
Vol.12 (2022) No. 1

ISSN: 2088-5334

Early Generation and Detection of Efficient IoT Device Fingerprints

Using Machine Learning

Vian Adnan Ferman a,*, Mohammed Ali Tawfeeq a
a Computer Engineering Department, Mustansiriyah University, Baghdad,10052, Iraq

 Corresponding author: *egma018@uomustansiriyah.edu.iq

Abstract— The proliferation of Internet of Things (IoT) markets in the last decade introduces new challenges for network traffic

analysis, and processing packet flows to identify IoT devices. This type of device suffers from scarcity, making them vulnerable to

spoofing operations. In such circumstances, the device can be recognized by identifying its fingerprint. In this paper, a novel idea to

elicit Device FingerPrint (DFP) is presented by extracting 30 features from the collected traffic packets of 19 IoT devices during setup

and startup operations. Raspberry Pi 3 Model B+ is configured as an access point to collect and analyze the traffic of seven networked

IoT devices using Wireshark Network Protocol Analyzer. Moreover, the rest of IoT devices traffic is taken from the publicly available

network traffic dataset. Each IoT device's feature extraction process starts from getting Extensible Authentication Protocol over LAN

(EAPOL) protocol, continuing with the other flowed protocols until the first session of Transmission Control Protocol (TCP) related to

that device is closed. Depending on some produced variation of device traffic features, 20 fingerprints for each device are created. The

probability theorem of Gaussian Naive Bayes (GNB) supervised machine learning is utilized to identify fingerprints of individual known

devices and isolate the unknown ones. The performance evaluation for the proposed technique was calculated based on two measures,

F1-score and identification accuracy. The average F1 score was around 0.99, while the overall identification accuracy rate was 98.35%.

Keywords— EAPOL protocol; gaussian naive bayes; IoT device fingerprint; network traffic analysis; Raspberry Pi.

Manuscript received 29 Jan. 2021; revised 6 Apr. 2021; accepted 25 May 2021. Date of publication 28 Feb. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The widespread availability with the huge diversity of

Internet of Things (IoT) devices over the past decade has

given attackers a great chance to hack IoT networks, bearing

in mind that many of these devices are characterized by their
limited resources and cheapness, which made them as open

gates to attackers [1]–[3]. The Experts revealed that IoT

devices' number may reach 75.4 billion by 2025, with a

fivefold rise in ten years [4]. Recently, hackers provided Mirai

botnets for renting over 400,000 IoT devices which was the

largest amount of attack traffic ever [5], [6]. Besides, more

than 600,000 worldwide devices were infected by Mirai, and

these devices were mainly used to launch distributed denial-

of-service attacks; therefore, the security of IoT networks has

become crucial [7], [8].

The first defensive line of IoT network is: identifying the
connected devices to isolate unauthorized devices. Network

administrators can use software like packet sniffing tools to

extract features and information from received packets of

devices on a network and know which devices are connected

or installed. However, it is time-consuming and is less

accurate when the number of IoT devices is increased or

installed new devices related to the same manufacturer (e.g.,

same prefixes of MAC addresses) of the existing devices [9],

[10]. Furthermore, IoT devices of the same vendor, especially

with the same functionality, have similar behaviors that

become so hard to distinguish unauthorized devices.

Moreover, it is so easy to spoof MAC addresses and change
the DHCP features of some devices such as laptops. These

reasons lead to a search for rapid and more precise techniques

to identify the connected devices in the IoT network

depending on their behaviors.

Device FingerPrint (DFP) uses a device-specific signature

or packet feature set necessary for network communication

[11]. The effective fingerprint of the device must confirm two

characteristics (i) extracting features that are difficult to forge,

(ii) fingerprint stability guaranteed despite the network

environment change [12]. Using the device fingerprint

technique, authorized and unauthorized devices can be

identified without relying on the knowledge of the device's
network or other assigned identities like Media Access

53

Control (MAC), Internet Protocol (IP), and International

Mobile Equipment Identity (IMEI).

This paper proposed an approach for passive DFPs

generation of 19 IoT devices (seven of them are lab

experimental devices while the remaining are from the free

online dataset: captures-Sentinel [13], [14]) during

installation and startup operations depending on a list of

protocols and some features extracted from these protocols.

