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Abstract— Cloud detection is one of the important stages in optical remote sensing activities as the cloud's existence interferes with the 

works. Many methods have been developed to detect the cloud, but it is still a few methods for high-resolution images, which mostly 

have limited multispectral bands. In this paper, a novel method of cloud detection for the images is proposed by integrating an 

unsupervised algorithm and deep learning. This method has three main steps: (1) pre-processing; (2) segmentation using modified K-

means; and (3) cloud detection using CNN. In the segmentation step, an unsupervised algorithm, K-means is modified and used to 

divide pixels values into k clusters. Our modified K-means method can separate thin clouds from relative bright objects in gray clusters 

that will be grouped into potential cloud pixels. Afterward, a design of convolutional neural network (CNN) is used to extract the multi-

scale features from each cluster and classify them into two classes: (1) cloud, which consists of thin cloud and thick cloud, and (2) non-

cloud. The potential cloud area from the first step is used for guiding the result of CNN to provide accurate cloud areas. Several Pleiades 

and SPOT 6/7 images were used to test the reliability of the proposed method. As a result, our modified K-means has an improvement 

to increase the accuracy of the results. The results showed that the proposed method could detect cloud and non-cloud accurately and 

has the highest accuracy of the results compared to the other methods.   
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I. INTRODUCTION

High spatial resolution satellite imageries have been used 

for many applications such as land-use classification [1], 

building detection [2], forestry [3], marine [4], [5], and 

disaster monitoring [6]. However, the existence of a cloud on 

the image interferes with data information extraction. 

Moreover, cloud covers about two-thirds of earth’s surface 

everyday [7] lead to difficulty in remote sensing activities. 

Therefore, a robust method of cloud detection is needed to 

develop to address this issue. 

Many methods of cloud detection have been developed, but 
mostly the methods used for middle spatial resolution satellite 

imageries such as Landsat 8 and Sentinel-2 [7]–[11]. 

Therefore, it is challenging to develop a cloud detection 

method for high spatial resolution satellite images as it is still 

rare. Detecting cloud for high spatial resolution satellite 

imagery is quite challenging as most of the imagery data only 

have limited multispectral bands available on red, green, blue, 

and near-infrared bands besides the panchromatic band. It 

leads to difficulty in developing the method of cloud detection. 

In addition, compared to the medium-spatial-resolution 

satellite images, they provide thermal infrared band (TIRS), 

which usually plays a key role in detecting cloud, especially 

on threshold-based methods [12]. 

Generally, cloud detection methods can be categorized into 

two groups: (1) threshold-based and (2) machine-learning-

based. In the threshold-based methods, a set of manual 

features pixel by pixel is extracted by this method. Afterward, 

it learns a binary classifier to identify the pixel as cloud or 

non-cloud [13]. It takes advantage of the difference between 

the reflectance of the cloud and the underlying surface. The 
reflectance of the surface, however, differs from the apparent 

reflectance because of atmospheric influence. The difference 

throughout these reflectivity makes it difficult to assess 

threshold effectively and precisely, generating rough cloud 

detection results based on the significance map and the 

suggested prime threshold despite its practical and quick 

calculation [14]. The temporal NDVI profile information was 

used [15] to detect cloud for AVHRR images. A simple two-

step direct threshold technique was used [16] in detecting 

clouds. The first step is thresholding of near-infrared band 

reflectance, and the second step is thresholding of |NDVI|^b 
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R^(-2), where R is red band reflectance. Bi-spectral 

composite (BTC) threshold technique was proposed [17] to 

detect clouds for GOES imagery. This approach used a 

difference image of the 20-day composites of the 11- and the 

11–3.9-μm channel for the bi-spectral cloud tests to 

demonstrate varying thresholds of clear-sky temporally. The 

speed of this process is fast, but this process depends on the 

sensors. In addition, it does not consider the structure and 

texture of the cloud.  

On the other hand, machine-learning-based methods 

deliver more robustness in detecting clouds than threshold-
based methods. SVM was used [18] to detect clouds for 

MODIS images. In this method, SVM was incorporated with 

the discriminant analysis (DA) to determine the cloud and 

clear sky subjectively and obtain typical cloud data without 

direct cloud detection. SVM was also proposed by Pengfei [19] 

in detecting clouds. The method divided images into small 

blocks and extracted characteristics of the brightness in the 

initial cloud detection and based on the features of the texture 

information of the sub-block image. Afterward, to detect 

cloud, the SVM uses the sub-block cloud image as learning 

samples. A cloud detection method was proposed [20] for Gao 
Fen-1 and Gao Fen-2 imageries using multi-feature fusion 

and machine learning. Various high-resolution satellite 

images which have near-infrared bands can be applied using 

this method. However, this method is unsuitable for images 

that have bare soil, desert, snow, and ice.  

