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Abstract— The proliferation of Internet of Things (IoT) markets in the last decade introduces new challenges for network traffic 

analysis, and processing packet flows to identify IoT devices. This type of device suffers from scarcity, making them vulnerable to 

spoofing operations. In such circumstances, the device can be recognized by identifying its fingerprint. In this paper, a novel idea to 

elicit Device FingerPrint (DFP) is presented by extracting 30 features from the collected traffic packets of 19 IoT devices during setup 

and startup operations. Raspberry Pi 3 Model B+ is configured as an access point to collect and analyze the traffic of seven networked 

IoT devices using Wireshark Network Protocol Analyzer. Moreover, the rest of IoT devices traffic is taken from the publicly available 

network traffic dataset. Each IoT device's feature extraction process starts from getting Extensible Authentication Protocol over LAN 

(EAPOL) protocol, continuing with the other flowed protocols until the first session of Transmission Control Protocol (TCP) related to 

that device is closed. Depending on some produced variation of device traffic features, 20 fingerprints for each device are created. The 

probability theorem of Gaussian Naive Bayes (GNB) supervised machine learning is utilized to identify fingerprints of individual known 

devices and isolate the unknown ones. The performance evaluation for the proposed technique was calculated based on two measures, 

F1-score and identification accuracy. The average F1 score was around 0.99, while the overall identification accuracy rate was 98.35%. 
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I. INTRODUCTION

The widespread availability with the huge diversity of 

Internet of Things (IoT) devices over the past decade has 

given attackers a great chance to hack IoT networks, bearing 

in mind that many of these devices are characterized by their 
limited resources and cheapness, which made them as open 

gates to attackers [1]–[3]. The Experts revealed that IoT 

devices' number may reach 75.4 billion by 2025, with a 

fivefold rise in ten years [4]. Recently, hackers provided Mirai 

botnets for renting over 400,000 IoT devices which was the 

largest amount of attack traffic ever [5], [6]. Besides, more 

than 600,000 worldwide devices were infected by Mirai, and 

these devices were mainly used to launch distributed denial-

of-service attacks; therefore, the security of IoT networks has 

become crucial [7], [8]. 

The first defensive line of IoT network is: identifying the 
connected devices to isolate unauthorized devices. Network 

administrators can use software like packet sniffing tools to 

extract features and information from received packets of 

devices on a network and know which devices are connected 

or installed. However, it is time-consuming and is less 

accurate when the number of IoT devices is increased or 

installed new devices related to the same manufacturer (e.g., 

same prefixes of MAC addresses) of the existing devices [9], 

[10]. Furthermore, IoT devices of the same vendor, especially 

with the same functionality, have similar behaviors that 

become so hard to distinguish unauthorized devices. 

Moreover, it is so easy to spoof MAC addresses and change 
the DHCP features of some devices such as laptops. These 

reasons lead to a search for rapid and more precise techniques 

to identify the connected devices in the IoT network 

depending on their behaviors. 

Device FingerPrint (DFP) uses a device-specific signature 

or packet feature set necessary for network communication 

[11]. The effective fingerprint of the device must confirm two 

characteristics (i) extracting features that are difficult to forge, 

(ii) fingerprint stability guaranteed despite the network

environment change [12]. Using the device fingerprint

technique, authorized and unauthorized devices can be

identified without relying on the knowledge of the device's
network or other assigned identities like Media Access
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Control (MAC), Internet Protocol (IP), and International 

Mobile Equipment Identity (IMEI). 

This paper proposed an approach for passive DFPs 

generation of 19 IoT devices (seven of them are lab 

experimental devices while the remaining are from the free 

online dataset: captures-Sentinel [13], [14]) during 

installation and startup operations depending on a list of 

protocols and some features extracted from these protocols. 

After collecting, analyzing, and preprocessing packets, 

different fingerprints are created for each device. Gaussian 

Naive Bayes (GNB) machine learning algorithm is used for 
identification purposes. Utilizing this approach, unknown 

devices of unknown manufacturers were perfectly 

distinguished. Meanwhile, the known devices were identified 

even if they were from the same manufacturer and almost 

even with a similar operation.  