After collecting, analyzing, and preprocessing packets,

different fingerprints are created for each device. Gaussian

Naive Bayes (GNB) machine learning algorithm is used for
identification purposes. Utilizing this approach, unknown

devices of unknown manufacturers were perfectly

distinguished. Meanwhile, the known devices were identified

even if they were from the same manufacturer and almost

even with a similar operation.

II. MATERIALS AND METHOD

This section is separated into five sub-sections. The related
works are summarized in sub-section A. A brief overview of

IoT devices and testbed devices is presented in sub-section B.

The proposed method based on collecting and analyzing the

network traffic is presented in sub-section C, feature

extraction and data preprocessing to create device fingerprints

are explained in sub-section D, and then the method of

identifying the IoT devices is presented in sub-sections E.

A. Related Works

The tremendous expansion in the uses of IoT devices made
them vulnerable to targeting, which made the trends of many

researchers focus on identifying these devices. Meidan et al.

[15] have used the Random Forest algorithm to identify IoT

devices by training a multi-stage meta classifier. Throughout

the first stage of the process, the classifier can differentiate

between traffic produced by IoT and non-IoT devices. The

overall classification model’s accuracy is about 99%. Lin and

Wang [16] tried to improve this work and reach a similar

accuracy using the decision tree model. Machine learning

techniques first identified 23 binary features from TCP/IP

packets, then investigated their correlation with device types,
device models, and device manufacturers.

Miettinen et al. [12] have presented an IoT SENTINEL

system capable of automatically recognizing the type of 27

devices connected to an Access point. The identification step

is done using a device fingerprint technique based on

passively observed network traffic. To create a fingerprint for

each IoT device during its setup phase, 23 features are

collected from successive 12 packets. The final dimension of

the fingerprint vector was 276. A Random Forest

classification algorithm is used to build the model. The

obtained average accuracy is 81.5%.

Shahid et al. [17] have applied six distinct machine
learning classifiers to identify the type of four IoT devices

connected to a smart home network by analyzing streams of

sent and received packets. A set of features are selected from

the generated network traffic data, such as the size of the first

N packets sent and received and their corresponding inter-

arrival times (IAT). Random Forest achieves the highest

accuracy. Also, Hamad et al. [18] have applied a set of

machine learning algorithms to automatically identify white-

listed device types and individual device instances connected

to a network. A fingerprint is created for each IoT device

using network flow data and extract unique flow-based

features from packets.

Kotak and Elovici [19] have automatically used deep

learning to recognize known and unknown IoT devices. The

communication behavior of IoT devices is represented using

small-size images constructed from the network traffic

payloads of IoT devices. Also, Bai et al. [9] have used deep

learning to recognize the semantic type of a device

automatically. The recoded accuracy is 74.8%.

Bezawada et al. [20] have proposed a technique to perform
device behavioral fingerprinting using two available features

from the network packets: packet header features and

payload-based features. The technique is based on choosing

five packets as the number of sessions packets whose features

correspond to the device's fingerprint, and for each of the five

packets, 20 features are extracted. A machine learning model

is used to identify similar device types.

Salman et al. [21] have presented a framework for

identifying IoT devices and malicious traffic detection. The

proposed framework extracts packet size, IAT, the direction,

and the transport protocol per every 16 packets of a flow to
identify the source, the type of the generated traffic, and to

detect network attacks. Distinct machine learning algorithms

are applied; however, Random Forest results achieved the

best accuracy.

Deng et al. [22] have designed IoTSpot to determine the

IoT devices using their network traffic data. IoTSpot first

extracts 19 traffic measurement metrics from TCP flows, then

finds 11 important features out of them using Principal

Component Analysis algorithm, after that leverages Random

Forest modeling to construct a customized network traffic

model for each IoT device.
Cheng et al. [23] have proposed a real-time method for IoT

devices' auto-detection and classification system. This

approach is accomplished by using passive listening to collect

messages received from various IoT devices, then using a

multi-classification recognition method to identify these

devices based on the differences in the header fields of various

devices.

Bao et al. [24] have proposed a hybrid supervised and

unsupervised machine learning framework that uses network

traffic to detect anomalies to secure IoT networks against

unauthorized device access. This approach combines deep

neural networks with clustering to classify 10 different IoT
devices into known and unknown device categories and

employs the Autoencoder technique to reduce the

dimensionality of the dataset.