One of the popular (deep) machine learning approaches is 

convolution neural network (CNN) which is generally used 

for object detection [21], image classification [22], and 

segmentation [23] is currently used CNN for detecting cloud. 

Deep CNN was proposed [13] to detect multilevel clouds by 

using the improved simple linear iterative clustering (SLIC) 
in the image segmentation step. Afterward, they applied CNN 

in extracting the multi-scale features from each super-pixel 

and classify the super-pixel as thin cloud, thick cloud, or non-

cloud. The proposed method can detect multilevel cloud 

detection accurately. On the other hand, [12] proposed the 

adaptive simple linear iterative clustering (A-SLIC) in the 

image segmentation step to produce good quality super-pixels. 

After that, they applied new multiple convolutional neural 

networks (MCNNs) to extract and identify multi-scale 

features from each super-pixel as a thick cloud, thin cloud, 

cloud shadow, or non-cloud. An algorithm of cloud and cloud 

shadow detection using CNN for WordView-2 and Sentinel-
2 imageries developed by [24]. It eliminates the weakness of 

threshold-based that need to set a threshold which is usually 

complicated, and the spatial and spectral context of the multi-

bands image are consider in this algorithm. The evaluation 

demonstrated that the algorithm has a higher accuracy 

compared to the other cloud detection algorithms. 

Based on the current cloud detection methods overview, 

the machine-learning-based method remains challenging and 

has better expectations in detecting clouds for high-resolution 

satellite imagery. Therefore, this paper uses modified K-

means clustering and deep CNN to detect clouds for high 
spatial resolution satellite imagery. We developed the 

modified K-means, an improved K-means clustering using 

the normalized blue indices to detect clouds better.  

This paper aims to demonstrate the reliability of the 

proposed method. To achieve this aim, we use Pleiades and 

SPOT 6/7 images which are covered by various cloud types 

in the experiments. The images that have various land covers 

such as forest, open land, settlement, and water are selected to 

test the proposed method. In addition, we use visual and 

statistical assessments to evaluate the results. We compare the 

proposed method with SLIC + CNN as SLIC is a common 

approach in the segmentation step and is often used in the 

current studies. We also compare the proposed method with 

original K-means + CNN to demonstrate the improvement of 

our modified K-means in the segmentation step and the final 

results of the cloud detection process. 

II. MATERIAL AND METHODS 

A. Materials 

In this paper, we used Pleiades-1A and Pleiades-1B 

satellite images from Airbus Defense and Space. Both are 

commercial twin satellites that operated at an altitude of 695 

km, at a sun-synchronous orbit. The sensor has four 

multispectral bands, ranging from the visible to the near-

infrared wave length and one panchromatic band (see Table 
1).  

TABLE I 
THE SPECTRAL RANGE OF PLEIADES AND SPOT 6/7 IMAGES 

Band 

Pleiades SPOT 6/7 

Wavelength 

(μm) 

Spatial 

resolution 

(m) 

Wavelength 

(μm) 

Spatial 

resolution 

(m) 

Pan 0.48 – 0.83 0.5 0.45 – 0.75 1.5 

Red 0.60 – 0.72 2 0.45 – 0.52 6 

Green 0.49 – 0.61 2 0.53 – 0.59 6 

Blue 0.43 – 0.55 2 0.62 – 0.69 6 

NIR 0.75 – 0.95 2 0.76 – 0.89 6 

 

The spatial resolution is 0.5 m for the panchromatic band 
and 2 m for multispectral bands. We also used SPOT 6/7 

satellite images in the experiments to demonstrate that the 

proposed method can be used for many satellite images.  We 

selected the several Pleiades and SPOT6/7 images with 

various cloud types and land-covers and have been 

radiometrically corrected (see Figure 1). 