II. MATERIALS AND METHOD 

This section is separated into five sub-sections. The related 
works are summarized in sub-section A. A brief overview of 

IoT devices and testbed devices is presented in sub-section B. 

The proposed method based on collecting and analyzing the 

network traffic is presented in sub-section C, feature 

extraction and data preprocessing to create device fingerprints 

are explained in sub-section D, and then the method of 

identifying the IoT devices is presented in sub-sections E. 

A. Related Works 

The tremendous expansion in the uses of IoT devices made 
them vulnerable to targeting, which made the trends of many 

researchers focus on identifying these devices. Meidan et al. 

[15] have used the Random Forest algorithm to identify IoT 

devices by training a multi-stage meta classifier. Throughout 

the first stage of the process, the classifier can differentiate 

between traffic produced by IoT and non-IoT devices. The 

overall classification model’s accuracy is about 99%. Lin and 

Wang [16] tried to improve this work and reach a similar 

accuracy using the decision tree model. Machine learning 

techniques first identified 23 binary features from TCP/IP 

packets, then investigated their correlation with device types, 
device models, and device manufacturers. 

Miettinen et al. [12] have presented an IoT SENTINEL 

system capable of automatically recognizing the type of 27 

devices connected to an Access point. The identification step 

is done using a device fingerprint technique based on 

passively observed network traffic. To create a fingerprint for 

each IoT device during its setup phase, 23 features are 

collected from successive 12 packets. The final dimension of 

the fingerprint vector was 276. A Random Forest 

classification algorithm is used to build the model. The 

obtained average accuracy is 81.5%.  

Shahid et al. [17] have applied six distinct machine 
learning classifiers to identify the type of four IoT devices 

connected to a smart home network by analyzing streams of 

sent and received packets. A set of features are selected from 

the generated network traffic data, such as the size of the first 

N packets sent and received and their corresponding inter-

arrival times (IAT). Random Forest achieves the highest 

accuracy. Also, Hamad et al. [18] have applied a set of 

machine learning algorithms to automatically identify white-

listed device types and individual device instances connected 

to a network. A fingerprint is created for each IoT device 

using network flow data and extract unique flow-based 

features from packets. 

Kotak and Elovici [19] have automatically used deep 

learning to recognize known and unknown IoT devices. The 

communication behavior of IoT devices is represented using 

small-size images constructed from the network traffic 

payloads of IoT devices. Also, Bai et al. [9] have used deep 

learning to recognize the semantic type of a device 

automatically. The recoded accuracy is 74.8%. 

Bezawada et al. [20] have proposed a technique to perform 
device behavioral fingerprinting using two available features 

from the network packets: packet header features and 

payload-based features. The technique is based on choosing 

five packets as the number of sessions packets whose features 

correspond to the device's fingerprint, and for each of the five 

packets, 20 features are extracted. A machine learning model 

is used to identify similar device types. 

Salman et al. [21] have presented a framework for 

identifying IoT devices and malicious traffic detection. The 

proposed framework extracts packet size, IAT, the direction, 

and the transport protocol per every 16 packets of a flow to 
identify the source, the type of the generated traffic, and to 

detect network attacks. Distinct machine learning algorithms 

are applied; however, Random Forest results achieved the 

best accuracy. 

Deng et al. [22] have designed IoTSpot to determine the 

IoT devices using their network traffic data. IoTSpot first 

extracts 19 traffic measurement metrics from TCP flows, then 

finds 11 important features out of them using Principal 

Component Analysis algorithm, after that leverages Random 

Forest modeling to construct a customized network traffic 

model for each IoT device. 
Cheng et al. [23] have proposed a real-time method for IoT 

devices' auto-detection and classification system. This 

approach is accomplished by using passive listening to collect 

messages received from various IoT devices, then using a 

multi-classification recognition method to identify these 

devices based on the differences in the header fields of various 

devices. 