Most of the published research did not address the

identification of IoT devices during the setup process, while

some focused on identifying the genre of IoT devices or did

not record high accuracy in identifying devices that have the

same model. Furthermore, the identification of DFP, created

during startup time requires high computational time due to

their high dimension. Besides, IAT is considered in some

research and uses statistical operations to increase its weight.
IAT is an improper feature because it may conflict with other

devices (especially devices within the same model or

manufacturers) when extending the IoT system. Sometimes,

IAT is an inaccurate feature within environments that suffer

from inferior Internet service. Moreover, in some research,

54

multiple features are extracted and generated, then a specific

model for features dimensionality reduction selects the

important one, increasing computational operations and time.
The main contribution of this study is to create a strong

fingerprint for each IoT device utilized in this work during the

setup stage. This fingerprint is suitable in dimension and

stable even when the network environment changes. At the

same time, the ability to detect and identify the individual

device with high accuracy rates based on the probability

theorem of Gaussian Naive Bayes.

B. Utilized Devices

IoT device refers to any device with an IP address used to

connect to a network (e.g., smart switch, a smart plug, camera,

home appliance, etc.) or any device that does not necessarily

have an IP address. However, it can connect and send

information to another device provided that the other device

can connect to the internet (e.g., a smartwatch connected with

the smartphone via Bluetooth). So connections of IoT devices

may be through Wi-Fi based on IEEE 802.11n, Bluetooth,
Zigbee, NFC., etc.

Seven IoT test lab devices with Wi-Fi connection types

have been used in this work. The dataset is also enriched with

the traffic of 12 IoT captures-Sentinel datasets (nine known

and authorized devices, while the rest are considered

unauthorized devices). A list with some information about all

of these devices is shown in Table.1

To collect the IoT test lab devices traffics, Raspberry-Pi

Model B+ has been used, a lightweight, single-board

computer that supports 802.11.b/g/n/ac wireless LAN.

Raspbian OS is installed on Raspberry Pi then configured as

a routed wireless access point. The requirements for using a
Raspberry Pi as an access point are not too high: the device

needs to be connected via an Ethernet cable, and some

configurations have to be set up after updating the operating

system. A script is written, which can be run on the device

without anything special installed. The configuration steps

include network management services, defining the wireless

interface IP, enabling routing and IP masquerading,

configuring the services of DHCP and DNS [25].

After these steps, IoT devices can connect to Raspberry pi

and take IP addresses. Wireshark Network Protocol Analyzer

is used to read, collect, and analyze device traffic.

TABLE I

LIST OF USED IOT DEVICES

 Manufacturer Device Name

1

IoT test
Lab

devices

SonoFF

SonoFF_Power_Strip
2 SonoFF_Power_Plug
3 SonoFF_Smart_Light_Bulb

4
SonoFF_Smart_Switch
with Temperature Sensor

5
Google

Assistance
Google_Home_Mini

6 Aswar Aswar_Camera
7 TEKIN TEKIN-Plug

8

IoT-
Sentinel
devises
traffic

D-Link

D-LinkCam
9 D-LinkSensor
10 D-LinkSwitch
11 D-LinkWaterSensor

12 Edimax EdimaxPlug1101W
13 Ednet EdnetGateway
14

TP-Link
TP-LinkPlugHS100

15 TP-LinkPlugHS110
16 WeMo WeMoSwitch
17 *iKettle iKettle2
18 *SmarterCoffee SmarterCoffee
19 *Withings Withings

Where * refers to unauthorized devices.

C. Network traffic collection and analysis

After installing the IoT devices, the produced traffic from

each device is collected in the form of a Packet Capture
(PCAP) file; a sample of such packets is shown in Fig. 1. After

that, the packets are analyzed. It is found that the number of

packets per time rate differs from one device to another but

all with high rates during installing or startup operation.

Fig. 1 Sample of captured packets during the startup operation

Furthermore, the packet rate of some devices becomes
exceptionally low after the startup process is completed

depending on the nature of the functionality of each IoT

device. Smart switches, smart bulbs, smart power strips, smart

plugs, and even IoT sensors are low data rate devices

compared with Google Home Mini and cameras. Thus, it may

be difficult to create good fingerprints for low-traffic rate
devices. Moreover, extracting the device's fingerprint in the

startup stage gives a better chance of detecting intrusive or

hacked devices early. Fig.2 shows the traffic of the startup

time for some of the lab IoT devices within 250 seconds.

