Employment the State Space and Kalman Filter Using ARMA models

Najlaa Saad Ibrahima,*, Heyam A.A. Hayawia

aDepartment of Statistics and Informatics, University of Mosul, Mosul, Iraq
Corresponding author: *najlaa.s.a@uomosul.edu.iq

Abstract—The research is interested in studying a modern mathematical topic of great importance in contemporary applications known as the representation of the state space for mathematical models of time series represented by ARMA models and the discussion of a Kalman filter such as the one who has very general characteristics and of the utmost importance and depends on the representation of the state space. Raw data on electrical energy consumption in Mosul city have been used for the period from (15/6/2003 to 25/9/2003), and after examining these data as to whether they are stationary or not, it was found that there is no stationary for the series behavior in the arithmetic mean, variance and after conversion. The state-space model is characterized by being an efficient scale in all states that are not observed or controlled, and for this, the state-space model can be used to estimate states that cannot be observed. It can also express the state-space model simply for complex operations and is characterized by the flexible model. The series into a stationary time series with variance and mean. The autocorrelation function (ACF) and the partial autocorrelation function (PACF) have been calculated, and observation of the propagation behavior of these two functions shows that the best model for representing data is ARMA (2,1) model. And then, the parameters of the model were estimated using the matrix system for the state-space model and then taking advantage of the state-space model in estimating the observation equation for a Kalman filter such as the security and it was found that a Kalman filter such as security is very efficient in purifying the series from noise.

Keywords— Time series; state-space; Kalman filter; recursive particularity.

I. INTRODUCTION

Since the beginning of the seventh decade of the twentieth century, the subject of Time Series Analysis has emerged as one of the vital topics at various levels. Applications of this subject have expanded, so we do not find a scientific, technical, or literary field free of it. Usually, we are interested in the subject of time series analysis to study phenomena or variables that change with time change such as the number of heartbeats per minute, the temperature during hours on a particular day, the daily closing price of a specific company’s shares, as well as fluctuations in currency exchange rates and financial stock markets, among others. Sometimes it is important to use filters to extract important patterns in time series data, as filters are used to show some of the time series properties as the general direction. The primary purpose of filters is to obtain the optimum estimator. The first pioneering studies on the issue of filters appeared in the early forties of the last century, as (Kolmogorov) in 1941 and Wiener in 1942 independently developed a technique to find a linear estimate with linear minimum mean-square error estimation, which received great attention and subsequently had a significant impact in developing the idea of a Kalman filter. [1], then [2] culminated that study with other results resulting in the development of a Recursive Algorithm to find the optimum linear estimator, and this algorithm was constrained by conditions such that the studied view has a single dimension (Scalar) as well as the parameter. The data is almost endless, and the stationary process is stable. The results of (Wiener) developed by making it more general to make the data expired and cover the non-stationary processes [3]. Other studies followed in the same field, including but not limited to the study undertaken by Kim [4], which did not exceed the results of Sharaf \textit{et al} [5].

II. MATERIALS AND METHODS

It is a very general method of mathematical representation developed by Salmi \textit{et al}. [6]. Through the state-space method, the relationships between Inputs and Outputs dynamic systems can be represented. It is known that the outputs of the determinant dynamic system depend on both the inputs as well as the previous outputs. To know the number of previous outputs that we need to know the current output of the system. If we have a dynamic system described by a
hypothesized equation of the rank (q), then we need (q) from the inputs only to find the current value of the output, that this past (q) outputs summarize the past for the system whenever we studied the current output for the system, so there is no need for detailed details on the past of the system that affects its present and future. That part of the system’s past that affects its present and future influence on the system’s behavior is called the state of the system, and the variables that represent the state of the system are called state variables. Moreover, we can develop the state space by relying on the relationship between inputs and outputs or by initial knowledge of the natural law that governs the system [7].

This includes distinguishing the model from the state variable in all input and output variables and the currently unlimited natural statistical knowledge, and in the case of space models, the term of Estimation is usually used to refer to:

- Estimate the unknown (non-known) parameters of the state-space model.
- Estimate states.

To form the state-space model, it is necessary to prepare at least three variables, namely:

- Inputs
- Outputs
- State variables

Likewise, the dimension of the state space vector must be at least equal to the order of the system [8].

The representation of the state space of the system is a basic idea in the modern control theory, as the state defines the system as a studied minimum (specific) of present and future information and can be described as the future behavior of the system and depends on Markov properties that require that the state space is what gave the future to the system in a way. It is independent of its past, and accordingly, the representation of the system’s state space is also called the Markov representation of the system.