Bao et al. [24] have proposed a hybrid supervised and 

unsupervised machine learning framework that uses network 

traffic to detect anomalies to secure IoT networks against 

unauthorized device access. This approach combines deep 

neural networks with clustering to classify 10 different IoT 
devices into known and unknown device categories and 

employs the Autoencoder technique to reduce the 

dimensionality of the dataset. 

Most of the published research did not address the 

identification of IoT devices during the setup process, while 

some focused on identifying the genre of IoT devices or did 

not record high accuracy in identifying devices that have the 

same model. Furthermore, the identification of DFP, created 

during startup time requires high computational time due to 

their high dimension. Besides, IAT is considered in some 

research and uses statistical operations to increase its weight. 
IAT is an improper feature because it may conflict with other 

devices (especially devices within the same model or 

manufacturers) when extending the IoT system. Sometimes, 

IAT is an inaccurate feature within environments that suffer 

from inferior Internet service. Moreover, in some research, 
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multiple features are extracted and generated, then a specific 

model for features dimensionality reduction selects the 

important one, increasing computational operations and time. 
The main contribution of this study is to create a strong 

fingerprint for each IoT device utilized in this work during the 

setup stage. This fingerprint is suitable in dimension and 

stable even when the network environment changes. At the 

same time, the ability to detect and identify the individual 

device with high accuracy rates based on the probability 

theorem of Gaussian Naive Bayes. 

B. Utilized Devices 

IoT device refers to any device with an IP address used to 

connect to a network (e.g., smart switch, a smart plug, camera, 

home appliance, etc.) or any device that does not necessarily 

have an IP address. However, it can connect and send 

information to another device provided that the other device 

can connect to the internet (e.g., a smartwatch connected with 

the smartphone via Bluetooth). So connections of IoT devices 

may be through Wi-Fi based on IEEE 802.11n, Bluetooth, 
Zigbee, NFC., etc. 

Seven IoT test lab devices with Wi-Fi connection types 

have been used in this work. The dataset is also enriched with 

the traffic of 12 IoT captures-Sentinel datasets (nine known 

and authorized devices, while the rest are considered 

unauthorized devices). A list with some information about all 

of these devices is shown in Table.1 

To collect the IoT test lab devices traffics, Raspberry-Pi 

Model B+ has been used, a lightweight, single-board 

computer that supports 802.11.b/g/n/ac wireless LAN. 

Raspbian OS is installed on Raspberry Pi then configured as 

a routed wireless access point. The requirements for using a 
Raspberry Pi as an access point are not too high: the device 

needs to be connected via an Ethernet cable, and some 

configurations have to be set up after updating the operating 

system. A script is written, which can be run on the device 

without anything special installed. The configuration steps 

include network management services, defining the wireless 

interface IP, enabling routing and IP masquerading, 

configuring the services of DHCP and DNS [25]. 

After these steps, IoT devices can connect to Raspberry pi 

and take IP addresses. Wireshark Network Protocol Analyzer 

is used to read, collect, and analyze device traffic. 

TABLE I 

LIST OF USED IOT DEVICES 

  Manufacturer Device Name 

1 

IoT test 
Lab 

devices 

SonoFF 

SonoFF_Power_Strip 
2 SonoFF_Power_Plug 
3 SonoFF_Smart_Light_Bulb 

4 
SonoFF_Smart_Switch 
with Temperature Sensor 

5 
Google 

Assistance 
Google_Home_Mini 

6 Aswar Aswar_Camera 
7 TEKIN TEKIN-Plug 

8 

IoT-
Sentinel 
devises 
traffic 

D-Link 

D-LinkCam 
9 D-LinkSensor 
10 D-LinkSwitch 
11 D-LinkWaterSensor 

12 Edimax EdimaxPlug1101W 
13 Ednet EdnetGateway 
14 

TP-Link 
TP-LinkPlugHS100 

15 TP-LinkPlugHS110 
16 WeMo WeMoSwitch 
17 *iKettle iKettle2 
18 *SmarterCoffee SmarterCoffee 
19 *Withings Withings 

Where * refers to unauthorized devices. 