55

Fig. 2 Traffic of some IoT devices during 250 sec in startup time.

During the connection of any device to an access point,

Extensible Authentication Protocol over LAN (EAPOL)

protocol starts sending packets from the authenticator (access

point) to the supplicant (device) to generate some encryption

keys which can be used to encrypt actual data transmitted over

a wireless medium so that 4-way handshake will be accrued.

Creating DFP is begun by getting EAPOL packet and

continued with the following packets that carry important

protocols and features to complete connection with the
internet. Besides the lab IoT devices, 12 of the 31 devices

collected traffics of captures_IoT-Sentinel are taken (the

remaining public traffics datasets are not taken since they are

either without EAPOL packets or contain a few packets).

While traffics are analyzed, some properties are seen as

important features and should be considered to create a strong

DFP like:

 First TCP session properties as the number of packets

in the session, packet length, segment length, window

size, and protocol type used to depend on ports type

(Well-known port like 443 for HTTPS and 80 for HTTP,
or TCP with Dynamic ports).

 In some devices, UDP data packets are transmitted

between the first TCP session, so their properties are

also important, as the number of packets carrying UDP

data with the same port numbers as the first UDP data

packet and data length.

In addition to the previous, some of the first TCP sessions

of the captures_IoT-Sentinel dataset (WeMoSwitch, TP-

LinkPlugHS100, and TP-LinkPlugHS110) are with a large

number of packets or may continue with no packet carrying

FIN flag. Only the first 20 TCP packets’ details are taken in
these cases. Also, the first TCP session of D-LinkCam is

found with unstable protocol because it may be HTTPS or

HTTP. Fig. 3 depicts the number of authorized IoT devices

for each port type of the first TCP session.

Fig. 3 Number of IoT devices for each port type of First TCP session.

Meanwhile, Fig.4 shows the number of packets transmitted

within the session, excluding TP-LinkPlugHS100, TP-

LinkPlugHS110, and D-LinkCam.

Fig. 4 Number of packets in the first TCP session of each device.

There are differences in port types and the number of

packets in the first TCP session. On the other hand, the

similarity is found especially between devices of the same

manufacturer, so other features are considered like segment
length, window size, time to live, DNS Query Name, and

DHCP details. In this work, 25 features are extracted from

each IoT device’s traffic during the initial step, as shown in

Table.2

TABLE II

THE INITIAL LIST OF FEATURES

Feature Details
No. of

Features

Data Link layer: Source and destination MAC
addresses, ARP protocol, packet length if TCP.

4

Network layer: Source and destination IP

addresses, EAPOL, ICMPV6, IGMPv2, IGMPv3.
6

Transport layer: UDP data, UDP data length,
TCP segment length, TCP window size.

4

Application layer protocols: DHCP, DNS (or
MDNS).

2

IP: Time To Live (TTL). 1
TCP: TCP with HTTPS protocol, TCP with HTTP
protocol, TCP with Dynamic source and

destination ports

3

DHCP: Length of DHCP Parameter Request List
(LDHCPPRL), Maximum DHCP Message Size
(MDHCPMS), Vendor class identifier (VCI), and
Host Name (H).

4

DNS or MDNS: Query Name. 1

D. DFP Generation

The proposed technique for generating the fingerprint of

each IoT device relies on a two-phase completion (using

python scapy): Feature extraction and data preprocessing.

The DFP generation procedure is clarified in Fig.5.

1) Feature Extraction: Feature extraction of each device is

begun from getting the EAPOL protocol packet. Then, the
new MAC address is saved, and other packets related to that

address are checked until the first TCP session is closed with

FIN flag. If there is no packet with FIN flag or long TCP

session, only 20 TCP packets are taken. Furthermore, if UDP

4

5

4

2

1

Well known - HTTPs

Well known - HTTP

Dynamic ports

Dynamic ports with no FIN flag

Well known (HTTPs or HTTP)

0

10

20

30

40

50

60

70

80

90

13 13 13 13
10

49

10 10 10
6

13
10

81

n
u

m
b
er

 o
f

p
a
k

et
s

56

data packets were coming in between TCP session or there are

no TCP packets and all packets are UDP data packets such as

in some cases of a camera, so source and destination port

numbers are stored and collected all UDP data coming or sent

from that device with the same stored port numbers.

