting 

The study relied on the synthetic traffic data provided by 

the Department of Transportation (DOTr) thru Advanced 

Science and Technology Institute- Department of Science and 

Technology (ASTI.DOST), which is the collection of the 

monthly vehicular traffic flow at North Avenue, EDSA 

northbound denoted by the circled star in the actual road web 

screenshot (from https://roadsafety.gov.ph/#!/map) displayed 

in Figure 2.   

 

 
Fig. 2 North Avenue EDSA Northbound Screenshot 

 

The sampling time period is about 15 years or 177 months. 

The data include vehicle flow, which denotes the total number 

of vehicles that traversed the defined roadway per month. 

Since vehicle flow varies depending on which day of the week 

it is, the dataset was also delimited to weekdays only. The 

modeling has adopted R programming to build and predict the 

traffic flow datasets. R is a powerful open-source 

programming language driven by the concept of data analysis 

with applications, which covers fields such as statistical 

analysis, data mining, graphical display, and so on [20]. 

G. Research Procedures 

This paper adopted the schematic procedures to predict the 

proposed Hybrid ARIMA- GARCH model presented in 

Figure 2. The steps are as follows: 

1)  Processing Stage: The first process converts the traffic 

flow series to achieve stationarity in the mean and variance 

through differencing and log transformation, respectively [21]. 

This is important because most statistical methods are based 

on this assumption that time series modeling can only be 
meaningful when stationary time series is achieved [22]. We 

performed the differencing in R to convert the non-stationary 

into a stationary residual series using the mathematical test of 

Dickey and Fuller [16]. A stationary series is relatively easy 

to identify because its statistical property, such as its p-value, 

should not be greater than 0.05. 

2)  Model Identification and Estimation Stage: The 

estimation of the autocorrelation graph of the TS must be 

established in this process to determine the “best” appropriate 

ARIMA model. Finding the most appropriate values of p and 

q is typically identified using the Autocorrelation function 
(ACF) and partial autocorrelation function (PACF). In this 

paper, the ACF and PACF were performed both in the lag and 

differenced series. We follow the principle of parsimony in 
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considering the best model, which means the model candidate 

with the fewest parameters is best [23]. The following rules 

were also considered in this paper [24]: If ACF cut off after 

lag n, PACF dies down: ARIMA (0,d,n) identify MA(q); If 

ACF dies down, PACF cut off after lag n: ARIMA (n,d,0) 

identify AR(q); and If ACF and PACF die down; mixed 

ARIMA model, need differencing.  

A choice of 0 to 2 for p and q was tested for both the 

datasets (lag and differenced) for comparison purposes. We 

compare and understand its performance based on the 

evaluation criteria results of MAE and MSE. The criteria 

result with the lowest prediction error of MAE and MSE 

generated is the best prospective model candidate [16]. 

3)  Model Checking Stage: Validating the model to determine 

if no significant heteroscedasticity exists is typically done 

through a test using the residuals of the TS dataset. Ljung-Box 
is a test that determines the existence of heteroscedasticity in 

the time series by verifying if autocorrelations are different 

from 0. This means that we accept the null hypothesis H0 

when the probability of the p-value is less than the chosen 

level (in our case 5%), which states that there is no 

heteroscedasticity in the series (the series is independent and 

uncorrelated) and skip the next process; otherwise, proceed 

with the modification process because fragments of serial 

correlation still exist in the series. 

Another way to confirm if the residuals contain 

heteroscedasticity is that we check and plot the square 

residuals of ACF & PACF in R. Patterns in the residuals 

confirm volatility or conditional variance in the series when 

the plot shows a cluster of volatility at some points in time. 

ACF seems to die down or PACF cuts off after a certain lag 

even though some remaining lags are significant. 

To model the conditional variance of the series, we need to 
fit the GARCH to the residuals of the ARIMA model 

candidates then calculate the log-likelihood using the logLik 

() function in R. Since GARCH (1,1) model is the simplest 

and most successful of the family of the volatility models [24], 

in this paper, the variance of the series was modeled using 

GARCH(1,1). After successfully building and fitting the 

ARIMA-GARCH model, AIC result was considered to check 

and confirm the best candidate model. The model with the 

lowest AIC was selected, as provided in the R result. 

III. RESULTS AND DISCUSSION 

A. Preprocessing Stage 

The first thing to do is to check for stationarity in the time 

series model based on the framework. Hence, the modeled 

non-stationary and stationary data are shown in Figure 3 and 

Figure 4, respectively. Augmented Dickey-Fuller (ADF) tests 

in R were performed to confirm stationarity in the time series 

dataset. The plotted graph in Figure 3 shows that a trend exists, 

which strongly indicates non-stationarity in the mean with a 

p-value of 0.568 of ADF test. Thus, the TS dataset needs to 

be differenced to remove trends and obtain a stationary series. 
 