One of the important things to develop an accurate deep 

learning model is training with an abundance of image 

datasets [25]. It is because the classification with relatively 

few datasets may lead to overfitting [26]. The dataset used for 

training is collected from some Pleiades and SPOT 6/7 images 
intentionally devoted to training purposes. Beforehand, the 

Pleiades images have been resampled to 6-meter spatial 

resolution. The dataset is separated into two categories: 

positive images and negative images. The positive images 

contain cloud areas, whereas the negative images represent 

clear areas (non-cloud). Both positive images and negative 

images are cropped by 15x15 pixels based on visual 

interpretation. The input image in our CNN model contains 

three channels. These three channels are red, green, and blue, 

scaled from 12-bits to 8-bits unsigned integer. The positive 

images are mostly selected in the edge of the cloud area rather 

than the center of the cloud area. The total number of collected 
training dataset reaches to 15000 images with the ratio of 

positive images and negative images is 40% and 60%, 

respectively. We also applied data augmentation process by 

flipping the images horizontally and vertically and then 
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rotating by angle 90°, 180°, and 270° before the training 

process running. 

B. Methods 

The proposed method used to detect clouds for high spatial 

resolution imageries in this paper is object-based. It combines 

modified K-means, unsupervised classification, and deep 

learning, using CNN, supervised classification. In this method, 

the modified K-means and CNN are working separately. 
Afterward, the results of each process are combined to detect 

the cloud. 

In the image clustering, modified K-means are used to 

detect the cloud. This process will be used to guide the results 

of CNN in the delineation of cloud areas. On the other hand, 

CNN in the proposed method has a feature extraction process 

that produces a features vector. These features vector will be 

treated as an input layer in the classification process. The 

result of CNN is a class prediction that will be gained by 

merging it with modified K-means. The aim is to improve the 

accuracy of the cloud detection results.  

       

       

       

Fig. 1  Pleiades and SPOT 6/7 images were selected with various cloud types and land covers 

There are three main steps of the proposed method: (1) pre-

processing; (2) image clustering using modified K-means; 

and (3) cloud detection using CNN. Each step is detailed as 

follows.  

1)  Pre-processing:  In this paper, a contrast enhancement 

of the image is conducted before the clustering and 
classification process. The aim of this process is to enhance 

the contrast of the image by scaling histogram input based on 

a particular range value. In this process, we use left and right 

2% of percentile of the histogram as left and right borders of 

the scaling process. Afterward, each pixel is scaled based on 

the borders to range 0-255.  

To make the computation process in the classification step 

faster, the image is downscaled to 6 meters using the 

averaging method. On the other hand, the original image 

which has not been downscaled is used in the clustering 

process. We need the original image with the original spatial 

resolution in this process as the border of the cloud mask is 
still depends on the results of this process.   

2)  Image Clustering using Modified K-means: K-means is 

a kind of unsupervised algorithm that has been widely used in 

many applications because of its simplicity [27]. The goal of 

K-means clustering in image processing is to divide pixels 

values into k clusters. Each pixel is set to the cluster 

2461



considering the nearest mean [28]. Firstly, each cluster should 

be defined as an initial random value as a cluster centroid that 

is distinct from each other. After defining the k centroids, the 

next step is to calculate the spectral similarity from each pixel 

to each centroid. So that each pixel will have k similarity 

distances as many as the number of the cluster that is desired, 

this study used Euclidean distance to measure the spectral 

similarity between each pixel and each centroid. Each pixel is 

grouped into a cluster where the similarity distance is a 

minimum. Pixels are finished to be divided, the value of each 

centroid needs to be updated by using the mean value of each 
cluster. The process of calculating spectral similarity is 

performed again. This iterative process stops when the 

centroids are no more changes.  

In this study, the initial number of K-means clusters is set 

by three clusters (k=3). They are colored white, gray, and 
black under their brightness. The white cluster covers the 

thick cloud areas and the gray cluster covers thin clouds and 

some relative bright objects on the surface such as settlement, 

barren, grassland, etc. On the other hand, the black cluster 

covers the remaining relative dark objects such as shadow, 

forest, river, etc. However, the result of K-means still has a 

lot of errors so that it needs to be improved. We improved the 

result of K-means using the normalized blue indices (BI) as 

following: 

 �� = �
����� (1) 

 �′ = 
1, � = 1, 2 ��� 0.3 < �� < 0.4
0, � = 0, 1 ��� �� ≤ 0.3 ��� �� ≥ 0.4 (2) 

R, G, and B are the value of red, green, and blue bands 

after pre-processing step. k = 0,1,2 represents black, gray, and 
white clusters from original K-means, respectively, and k’ is 

our modified K-means output cluster. We performed pre-

detection of potential cloud pixels by filtering the result of 

original K-means with the normalized blue indices. The 

potential cloud pixel is selected from two clusters, white and 

gray clusters, where the blue indices (BI) value is greater than 

0.3 and less than 0.4. On the other hand, the non-cloud pixel 

is selected from gray and black clusters with the BI value is 

less than or equal to 0.3 and greater than or equal to 0.4. This 

modification of K-means suppresses the number of clusters 

from three clusters to be binary clusters labeled with potential 
cloud clusters and non-cloud clusters. 