Initially, 2D matrix (M) with 25 columns and variable

length of rows is created. Each row represents packet (pkt)

with 25 features (F = {f1, f2, f3, …, f25}) which are listed in

Table 2. In this phase, place 1 for all protocols in the features

list and also for TCP packets with HTTPS protocol, HTTP

protocol, or Dynamic source and destination ports, UDP data,

and Vendor class identifier (these protocols and features are

encoded as logical features). The values of other features are

recorded either as numeric values like TCP packet length,

segment size, window size, UDP data length, TTL, Length of

DHCP Parameter Request List, and Maximum DHCP

Message Size or as text like MAC addresses, IP addresses,

DHCP Host Name, and DNS (or MDNS) Query name.

Fig. 5 DFP generation phases

All unwanted and repetitive rows are deleted after

representing all features and stopping conditions accrued. The

created matrix (Mn*25) has mixed data types and different row

sizes depending on the device type and even within the same

device type since some protocol packets appear or are absent

each time the traffics is collected. Eq. (1) represents the

created matrix in this phase, where n represents the number of

packets approved for each device.

f nf nf n

fff

fff

pktn

pkt

pkt

M

25,2,1,

25,22,21,2

25,12,11,1

2

1

L

MMMM

L

L

M
 (1)

2) Data Preprocessing: This phase involves performing

some statistical calculations on the features extracted in the

Collected

packets

pktn

…

Pkt2

Pkt1

Second phase

Record the values of other features which are

either numeric values or text (13 features)
Place 1 if logical features are exist (12 features)

Check all remaining packets related to stored MAC address until TCP with FIN flag is found

Store device’s MAC address

Yes

No
IF

EAPOL

pkt

Search EAPOL pkt

Convert M to vector

Normalize vector

First phase

 For all absence features 0 values are placed.
 After representing all features and stopping condition accrued, all unwanted and repetitive rows are

deleted, so the created matrix (Mn*25) with variable length of t rows and mix data types.

Final DFP vector with 30 features

57

previous phase to generate additional features. After that, all

the extracted features for each device in both phases are

converted to a single vector which represents the DFP of that

device. The features added in this phase are prepared and

calculated as follows:

 Adding all elements of each column that contain logical

value 1,0 so the count of 12 features (columns) are

gotten.

 The columns of Maximum DHCP message size and

length of the DHCP parameter request list contain (0)

elements except that one cell in each column contains

value rather than 0; therefore, those values are taken.

 Min, max, and average are computed from values in the

TCP packet length, window size, and TTL column

columns. Also, min and max of UDP data length are

found. An average segment length column is obtained.
 DHCP Host Name is converted to ASCII code and

found min (MinH), max (MaxH), average (AvgH), and

length (LH) of the result.

 Merge columns of source and destination MAC

addresses, remove repetitive addresses, and then find

the remaining addresses count. The same procedure is

done to the source and destination IP address columns.

 Number of rows (n) is added.

 Since the protocol ICMPv6 is noticeable in some

devices and not on others bearing the same brand, it

may be considered an important feature that should be

exploited to strengthen the proposed DFP. The
locations (row indices of matrix M) of presented

ICMPv6 are taken and concatenated to represent one

number. If there are more than three ICMPv6 packets,

only the first three locations are taken then divided by

the max location for early normalization purposes and

appended to the fingerprint vector (e.g., if the first three

ICMPv6 packets appear in locations i, j, and k

respectively, so they are converted to ijk/k).

 DNS query names may be unique for some devices with

the same manufacturer and function, but some devices

like cameras have more DNS query packets requests to
resolve DNS query names to their relevant IP address.

A lookup table is created that contains all query names

giving a specific number to each of them, and if there

is a new query name, 0 value is placed, and also DHCP

features are cleared to distinguish unknown devices in

a predication phase.

 Another field associated with the DNS query name is

added to distinguish a new device with the same known

brand. It is found by computing the number of DNS

packets, but if one of DNS query names is not found in

the lookup table, 0 value is placed.