 
Fig. 3 Non-stationary Traffic Flow Data  

 

The graph plotting in Figure 4 now illustrates a stationary 

series transformed through differencing. The result suggests 

stationarity since most of the data are located around the mean 

zero. The differenced series is also supported by the ADF test 

with a p-value of 0.01. Here, the value of d = 1 since the first 

order differencing performed in the TS series is already 
adequate. 

 

 
Fig. 4 Stationary Traffic Flow Data  

B. Model Identification and Estimation 

To successfully determine the best ARIMA model, it is 

necessary to carry out the ACF and PACF analysis, which 

include determining the order of p, and q, and making sure 
that the residuals of the model are random or do not exhibit 

seasonality. In this paper, we now set d = 1 with reference to 

the differencing performed in stage one to create a uniform 

and balanced comparison for all the models. The ACF and 

PACF plots are illustrated in Figures 5- 7. 

The left graph in Figure 5 shows the ACF while on the right 

plots the PACF of the monthly traffic flow data. On these 

plots, the ACF slowly decreases (but not die down) while the 

PACF is significant in the first lag only. The plots suggest that 

it needs differencing since there are no significant or 

interpretable peaks at certain lags, which validates the 

differencing performed in stage one. 
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 Fig. 5 (A) ACF and (B) PACF of the non-stationary monthly traffic flow data 

 

 
Fig. 6 (A) ACF and (B) PACF of the differenced (stationary) monthly traffic flow data  

 

 

 
Fig. 7 (A) ACF and (B) PACF residuals of the selected ARIMA models 

 

The graph in Figure 6-A shows regular spikes at every 12th 

period (months). These are the lags 1, 2, and 3, which 

corresponds to this being monthly data. According to ACF 
function, if the current and past values (lags) are consistently 

dependent, then the concept of correlation is positive. That is, 

when the autocorrelation bar is longer than the blue marker, 

then the correlation is considered significant and indicates a 

strong correlation between each value and the value occurring 

two points previously, so every 12 periods is correlated to the 

previous 12 periods. As can be noticed, spikes appear every 

December, and the spikes go beyond the 2  region. This 
suggests that the high volume of traffic is non- auto-correlated 

but data-dependent. Also, the ACF in Figure 6-A tails off 

quickly; hence it is stationary. 

In terms of PACF in Figure 6-B, which suggests the order 

of conditional autocorrelation in the series, in this case, there 
are significant spikes in the plot concentrated in the early 

periods while lesser in the later periods. The plots both follow 

a geometric decay, which is exactly the expectation of the 

ACF and PACF plots for an ARMA process as explained in 

[24]. This indicated that it is sufficient to carry out an ARIMA 

fitting. 

 

TABLE I 
PERFORMANCE OF THE PROSPECTIVE ARIMA PREDICTION MODELS 

Model Ljung-Box 

(p) 

MAE MSE AIC 

ARIMA(1,1,0) 0.7645 805.66 1065.24 2976.03 
ARIMA(2,1,0) 0.6006 770.60 1010.28 2959.51 

ARIMA(3,1,0) 0.7637 769.14 1005.51 2959.86 
ARIMA(0,1,1) 0.3638 791.74 1059.65 2974.21 
ARIMA(0,1,2) 0.9794 758.96 998.33 2955.38 
ARIMA(0,1,3) 0.8872 759.44 997.86 2957.22 
ARIMA(1,1,1) 0.0953 809.40 1064.93 2977.93 
ARIMA(1,1,2) 0.9121 759.26 997.95 2957.25 
ARIMA(1,1,3) 0.9483 750.77 992.53 2957.64 
ARIMA(2,1,1) 0.9697 764.34 999.66 2957.85 

ARIMA(2,1,2) 0.8933 761.27 997.23 2959.01 
ARIMA(2,1,3) 0.8935 761.16 997.24 2961.01 
ARIMA(3,1,1) 0.9174 764.17 997.96 2959.26 
ARIMA(3,1,2) 0.8954 761.26 997.23 2961.01 
ARIMA(3,1,3) 0.899 752.49 992.57 2961.58 

 

In fitting the ARIMA model, the idea of parsimony is 

considered in which the model can only be considered 

qualified on the basis of the following criteria: (1) low MSE 

to ensure optimum accuracy, (2) low MAE also to provide 

forecast accuracy. 
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Table 1 displays the various prospective ARIMA models 

selected for analysis, in this case, based on the given criteria. 

To make a clear comparison, the standard ARIMA model of 

the same order is performed with the same datasets. Based on 

the result in R, ARIMA (0,1,2), ARIMA (0,1,3), and ARIMA 

(3,1,3) models obtained promising values, but ARIMA (1,1,3) 

was considered best suited for estimation based on low MAE 

and MSE. 