C. Network traffic collection and analysis 

After installing the IoT devices, the produced traffic from 

each device is collected in the form of a Packet Capture 
(PCAP) file; a sample of such packets is shown in Fig. 1. After 

that, the packets are analyzed. It is found that the number of 

packets per time rate differs from one device to another but 

all with high rates during installing or startup operation. 

 

 
Fig. 1 Sample of captured packets during the startup operation 

 

Furthermore, the packet rate of some devices becomes 
exceptionally low after the startup process is completed 

depending on the nature of the functionality of each IoT 

device. Smart switches, smart bulbs, smart power strips, smart 

plugs, and even IoT sensors are low data rate devices 

compared with Google Home Mini and cameras. Thus, it may 

be difficult to create good fingerprints for low-traffic rate 
devices. Moreover, extracting the device's fingerprint in the 

startup stage gives a better chance of detecting intrusive or 

hacked devices early. Fig.2 shows the traffic of the startup 

time for some of the lab IoT devices within 250 seconds. 
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Fig. 2 Traffic of some IoT devices during 250 sec in startup time. 

 

During the connection of any device to an access point, 

Extensible Authentication Protocol over LAN (EAPOL) 

protocol starts sending packets from the authenticator (access 

point) to the supplicant (device) to generate some encryption 

keys which can be used to encrypt actual data transmitted over 

a wireless medium so that 4-way handshake will be accrued. 

Creating DFP is begun by getting EAPOL packet and 

continued with the following packets that carry important 

protocols and features to complete connection with the 
internet. Besides the lab IoT devices, 12 of the 31 devices 

collected traffics of captures_IoT-Sentinel are taken (the 

remaining public traffics datasets are not taken since they are 

either without EAPOL packets or contain a few packets). 

While traffics are analyzed, some properties are seen as 

important features and should be considered to create a strong 

DFP like: 

 First TCP session properties as the number of packets 

in the session, packet length, segment length, window 

size, and protocol type used to depend on ports type 

(Well-known port like 443 for HTTPS and 80 for HTTP, 
or TCP with Dynamic ports).  

 In some devices, UDP data packets are transmitted 

between the first TCP session, so their properties are 

also important, as the number of packets carrying UDP 

data with the same port numbers as the first UDP data 

packet and data length.  

In addition to the previous, some of the first TCP sessions 

of the captures_IoT-Sentinel dataset (WeMoSwitch, TP-

LinkPlugHS100, and TP-LinkPlugHS110) are with a large 

number of packets or may continue with no packet carrying 

FIN flag. Only the first 20 TCP packets’ details are taken in 
these cases. Also, the first TCP session of D-LinkCam is 

found with unstable protocol because it may be HTTPS or 

HTTP. Fig. 3 depicts the number of authorized IoT devices 

for each port type of the first TCP session.  

 

 
Fig. 3 Number of IoT devices for each port type of First TCP session. 

Meanwhile, Fig.4 shows the number of packets transmitted 

within the session, excluding TP-LinkPlugHS100, TP-

LinkPlugHS110, and D-LinkCam.  

 

 
Fig. 4 Number of packets in the first TCP session of each device. 

 

There are differences in port types and the number of 

packets in the first TCP session. On the other hand, the 

similarity is found especially between devices of the same 

manufacturer, so other features are considered like segment 
length, window size, time to live, DNS Query Name, and 

DHCP details. In this work, 25 features are extracted from 

each IoT device’s traffic during the initial step, as shown in 

Table.2 

TABLE II 

THE INITIAL LIST OF FEATURES 

Feature Details 
No. of 

Features 

Data Link layer: Source and destination MAC 
addresses, ARP protocol, packet length if TCP. 

4 

Network layer: Source and destination IP 

addresses, EAPOL, ICMPV6, IGMPv2, IGMPv3. 
6 

Transport layer: UDP data, UDP data length, 
TCP segment length, TCP window size. 

4 

Application layer protocols: DHCP, DNS (or 
MDNS). 