 To reduce the similarities between DFPs, the values of
DHCP features are reduced to one value by taking the

average value (Average (LDHCPPRL, MDHCPMS,

VCI, MinH, MaxH, AvgH, LH)).

 The final DFP vector is of 30 features (V = [f1, f2, f3, …,

f30]) that contains a combination of small and high

values, so normalization is required. MinMaxScaler

and StandardScaler are applied to compare the accuracy

resulting from each of them.

E. IoT Device Identification

In this work, the Naive Bayes method has been adopted to

identify the IoT devices based on their fingerprint. Naive

Bayes is a supervised machine learning algorithm used for

classifying binary and multiclass classification problems
based on the probability’s principle. The computed

probabilities are saved in a list for a learned model, including

classes’ probabilities and conditional probabilities for each

feature value given each class value.

So the posterior probabilities are calculated using this list as

shown in Eq. (2).

P(V)

)Cn p()Cnp(V
V)=Cnp(

|
| (2)

where Cn is the class name or the device name, and (V) is the
features’ vector (P(V|Cn)= P(f1|Cn) × P(f2|Cn) × P(fm|Cn)

× … × P(f30|Cn)).

Gaussian Naive Bayes is used for multiclass classification

since the proposed features’ values are real values. Normal

distribution is needed to estimate mean (μ) and standard

deviation (σ) for each input feature in the training data for

each class. Eq. (3) represents Gaussian Probability Density

Function (Gaussian PDF) for each feature, where x is the

input value for the input feature.

 e
x

 2

)(2

22

1
),PDF(x,

 (3)

After calculating the posterior probabilities for different

classes, the class with the maximum probability is selected

according to Eq. (4), where P (V) is dropped as it is constant
and only used for normalization purposes [26],[27].

))Cnp()Cn |(p(VMax) CnMAP((4)

Gaussian Naive Bayes is implemented using scikit-learn

library. Gaussian noise (with μ = 0 and σ =1) is added

randomly for building a robust model.

To assess the performance of the proposed approach, the

following metrics were used [21]:

 Accuracy =
�	
��

�	
��
�	
��
× 100% (5)

 Precision =
�	

�	
�	
 (6)

 Recall =
�	

�	
��
 (7)

 �� − ���� =
!×Precision×Recall

Precision
Recall
 (8)

TP, FP, TN, and FN are truly positive, false positive, true

negative, and false negative. A block diagram representing the

proposed IoT device identification system is shown in Fig. 6.

58

Fig. 6 Proposed system of IoT device identification

III. RESULTS AND DISCUSSION

The generated DFPs data are splitted into 75% for training

data and 25% for testing data. The training process is done in

two modes: before and after adding Gaussian noise. The

obtained accuracy before adding noise is about 96% on

average after data normalization with MinMaxScaler and

StandardScaler, while it is about 97.5% with MinMaxScaler,
and 98.35% with StandardScaler after noise addition. The

purpose of adding Gaussian noise in this approach is to raise

the model accuracy rate and make a robust model that can

predict devices’ fingerprints if features’ values are changed

when dealing with wireless data traffic. Furthermore, noise

addition and normalizing features during preprocessing lead

to decrease misclassifications of devices with the same model

as shown in Table 3, in which the F1-score and accuracy of

each device are computed as an average for six times of the

model execution.

TABLE III

IDENTIFICATION RESULT OF GNB MODEL

Device Name

Results before

noise addition

Results after

noise addition

F1-

score
Accuracy

F1-

score
Accuracy

Aswar_Camera 1 1 0.99 0.99
D-LinkCam 0.98 0.99 1 1
D-LinkSensor 0.96 0.99 1 1
D-LinkSwitch 0.95 0.99 1 1
D-LinkWaterSensor 0.95 0.99 1 1

EdimaxPlug1101W 1 1 1 1
EdnetGateway 1 1 1 1
Google_Home_Mini 0.98 1 1 1
SonoFF_Power_Plug 0.90 0.99 0.98 0.99
SonoFF_Power_Strip 0.94 0.99 0.95 0.99
SonoFF_Smart_Light_
Bulb

0.94 0.98 0.95 0.99

SonoFF_Smart_Switch 0.97 0.99 0.99 1

TEKIN-Plug 0.99 1 1 1
TP-LinkPlugHS100 0.93 0.99 0.95 0.99
TP-LinkPlugHS110 0.97 0.99 0.96 0.99
WeMoSwitch 0.98 0.99 0.99 0.99
Unknown 1 1 1 1

Fig. 7 Confusion matrix of GNB model after adding Gaussian noise.