Our modified K-means method can separate thin clouds 

from relative bright objects in gray clusters so that some 

pixels in gray clusters that are considered thin clouds will be 

grouped into potential cloud pixels. In comparison, a 

relatively bright object such as barren, grassland, road, and 

settlements will be classified as non-cloud. The result of K-

means clustering is used as a pre-detection of cloud areas. The 

potential cloud area is used for guiding the result of CNN to 

delineate the cloud areas accurately. 

3)  Cloud Detection using CNN: Deep neural network is 

one of the supervised classification methods that have become 
popular in the decades. A neuron is used to connect 

computational nodes to represent linear or non-linear 

functions that obtain an output as an object class based on the 

input. A set of layers containing input layers, hidden layers, 

and output layers build a neural network architecture called 

MLP (Multi-Layer Perceptron). The input layer is built from 

a series of neurons as a 1-dimensional array. The neurons in 

the input layer are individually mapped to each neuron in the 

hidden layer until the output layer. In remote sensing studies, 

the input layer can be concatenated from various parameters 

such as multi-channel intensity [29], spectral indices value 

[30], the statistical value of an image [31], etc. 

 Training Deep Learning Model: The objective of 

training the neural network model is to tune its 

parameters that can minimize the classification error 

from the output layer. There are two main parts: (1) 

feed forwarding and (2) backpropagation. The feed-

forward process is propagating the input to the output 

layer until resulting in the output prediction. The 

backpropagation is an iterative process using all 

training datasets, resulting in the network's updated 
parameters that fit the classification task. From the 

output prediction, the loss error can be calculated by 

using some loss function methods. The loss error is then 

propagated back to the network to update the weights 

and biases in every layer. The gradients from the loss 

function to all parameters are calculated by using the 

partial derivative function to update the network 

parameters. Once we have the gradients, we can update 

the parameters of weights and biases in the network. 

We used the binary cross entropy function to measure 

the loss error and the stochastic gradient descent 

method for the optimizer in this training process. The 
initial learning rate for the training is set to 0.0001. 

 Convolutional Neural Network: Convolutional Neural 

Network fundamentally develops a neural network 

model that has revolutionized image detection and even 

images recognition [32]. It has a different architecture 

than a regular neural network. It simply consists of two 

consecutive processes: (1) feature extraction process 

and (2) classification process. In the first process, the 

input image is extracted with a convolutional and 

pooling operation series to produce a different form 

called feature maps. The feature map commonly has a 
smaller dimension than the input image, which 

summarizes detected features in the input image [33]. 

The convolution uses a kernel which is simply a small 

matrix of weights. The kernel slides over the image 

performing an element-wise multiplication with the 

pixel value of the image and then summing up the result 

into a single output pixel. The output of convolution 

will be passed through the activation function, making 

the output non-linear [34]. The activation functions 

usually used in this process are rectified linear unit 

(ReLU), sigmoid, tanh, and softmax [35]. After a 

convolution layer, it is common to add a pooling layer 
in between the feature extraction process. A pooling 

layer is used to reduce the size of the feature map 

without losing its significant information [36]. The 

final feature maps are then flattened from 3-

dimensional into a 1-dimensional form which is called 

as features vector. 

The second process of CNN is the classification process 

which uses a series of fully connected layers. In the fully 

connected layer, neurons fully connect to all neurons in the 

next layer. In principle, this part is the same as regular MLP 
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architecture, so that it can only accept data in 1-dimensional 

form. In this part, the features vector results from the 

convolutional process will be treated as an input layer.  It will 

be fed to the fully connected layers to predict the class which 

has a higher confidence level.  

In this paper, CNN is designed for binary classification that 

is classifying input images as cloud or non-cloud. Cloud class 

consists of thin and thick clouds. In practice, CNN uses a 

sliding window to scan the location of the cloud in the image. 

The sliding window in this paper has a fixed size which moves 

throughout the image from the top left to the bottom right. A 
window image is extracted at each window step and then 

classified to the cloud or non-cloud class. Our CNN 

architecture uses three convolutional layers, one pooling layer, 

and two hidden layers in fully connected layers. It ends up 

with one neuron in the output layer. Both the convolutional 

layers and the hidden layers, the outputs are passed through 

the ReLU activation function to convert them become non-

linear. In addition, the activation function in the last layer of 

the network is a sigmoid, which the result will be in the 

confidence level of the cloud. The results with a confidence 

level higher than 0.5 are classified as cloud otherwise are 
classified as non-cloud.  