2 

IP: Time To Live (TTL). 1 
TCP: TCP with HTTPS protocol, TCP with HTTP 
protocol, TCP with Dynamic source and 

destination ports 

3 

DHCP: Length of DHCP Parameter Request List 
(LDHCPPRL), Maximum DHCP Message Size 
(MDHCPMS), Vendor class identifier (VCI), and 
Host Name (H). 

4 

DNS or MDNS: Query Name. 1 

D. DFP Generation 

The proposed technique for generating the fingerprint of 

each IoT device relies on a two-phase completion (using 

python scapy):  Feature extraction and data preprocessing. 

The DFP generation procedure is clarified in Fig.5. 

1)  Feature Extraction: Feature extraction of each device is 

begun from getting the EAPOL protocol packet. Then, the 
new MAC address is saved, and other packets related to that 

address are checked until the first TCP session is closed with 

FIN flag. If there is no packet with FIN flag or long TCP 

session, only 20 TCP packets are taken. Furthermore, if UDP 
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data packets were coming in between TCP session or there are 

no TCP packets and all packets are UDP data packets such as 

in some cases of a camera, so source and destination port 

numbers are stored and collected all UDP data coming or sent 

from that device with the same stored port numbers. 

Initially, 2D matrix (M) with 25 columns and variable 

length of rows is created. Each row represents packet (pkt) 

with 25 features (F = {f1, f2, f3, …, f25}) which are listed in 

Table 2. In this phase, place 1 for all protocols in the features 

list and also for TCP packets with HTTPS protocol, HTTP 

protocol, or Dynamic source and destination ports, UDP data, 

and Vendor class identifier (these protocols and features are 

encoded as logical features). The values of other features are 

recorded either as numeric values like TCP packet length, 

segment size, window size, UDP data length, TTL, Length of 

DHCP Parameter Request List, and Maximum DHCP 

Message Size or as text like MAC addresses, IP addresses, 

DHCP Host Name, and DNS (or MDNS) Query name. 

 

 
Fig. 5  DFP generation phases 

 

All unwanted and repetitive rows are deleted after 

representing all features and stopping conditions accrued. The 

created matrix (Mn*25) has mixed data types and different row 

sizes depending on the device type and even within the same 

device type since some protocol packets appear or are absent 

each time the traffics is collected. Eq. (1) represents the 

created matrix in this phase, where n represents the number of 

packets approved for each device. 
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2)  Data Preprocessing: This phase involves performing 

some statistical calculations on the features extracted in the 

Collected 

packets 

pktn 

… 

Pkt2 

Pkt1 

 

Second phase 

Record the values of other features which are 

either numeric values or text (13 features) 
Place 1 if logical features are exist (12 features) 

Check all remaining packets related to stored MAC address until TCP with FIN flag is found 

Store device’s MAC address 

Yes 

No 
IF 

EAPOL 

pkt 

Search EAPOL pkt 

Convert M to vector 

Normalize vector 

First phase 

 For all absence features 0 values are placed. 
 After representing all features and stopping condition accrued, all unwanted and repetitive rows are 

deleted, so the created matrix (Mn*25) with variable length of t rows and mix data types.  

Final DFP vector with 30 features 
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previous phase to generate additional features. After that, all 

the extracted features for each device in both phases are 

converted to a single vector which represents the DFP of that 

device. The features added in this phase are prepared and 

calculated as follows: 

 Adding all elements of each column that contain logical 

value 1,0 so the count of 12 features (columns) are 

gotten. 

 The columns of Maximum DHCP message size and 

length of the DHCP parameter request list contain (0) 

elements except that one cell in each column contains 

value rather than 0; therefore, those values are taken. 

 Min, max, and average are computed from values in the 

TCP packet length, window size, and TTL column 

columns. Also, min and max of UDP data length are 

found. An average segment length column is obtained. 
 DHCP Host Name is converted to ASCII code and 

found min (MinH), max (MaxH), average (AvgH), and 

length (LH) of the result. 