Raspberry

Pi3 B+ as

an access
point

Data

collection
Using

Wireshar

k for

collecting

traffic

Device

fingerprint
generation

V = [f
1
, f

2
, f

3
, …, f

30
]

Gaussian

Naive

Bayes
classifier

SonoFF

Power Strip

SonoFF

Smart

Switch with

Temp Sensor
Unknown

WeMo

Switch

TPLink

PlugHS110

Aswar Camera

Google
Home_Mini

SonoFF Smart

Light_Bulb

SonoFF

PowerPlug

Ednet
Gateway

D-Link
Sensor

TEKIN-

Plug

DLink

WaterSensor

TP-Link

PlugHS100

DLink Cam
EdimaxPlug

1101W

D-link

Switch

IoT
Devices

Test Lab IoT devices

IoT-

Sentinel

devices
Traffic

Things

Data

Analysis

Normalization

59

While testing data and both with and without noise,

sometimes only one of WeMoSwitch DFP is identified as TP-

LinkPlugHS100 DFP or Aswar_Camera DFP. Furthermore,

misclassification accrued between devices with the same

model as SonoFF or TP-Link devices even after noise

addition, but still, they are given more acceptable accuracy.

To differentiate the authorized devices from unauthorized,

DFPs are created for three IoT devices traffic (iKettle2,

SmarterCoffee, and Withings) taken from captures_IoT-

Sentinel. During the preprocessing step, DNS Query Names

of these devices traffic is not found in the lookup table file, so
0 value is placed, and there is no need to check DHCP features

of unknown devices. This way, unauthorized devices are

identified with a 100% F1- score. Fig.7 shows the confusion

matrix of this work after noise addition and applying

StandardScaler. Only one identification error relevant to the

SonoFF model has occurred.

IV. CONCLUSION

In this study, real-time IoT device fingerprints are created

during the setup and startup phases, then using Gaussian

Naive Bayes machine learning for identification purposes.

This work can identify the fingerprints of individual IoT

devices with 98.35% as an average accuracy. The proposed

model improves the previous work [13] by extracting the

features as soon as getting the EAPOL packet. At the same

time, it does not rely on all features, but instead, it generates

and uses new features. The creation of a lookup table for DNS

Query Names makes a good feature to distinguish devices’

models and isolate the unknown devices while reducing

DHCP features to be one feature, and the addition of Gaussian
noise and normalization during data preprocessing increased

the contrast between devices of the same model. The feature

aggregation method of converting a matrix to be a 30-

dimensional vector decreases the computational operations

and time and increases the effect of some features that may

lose their importance by a high dimensionality vector. As a

suggestion for future work, the creation of DFP can be

extended to cover the transmitted packets during the device’s

running time and the installation or setup time.

ACKNOWLEDGMENT

The authors are grateful to Mustansiriyah University for

supporting this work. Also, we appreciate the effort made to

make the captures_IoT-Sentinel pcap dataset available, which

enriches our dataset.

REFERENCES

[1] A. Aksoy and M. H. Gunes, “Automated IoT device identification

using network traffic,” in ICC 2019-2019 IEEE International

Conference on Communications (ICC), 2019, pp. 1–7.

[2] S. Zeadally and M. Tsikerdekis, “Securing Internet of Things (IoT)

with machine learning,” Int. J. Commun. Syst., vol. 33, no. 1, p. e4169,

2020.

[3] A. Sivanathan et al., “Classifying IoT devices in smart environments

using network traffic characteristics,” IEEE Trans. Mob. Comput., vol.

18, no. 8, pp. 1745–1759, 2018.

[4] T. Alam, “A reliable communication framework and its use in internet

of things (IoT),” CSEIT1835111| Receiv., vol. 10, pp. 450–456, 2018.

[5] B. Charyyev and M. H. Gunes, “IoT Traffic Flow Identification using

Locality Sensitive Hashes,” in ICC 2020-2020 IEEE International

Conference on Communications (ICC), 2020, pp. 1–6.