The input image of our CNN model is 15×15 pixels with 

three channels of RGB. The first layer is a convolutional 

process that uses kernels with the size of 2x2, and it generates 

16 feature maps with the size of 14x14 pixels. The total 

number of trainable weights and biases in this layer is 208. 

Moreover, in the second layer, the convolutional with 3x3 

kernel size generates 32 feature maps with 12x12 pixels. The 

total number of weights and biases is 4640. In the pooling 

layer, we used max-pooling method to down-sample 32 

feature maps into 6x6 with the kernel size of 2x2 without 

padding. This pooling layer has no trainable parameters.  

Lastly, the convolutional layer with 2x2 kernel size ends up 

the process of feature extraction. It generates 64 feature maps 

with the size of 5x5 and has 8256 trainable parameters of 

weights and biases. Then these feature maps are converted 
into a feature vector that consists of 1600 neurons as an input 

layer. Moreover, the feature vector passes through the fully 

connected layers to predict the output probabilities. Each 

neuron in the input layer connects to 1000 neurons in the first 

fully connected layer, and then in the next layer connects to 

100 neurons. The total trainable parameter of weights and 

biases in fully connected layers is 1701201. The output layer 

has one neuron that indicates the input window image class, 

which belongs to cloud or non-cloud. The architecture of our 

CNN can be seen in Figures 2(a). 

The delineation of the cloud mask area is obtained by 
merging the results of CNN classification and modified K-

means. The result of CNN is only a class prediction for a 

subset window image in every step of the sliding window. It 

means that all pixels inside each window image have a one-

class represented by their window class. 

 

 
(a) 

 
(b) 

Fig. 2  (a) Architecture of our designed CNN and (b) Cloud detection processing flow in the proposed framework 
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However, when the window shifts to the next step, these 

associated pixels may have a different class from the current 

window class. The process of scanning images by sliding 

window records the position of windows, which are classified 

as a cloud. The boundary of cloud area is gained by 
reclassifying the pixels inside these selected windows with K-

means clustering. The pixels which are outside the cloud 

cluster will not be classified as a cloud. The illustration of the 

cloud detection process can be seen in Figure 2(b). 

4)  Assessments: In this paper, visual and statistical 
assessments are applied to the resultant images to evaluate the 

reliability of the proposed method. In the statistical 

assessment, precision and recall were used in this paper as 

they are commonly used to assess the cases in machine 

learning.  

 ��������� =  !"# $%&'(')#
 !"# $%&'(')#�*+,&# $%&'(')# (3) 

 -���.. =  !"# $%&'(')#
 !"# $%&'(')#�*+,&# /#0+(')# (4) 

 11 ����� = 2 × $!#3'&'%4×�#3+,,
$!#3'&'%4��#3+,,  (5) 

Precision and recall are an assessment of classification 

results into positive and negative classes. In addition, a false 
positive is a predicted class that failed to meet the expected 

criteria, and a false negative is a true class that failed to be 

identified by a classifier. In a confusion matrix, the same 

terminology can be used to define precision and recall [37]. 

To redefine these measures in the confusion matrix, they can 

be categorized into two classes: (1) positive class and (2) 

negative class (see Table 2).  

TABLE II 

PRECISION AND RECALL FOR AN ASSESSMENT OF THE CLOUD DETECTION 

RESULTS 

 Predicted 

Negative  

(Non-cloud) 

Positive  

(Cloud) 

Actual 

Negative 

(Non-cloud) 

True Negative 

(Non-cloud) 

False Positive 

(Non-cloud) 

Positive  

(Cloud) 

False Negative 

(Cloud) 

True Positive 

(Cloud) 

 
The ratio of the total number of true positives to the total 

number of predicted positives is defined as precision (see 

Eq.3). On the other hand, the ratio of the total number of true 

positive to the total number of actual positives is defined as 

recall (see Eq.4). We used the F1 score to calculate the 

accuracy, which is the weighted average of Precision and 

Recall (see Eq.5) [38]. It is better than conventional accuracy, 

especially if there is an uneven class distribution. The 

flowchart of the cloud detection process using the proposed 

method can be seen in Fig. 3. 