 Merge columns of source and destination MAC 

addresses, remove repetitive addresses, and then find 

the remaining addresses count. The same procedure is 

done to the source and destination IP address columns. 

 Number of rows (n) is added. 

 Since the protocol ICMPv6 is noticeable in some 

devices and not on others bearing the same brand, it 

may be considered an important feature that should be 

exploited to strengthen the proposed DFP. The 
locations (row indices of matrix M) of presented 

ICMPv6 are taken and concatenated to represent one 

number. If there are more than three ICMPv6 packets, 

only the first three locations are taken then divided by 

the max location for early normalization purposes and 

appended to the fingerprint vector (e.g., if the first three 

ICMPv6 packets appear in locations i, j, and k 

respectively, so they are converted to ijk/k). 

 DNS query names may be unique for some devices with 

the same manufacturer and function, but some devices 

like cameras have more DNS query packets requests to 
resolve DNS query names to their relevant IP address. 

A lookup table is created that contains all query names 

giving a specific number to each of them, and if there 

is a new query name, 0 value is placed, and also DHCP 

features are cleared to distinguish unknown devices in 

a predication phase. 

 Another field associated with the DNS query name is 

added to distinguish a new device with the same known 

brand. It is found by computing the number of DNS 

packets, but if one of DNS query names is not found in 

the lookup table, 0 value is placed. 

 To reduce the similarities between DFPs, the values of 
DHCP features are reduced to one value by taking the 

average value (Average (LDHCPPRL, MDHCPMS, 

VCI, MinH, MaxH, AvgH, LH)).  

 The final DFP vector is of 30 features (V = [f1, f2, f3, …, 

f30]) that contains a combination of small and high 

values, so normalization is required. MinMaxScaler 

and StandardScaler are applied to compare the accuracy 

resulting from each of them.  
 

E. IoT Device Identification   

In this work, the Naive Bayes method has been adopted to 

identify the IoT devices based on their fingerprint. Naive 

Bayes is a supervised machine learning algorithm used for 

classifying binary and multiclass classification problems 
based on the probability’s principle. The computed 

probabilities are saved in a list for a learned model, including 

classes’ probabilities and conditional probabilities for each 

feature value given each class value.  

So the posterior probabilities are calculated using this list as 

shown in Eq. (2). 

 
P(V)

)Cn p( )Cnp(V
V)=Cnp(

|
|  (2) 

where Cn is the class name or the device name, and (V) is the 
features’ vector (P(V|Cn)= P(f1|Cn) × P(f2|Cn) × P(fm|Cn)  

× … × P(f30|Cn) ). 

Gaussian Naive Bayes is used for multiclass classification 

since the proposed features’ values are real values. Normal 

distribution is needed to estimate mean (μ) and standard 

deviation (σ) for each input feature in the training data for 

each class. Eq. (3) represents Gaussian Probability Density 

Function (Gaussian PDF) for each feature, where x is the 

input value for the input feature. 
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After calculating the posterior probabilities for different 

classes, the class with the maximum probability is selected 

according to Eq. (4), where P (V) is dropped as it is constant 
and only used for normalization purposes [26],[27]. 

 ))Cnp(  )Cn |(p(VMax ) CnMAP(   (4) 

Gaussian Naive Bayes is implemented using scikit-learn 

library. Gaussian noise (with μ = 0 and σ =1) is added 

randomly for building a robust model. 

To assess the performance of the proposed approach, the 

following metrics were used [21]: 

 Accuracy =
�	
��

�	
��
�	
��
× 100% (5) 

 Precision =
�	

�	
�	
 (6) 

 Recall =
�	

�	
��
 (7) 

 �� − ���� =
!×Precision×Recall

Precision
Recall
 (8) 

TP, FP, TN, and FN are truly positive, false positive, true 

negative, and false negative. A block diagram representing the 

proposed IoT device identification system is shown in Fig. 6. 
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Fig. 6  Proposed system of IoT device identification 

 

 