[6] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:

Mirai and other botnets,” Computer (Long. Beach. Calif)., vol. 50, no.

7, pp. 80–84, 2017.

[7] M. Antonakakis et al., “Understanding the mirai botnet,” in 26th

{USENIX} security symposium ({USENIX} Security 17), 2017, pp.

1093–1110.

[8] M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of service

attacks and its defenses in IoT: a survey,” J. Supercomput., pp. 1–44,

2019.

[9] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang, “Automatic

device classification from network traffic streams of internet of things,”

in 2018 IEEE 43rd conference on local computer networks (LCN),

2018, pp. 1–9.

[10] A. Sivanathan et al., “Characterizing and classifying IoT traffic in

smart cities and campuses,” in 2017 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2017, pp. 559–

564.

[11] S. Aneja, N. Aneja, and M. S. Islam, “IoT device fingerprint using

deep learning,” in 2018 IEEE International Conference on Internet of

Things and Intelligence System (IOTAIS), 2018, pp. 174–179.

[12] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device fingerprinting in

wireless networks: Challenges and opportunities,” IEEE Commun.

Surv. Tutorials, vol. 18, no. 1, pp. 94–104, 2015.

[13] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S.

Tarkoma, “IoT sentinel: Automated device-type identification for

security enforcement in IoT,” in 2017 IEEE 37th International

Conference on Distributed Computing Systems (ICDCS), 2017, pp.

2177–2184.

[14] “The kaggle website,” 2021.

[15] Y. Meidan et al., “ProfilIoT: a machine learning approach for IoT

device identification based on network traffic analysis,” in

Proceedings of the symposium on applied computing, 2017, pp. 506–

509.

[16] Y. C. Lin and F. Wang, “Machine Learning Techniques for

Recognizing IoT Devices,” in International Computer Symposium,

2018, pp. 673–680.

[17] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar, “Iot devices

recognition through network traffic analysis,” in 2018 IEEE

International Conference on Big Data (Big Data), 2018, pp. 5187–

5192.

[18] S. A. Hamad, W. E. Zhang, Q. Z. Sheng, and S. Nepal, “IoT device

Identification via network-flow based fingerprinting and learning,” in

2019 18th IEEE International Conference On Trust, Security And

Privacy In Computing And Communications/13th IEEE International

Conference On Big Data Science And Engineering

(TrustCom/BigDataSE), 2019, pp. 103–111.

[19] J. Kotak and Y. Elovici, “IoT device identification using deep learning,”

in Conference on Complex, Intelligent, and Software Intensive Systems,

2020, pp. 76–86.

[20] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray,

“Iotsense: Behavioral fingerprinting of IoT devices,” arXiv Prepr.

arXiv1804.03852, 2018.

[21] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A machine

learning-based framework for IoT device identification and abnormal

traffic detection,” Trans. Emerg. Telecommun. Technol., p. e3743,

2019.

[22] L. Deng, Y. Feng, D. Chen, and N. Rishe, “IoTspot: Identifying the

IoT devices using their anonymous network traffic data,” in MILCOM

2019-2019 IEEE Military Communications Conference (MILCOM),

2019, pp. 1–6.

[23] W. Cheng, Z. Ding, C. Xu, X. Wu, Y. Xia, and J. Mao, “RAFM: A

Real-time Auto Detecting and Fingerprinting Method for IoT devices,”

in Journal of Physics: Conference Series, 2020, vol. 1518, no. 1, p.

12043.

[24] J. Bao, B. Hamdaoui, and W.-K. Wong, “IoT device type identification

using hybrid deep learning approach for increased IoT security,” in

2020 International Wireless Communications and Mobile Computing

(IWCMC), 2020, pp. 565–570.

[25] L. Nagy and A. Coleşa, “Router-based IoT Security using Raspberry

Pi,” in 2019 18th RoEduNet Conference: Networking in Education and

Research (RoEduNet), 2019, pp. 1–6.

[26] J. Brownlee, “Naive Bayes,” in Master Machine Learning Algorithms:

discover how they work and implement them from scratch. 2016.

[27] F.-J. Yang, “An implementation of naive Bayes classifier,” in 2018

International Conference on Computational Science and

Computational Intelligence (CSCI), 2018, pp. 301–306.

60