 

 
Fig. 3 Flowchart of cloud detection process using Modified K-means + CNN 

 

III. RESULTS AND DISCUSSION 

In the clustering step, the original K-means which clusters 

the images into three classes: thick cloud, thin cloud, and non-

cloud overconfidence to classify open land and settlement, 

become cloud class (see the red circles in Figure 4). On the 

contrary, modified K-means with the normalized blue indices 

(BI) were used to cluster the images into two classes: cloud 

and non-cloud were successfully detected open land and 

settlement become a non-cloud class. Moreover, the original 

K-means did not detect thin clouds at some spots, whereas the 

modified K-means identified thin clouds accurately (see green 

circles in Figure 4).  Thus, the modified K-means used in this 
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paper were done well and improved the accuracy results 

compared to the original K-means. 

This paper tested the proposed method in detecting cloud 

for selected Pleiades and SPOT 6/7 images with various land 

covers such as settlement, open land, forest, mountainous area, 

and water. Cloud is not a white body. Therefore, land covers 

beneath the cloud influence its reflectance values, especially 

for thin clouds. We also evaluated the proposed method for 

the images that have a variety of cloud types to show the 

method's reliability. 

We evaluated the resultant images by using visual 
assessment to investigate the proposed method of detecting 

cloud visually. This assessment helps us to know the ability 

of the proposed method quickly. The following assesses the 

proposed method in detecting clouds for thick clouds and thin 

clouds over heterogeneous land cover.   

The most difficult method of detecting clouds is to separate 

clouds and bright objects, especially thick clouds, as they 

have a similar spectral response. This issue increases as the 

Pleiades and SPOT 6/7 have only four multispectral bands 

(blue, green, red, and near-infrared bands) with similar 

spectral responses to the cloud in bright objects such as open 
settlement land, road, etc. We can see in the resultant images 

in Figure 5(b,d,f,j) that the proposed method can detect thick 

clouds in settlement and open land areas. It can separate cloud 

to settlement, open land, and road properly.  Thus, the 

proposed method works well to detect all thick clouds in this 

area accurately.  

In the forest area (see Figure 5(d,f,h,l,n,p,r)), it can be seen 

that thick clouds can be detected accurately by using the 

proposed method. The spectral response of thick clouds is 

different from the forest. Therefore, there is no issue in 

detecting the cloud in this area. This also applies to dark 
objects such as water and mountainous areas (see Figure 

5(h,n,p)). In these areas, the thick cloud is easy to detect as 

the spectral response of thick cloud is quite different to water 

and mountainous areas. As a result, we concluded that the 

proposed method could identify thick clouds properly in 

heterogeneous land covers. It is usually difficult to detect the 

borders of thick cloud region, but the proposed method works 

well to detect them accurately. 

  

 

Fig. 4 (a) Pleiades image, (b) The result of K-means (3 classes), (c) The result 

of our modified K-means (2 classes) 

It is difficult to detect a thin cloud as its transparency. It 

makes reflectance values of land covers beneath it influence 

their reflectance values. The difficulty of detecting thin cloud 

increases as Pleiades and SPOT 6/7 does not have a cirrus 

band. It is also difficult to assess the proposed method for thin 

clouds statistically as the border of the thin cloud is not 

distinct. Hence, visual assessment is very useful to evaluate 

the reliability of the proposed method in detecting thin clouds.  
 

Input Image Modified K-means + CNN Results 

  
           (a) (b) 

  
            (c) (d) 

  
            (e) (f) 

  
            (g) (h) 

  
            (i) (j) 
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Input Image Modified K-means + CNN Results 

  
(k) (l) 

  
(m) (n) 

  

(o) (p) 

  
(q) (r) 

Fig. 5 The results of detecting cloud for Pleiades images by using the 

proposed method. Input images (left side) and resultant images (right side) of 

proposed method 

 

We can see in Figure 5(a) that the image has a large amount 

of thin cloud. The resultant image in Figure 5(b) shows that 

the proposed method can detect them accurately. Moreover, 

the border of thin clouds, which are usually very thin (e.g., 

thin cloud in the bottom left of image) can also be detected by 

the proposed method. Figure 5(k) shows that a thin cloud 

spread in the whole image. It is not easy to detect very thin 
cloud in the settlement area. However, the proposed method 

works well to detect thin and very thin cloud accurately (see 

Figure 5(l)).  

The proposed method works well in detecting thick and 

thin clouds for Pleiades images. In addition, it can be used to 

identify clouds over heterogeneous land covers. The lack of 

cirrus band does not make the proposed method fail to detect 

cloud, especially thin cloud.  