III. RESULTS AND DISCUSSION 

The generated DFPs data are splitted into 75% for training 

data and 25% for testing data. The training process is done in 

two modes: before and after adding Gaussian noise. The 

obtained accuracy before adding noise is about 96% on 

average after data normalization with MinMaxScaler and 

StandardScaler, while it is about 97.5% with MinMaxScaler, 
and 98.35% with StandardScaler after noise addition. The 

purpose of adding Gaussian noise in this approach is to raise 

the model accuracy rate and make a robust model that can 

predict devices’ fingerprints if features’ values are changed 

when dealing with wireless data traffic. Furthermore, noise 

addition and normalizing features during preprocessing lead 

to decrease misclassifications of devices with the same model 

as shown in Table 3, in which the F1-score and accuracy of 

each device are computed as an average for six times of the 

model execution.  

TABLE III 

IDENTIFICATION RESULT OF GNB MODEL 

Device Name 

Results before 

noise addition 

Results after 

noise addition 

F1-

score 
Accuracy 

F1-

score 
Accuracy 

Aswar_Camera 1 1 0.99 0.99 
D-LinkCam 0.98 0.99 1 1 
D-LinkSensor 0.96 0.99 1 1 
D-LinkSwitch 0.95 0.99 1 1 
D-LinkWaterSensor 0.95 0.99 1 1 

EdimaxPlug1101W 1 1 1 1 
EdnetGateway 1 1 1 1 
Google_Home_Mini 0.98 1 1 1 
SonoFF_Power_Plug 0.90 0.99 0.98 0.99 
SonoFF_Power_Strip 0.94 0.99 0.95 0.99 
SonoFF_Smart_Light_
Bulb 

0.94 0.98 0.95 0.99 

SonoFF_Smart_Switch 0.97 0.99 0.99 1 

TEKIN-Plug 0.99 1 1 1 
TP-LinkPlugHS100 0.93 0.99 0.95 0.99 
TP-LinkPlugHS110 0.97 0.99 0.96 0.99 
WeMoSwitch 0.98 0.99 0.99 0.99 
Unknown 1 1 1 1 

 
Fig. 7  Confusion matrix of GNB model after adding Gaussian noise. 
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While testing data and both with and without noise, 

sometimes only one of WeMoSwitch DFP is identified as TP-

LinkPlugHS100 DFP or Aswar_Camera DFP. Furthermore, 

misclassification accrued between devices with the same 

model as SonoFF or TP-Link devices even after noise 

addition, but still, they are given more acceptable accuracy. 

To differentiate the authorized devices from unauthorized, 

DFPs are created for three IoT devices traffic (iKettle2, 

SmarterCoffee, and Withings) taken from captures_IoT-

Sentinel. During the preprocessing step, DNS Query Names 

of these devices traffic is not found in the lookup table file, so 
0 value is placed, and there is no need to check DHCP features 

of unknown devices. This way, unauthorized devices are 

identified with a 100% F1- score. Fig.7 shows the confusion 

matrix of this work after noise addition and applying 

StandardScaler. Only one identification error relevant to the 

SonoFF model has occurred. 

IV. CONCLUSION 

In this study, real-time IoT device fingerprints are created 

during the setup and startup phases, then using Gaussian 

Naive Bayes machine learning for identification purposes. 

This work can identify the fingerprints of individual IoT 

devices with 98.35% as an average accuracy. The proposed 

model improves the previous work [13] by extracting the 

features as soon as getting the EAPOL packet. At the same 

time, it does not rely on all features, but instead, it generates 

and uses new features. The creation of a lookup table for DNS 

Query Names makes a good feature to distinguish devices’ 

models and isolate the unknown devices while reducing 

DHCP features to be one feature, and the addition of Gaussian 
noise and normalization during data preprocessing increased 

the contrast between devices of the same model. The feature 

aggregation method of converting a matrix to be a 30-

dimensional vector decreases the computational operations 

and time and increases the effect of some features that may 

lose their importance by a high dimensionality vector. As a 

suggestion for future work, the creation of DFP can be 

extended to cover the transmitted packets during the device’s 

running time and the installation or setup time. 
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