C. Model Checking 

Since ARIMA only models linear time series, the residual 

of the data is analyzed to check if volatility or nonlinear 

behavior exists. This step shall ensure that all nonlinear 

structures are reflected and addressed accordingly. In order to 

model volatility, the residual of the chosen ARIMA model is 

analyzed and modeled using GARCH. 

The ACF and PACF of ARIMA (1,1,3) residuals in Figure 

7 show that significant lags exist in the plots. The time series 

plot of residuals shows some cluster of volatility, particularly 

at lag 1, evident in both the plots. These findings were 
ascertained by the Ljung-Box test result in column 2 of Table 

2, particularly for ARIMA (1,1,3) with a p-value of 0.9483, 

which is > 5% level of significance. Hence, to model the 

volatility state of ARIMA (1,1,3) model to GARCH is 

justifiable. 

The models with favorable results for the above criteria 

were further narrowed down for selection based on the lowest 

AIC because the lower the AIC value the better since it 

indicates stronger evidence of a better fit. Comparing the 

AICs in Table 2, the GARCH (1,2) model was chosen out of 

the prospective GARCH models since it has the least value of 

AIC and therefore best suited for estimation. 

TABLE II 

PERFORMANCE OF THE PROSPECTIVE GARCH PREDICTION MODELS 

Model Log-likelihood AIC 

GARCH(1,1) -1106.61 1.125236 
GARCH(1,2) -1104.36 1.123964 
GARCH(2,1) -1106.97 1.126617 
GARCH(2,2) -1104.35 1.124977 

 

For this analysis, ARIMA (1,1,3) was chosen out of the 4 

prospective ARIMA models while GARCH(1,2) of the 

GARCH models. At this juncture, we will compare the results 

of ARIMA (1,1,3), and the combined ARIMA (1,1,3) and 

GARCH (1,2) model for forecasting. 

After successfully building and identifying the best 

prospective model as shown in Tables 1 and 2, the 

information is used to visualize and compare the trends. To 

make a clear comparison, the selected ARIMA (1,1,3), and 

the combined ARIMA (1,1,3)-GARCH (1,2) were built and 
used for prediction together with the actual data as presented 

in Figure 8. The black line is the actual data with vehicular 

flow data from March 2001- June 2015 only. We reduced the 

dataset by six (6) months or only 97% of the data for model 

forecasting to visually appreciate the accuracy result of the 

prospective prediction models. As can be noted in the plot, the 

forecast of the two prospective models is for the next two-

years only (from 2015), since we only consider 24 months 

prediction. The forecast result of ARIMA (1,1,3) bears a close 

resemblance to the actual value, whereas the hybrid 

ARIMA(1,1,3)-GARCH (1,2) shows that it failed to follow 

the actual data trend. 

Fig. 8 Actual and Predicted Monthly Vehicular Population for North EDSA 

IV. CONCLUSION 

The large volume of traffic data available has been 

evocative and appealing to researchers and alike. Hence, this 

study mined the monthly vehicular traffic datasets at North 

Avenue, EDSA northbound, Manila, Philippines, to examine 

the performance of the hybrid univariate time series ARIMA-
GARCH models as a prospective method to manage and 

forecast traffic flow. In consideration of the proposed 

framework and the Ljung-Box test results and ACF and PACF 

residual lags of the sample data, conditional variance or 

heteroscedasticity is evident. Hence, applying the GARCH 

method is justifiable before prediction. 

In conclusion, the most efficient and suitable model is 

ARIMA (1,1,3) based on low MAE and MSE, and the actual 

proximity or prediction accuracy as against the actual data. 

The combined ARIMA-GARCH model may have relatively 

exhibited promising prediction projecting the conditional 
mean and variance simultaneously, yet the result is 

incomparable with the best-selected ARIMA model. 

For future study, validating the hybrid model's accuracy is 

encouraged to quantify its forecasting potential further. 

Aggregating the traffic flow data to 5, 10, and 15 minutes 

intervals to better measure the traffic performance is a nice 

challenge. Another interesting direction would be to research 

the interdependency of adjacent or neighboring roads to 

traffic flow, inclement weather, or traffic accidents. Adding 

these factors can better quantify and improve prediction 

accuracy, possibly using multivariate time series. 

Moreover, this research opens up timely conjectures 
alongside the available ITS facilities as effective forecasting 

tools for better traffic interventions and improvement. 

Likewise, it is highly suggested that the Philippines consider 

starting a variety of open access platforms on which real-time 

traffic datasets are available to support initiatives in scholarly 

works. Doing so will help entice and encourage many local 

and international researchers to develop more traffic-related 

technologies and studies. 
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