TABLE III 
PRECISION, RECALL, AND   OF THE CLOUD DETECTION RESULTS 

No Image SLIC+CNN K-means + CNN Modified K-means + CNN 

1 

 

Precision = 0.97 

Recall = 0.91 

Overall accuracy = 0.96 

Kappa score = 0.92 

F1 score = 0.94 

Precision = 0.99 

Recall = 0.87 

Overall accuracy = 0.96 

Kappa score = 0.90 

F1 score = 0.93 

Precision = 0.94 

Recall = 0.95 

Overall accuracy = 0.97 

Kappa score = 0.93 

F1 score = 0.95 

2 

 

Precision = 0.94 

Recall = 0.68 

Overall accuracy = 0.98 

Kappa score = 0.78 

F1 score = 0.79 

Precision = 0.94 

Recall = 0.79 

Overall accuracy = 0.98 

Kappa score = 0.85 

F1 score = 0.86 

Precision = 0.86 

Recall = 0.90 

Overall accuracy = 0.98 

Kappa score = 0.88 

F1 score = 0.88 

3 

 

Precision = 0.77 

Recall = 0.84 

Overall accuracy = 0.82 

Kappa score = 0.64 

F1 score = 0.80 

Precision = 0.99 

Recall = 0.46 

Overall accuracy = 0.76 

Kappa score = 0.48 

F1 score = 0.63 

Precision = 0.91 

Recall = 0.92 

Overall accuracy = 0.92 

Kappa score = 0.85 

F1 score = 0.91 
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4 

 

Precision = 0.93 

Recall = 0.92 

Overall accuracy = 0.93 

Kappa score = 0.86 

F1 score = 0.92 

Precision = 0.99 

Recall = 0.59 

Overall accuracy = 0.80 

Kappa score = 0.60 

F1 score = 0.74 

Precision = 0.97 

Recall = 0.94 

Overall accuracy = 0.96 

Kappa score = 0.92 

F1 score = 0.96 

5 

 

Precision = 0.92 

Recall = 0.64 

Overall accuracy = 0.95 

Kappa score = 0.73 

F1 score = 0.75 

Precision = 0.99 

Recall = 0.55 

Overall accuracy = 0.95 

Kappa score = 0.69 

F1 score = 0.71 

Precision = 0.95 

Recall = 0.88 

Overall accuracy = 0.98 

Kappa score = 0.90 

F1 score = 0.91 

6 

 

Precision = 0.99 

Recall = 0.82 

Overall accuracy = 0.87 

Kappa score = 0.73 

F1 score = 0.90 

Precision = 0.99 

Recall = 0.64 

Overall accuracy = 0.75 

Kappa score = 0.52 

F1 score = 0.78 

Precision = 0.98 

Recall = 0.92 

Overall accuracy = 0.93 

Kappa score = 0.86 

F1 score = 0.95 

7 

 

Precision = 0.65 

Recall = 0.83 

Overall accuracy = 0.91 

Kappa score = 0.67 

F1 score = 0.73 

Precision = 0.98 

Recall = 0.65 

Overall accuracy = 0.94 

Kappa score = 0.75 

F1 score = 0.78 

Precision = 0.90 

Recall = 0.88 

Overall accuracy = 0.96 

Kappa score = 0.87 

F1 score = 0.89 

8 

 

Precision = 0.82 

Recall = 0.69 

Overall accuracy = 0.89 

Kappa score = 0.68 

F1 score = 0.75 

Precision = 0.99 

Recall = 0.55 

Overall accuracy = 0.89 

Kappa score = 0.65 

F1 score = 0.71 

Precision = 0.95 

Recall = 0.82 

Overall accuracy = 0.94 

Kappa score = 0.85 

F1 score = 0.88 

9 

 

Precision = 0.97 

Recall = 0.54 

Overall accuracy = 0.96 

Kappa score = 0.68 

F1 score = 0.70 

Precision = 0.98 

Recall = 0.57 

Overall accuracy = 0.96 

Kappa score = 0.71 

F1 score = 0.72 

Precision = 0.83 

Recall = 0.91 

Overall accuracy = 0.97 

Kappa score = 0.85 

F1 score = 0.87 

 

 

Total 

Precision = 0.89 

Recall = 0.83 

Overall accuracy = 0.91 

Kappa score = 0.80 

F1 score = 0.86 

Precision = 0.99 

Recall = 0.62 

Overall accuracy = 0.88 

Kappa score = 0.69 

F1 score = 0.76 

Precision = 0.95 

Recall = 0.91 

Overall accuracy = 0.96 

Kappa score = 0.90 

F1 score = 0.93 

 
To show the reliability of the proposed method, statistical 

assessment was used. In this assessment, we used Precision, 

Recall and F1. The matrix described how cloud and non-cloud 

classes were classified in comparison to the true ordering. To 

evaluate the accuracy of the proposed method, we need a 

reference of the cloud for reference data. The references of 

cloud polygon were built by using manual digitizing on-

screen. To show the improvement of our proposed method, 

we compared the proposed method to other approaches: SLIC 

+ CNN and K-means + CNN. Many studies use simple linear 

iterative clustering (SLIC) to cluster a particular object such 

as a cloud.  

The SLIC approach is used to segment the image into 

good-quality super-pixels that are roughly equally sized. 

SLIC divides the image into several equal-size grids to create 

initial cluster centers. In searching space, it has a limitation to 

a local region. Therefore, the smooth thick cloud region will 

be over-segmented (e.g., see figure in Table 5(3)), and it 

obtained the precision of SLIC + CNN, in this case, is quite 

low at 0.77.  
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On the contrary, the original K-means failed to detect this 

cloud, and it makes the recall of K-means + CNN is quite low 

at 0.46. On the other hand, our proposed method can handle 

this issue in the same cases to detect the smooth thick cloud 

accurately with precision and 0.91 and recall is 0.91 and 0.92, 

respectively. 

The intensity of forest tends to low intensity as it has dense 

tree canopies. This low intensity of forest influences the 

reflectance of thin cloud. It makes thin cloud more difficult to 

identify and commonly makes any classifiers failed to 

identify this cloud. It occurred in figures in the Table 5(8,9) 
which these figures have thin cloud over forest area. These 

circumstances make the SLIC + CNN and K-means + CNN 

obtained low recall values for Figure 5(8) at 0.69 and 0.55, 

respectively and for figure in the Table 5(9) at 0.54 and 0.57, 

respectively.  

However, the modified K-means + CNN has a bit higher 

recall value than these two classifiers. The recall value for 

figures in the Table 5(8) and 5(9) of the proposed method is 

0.82 and 0.91, respectively. For nine test images, the total 

precision, recall and F1 score of the SLIC + CNN is 0.89, 0.83, 

and 0.86, respectively. On the other hand, the total precision, 
recall and F1 score of K-means + CNN is 0.99, 0.62, and 0.76, 

respectively. Compared to these two classifiers, the precision, 

recall and F1 score of modified K-means + CNN has a bit 

higher, i.e., 0.95, 0.91, and 0.93, respectively. These accuracy 

results showed that the proposed method works well and has 

improvement in terms of detecting cloud for high spatial 

resolution imageries. 

IV. CONCLUSIONS 

Pleiades and SPOT 6/7, high spatial resolution imageries, 

is generally difficult in detecting cloud as it has limited bands 

availability including visible and near-infrared spectral bands. 

This paper proposes a novel method of cloud detection to 

detect cloud for the images by integrating unsupervised 

algorithm and deep learning. K-means, an unsupervised 

algorithm, is modified to segment the images into good 

quality clusters. In addition, the deep CNN is designed to 

extract the multi-scale features from each cluster and classify 

them as cloud and non-cloud.  

To provide accurate cloud class, the potential cloud from 
the segmentation step is used to guide the CNN in predicting 

the class. The nine selected Pleiades and SPOT 6/7 images 

with various land covers and cloud types were used to test the 

proposed method. As a result, the original K-means failed to 

identify thin clouds at some spots whereas the modified K-

means successfully detected them. Hence, compared to the 

original K-means, the modified K-means proposed in this 

paper improve the accuracy of the results.  

Moreover, the SLIC over segmented in detecting the 

smooth thick cloud region, so that the SLIC + CNN has low 

precision value. On the other hand, the original K-means 
failed to detect this cloud, so that the K-means + CNN 

approach has low recall value in this case. In the same case, 

on the other hand, the modified K-means, which is proposed 

in this paper, can handle this issue so that the precision and 

recall values are quite high. In the overall tests, compared to 

SLIC + CNN and K-means + CNN, the proposed method has 

the highest precision, recall, and F1 score. The experiment 

results showed that the proposed method could accurately 

detect clouds for Pleiades and SPOT 6/7 images. The 

limitation of the proposed method is still using manual 

training sample selection. Therefore, the approach for 

automatic training sample selection will be considered in 

further research.  
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