The system can be a linear time constant if both are linear and constant over time. Fixed linear time systems that contain fixed properties such as fixed states of a fixed and linear time system can represent many physical characteristics. The representation of the state space is described by the state and output equations and can be described as follows [8]:

\[Y_{t+1} = AY_t + GX_t + 1 \]

(1)

and the output equation:

\[Z_t = HY_t \]

(2)

\[Y_t : \text{represent a specific vector with a dimension} \ (k \times 1), \ A: \text{represent transitional matrix dimension} \ (k \times k), \ G: \text{represent input matrix dimension} \ (k \times m), \ X_t: \text{represent the input vector of} \ \text{the system has a rank} \ (m \times 1), \ H: \text{represent output views matrix(m×k)}, Z_t: \text{represent output vector rank(m×1)}. \]

If the input \(X_t \) and the output \(Z_t \) are stochastic operations, then the representation of the state space is given as follows:

\[Y_{t+1} = AY_t + G \alpha_{t+1} \]

(3)

\[Z_t = HY_t + b_t \]

(4)

As \(\alpha_{t+1} = X_{t+1} - E(X_{t+1}|X_t, t \leq n) \) It is the vector \((n \times 1) \) for one forward step to predict the error of the \(X_t \) process, and \(b_t \) is the vector \((m \times 1) \) for the noise and assumed to be independent of \(\alpha_t \).

If \(Z_t = X_t \) fades from equation (4) and the representation of the state space for the stochastic process of the constant \(Z_t \) becomes as follows:

\[Z_t = HY_t \]

(5)

Thus, \(Z_t \)'s process is the output of a linear stochastic system with a fixed time indicating the white noise input \(a_t \). As for \(Y_t \), it is defined as the state of the system, the state equation is also known as the state equation or the transformation equation, and the resulting equation also indicates the measurement equation or the observed equation.

The representation of the system's state space is related to a Kalman filter, and initially, the idea was clarified in the engineering applications of the first to apply the concept of state space to ARMA model analysis [9].

A. The Relationship between the State Space Model and the ARMA Model

To represent the ARMA model as the state-space model in the state of a multivariate and a single variable, we assume the mean is constant and is zero and the ARMA model \((p, q)\) is a vector with a dimension of \((m)\) as follows:

\[\phi(B)Z_t = \theta(B)a_t \]

(6)

\[Z_t = \phi_2Z_{t-1} + \ldots + \phi_pZ_{t-p} + \theta_1a_{t-1} \]

(7)

As:

\[\phi(B) = (1 - \theta(B)) = (1 - \theta_1B - \ldots - \theta_qB^q) \]

\[\phi(B)B^{-q} \]

And \(a_t \) : multivariate with a dimension \((m)\) and a zero mean for the white noise process of trapping \((\phi, 0)\) is used for both single-variable or multivariate states, and there should be no noise because the state is clear from the context of the speech, and the equation can be rewritten \((6)\) in the form of a moving average and by multiplying by \(B^{-1}(B)\), we get the following:

\[Z_t = \sum_{i=0}^{q} \psi_i a_{t-i} \]

(8)

\[Z_{t+1} = \sum_{i=0}^{q} \psi_i a_{t+1-i} \]

(9)

Assume that:

\[Z_{t+1|t} = E[Z_{t+1}|Z_k, k \leq t] \]

(10)

Then:

\[= Z_{t+1|t} + \psi_{t-1}a_{t+1} \]

We assume and without loss of generality, that \((p > q)\) plus \(\Phi_t = 0 \) if necessary, from equation \((7)\) we obtain:

\[Z_{t+p|t} = \phi_2Z_{t+p-1|t} + \ldots + \phi_pZ_{t|t} \]

\[Z_{t+p+1|t} = \phi_2Z_{t+p+1|t} + \ldots + \phi_pZ_{t+1|t} \]

\[= f(Z_{t}, Z_{t+1|t}, \ldots, Z_{t+p-1|t}) \]

It is clear that \(Z_{t+p+1|t} \ (i>0) \) is a function of \((Z_t, Z_{t+1|t}, \ldots, Z_{t+p-1|t})\) the representation of the state space of the ARMA \((p, q)\) model vector is given as follows:

\[
\begin{bmatrix}
Z_{t+1|t+1} \\
Z_{t+2|t+1} \\
\vdots \\
Z_{t+p|t+1}
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & \ldots & 0 & 0 & Z_t \\
0 & 0 & 1 & \ldots & 0 & Z_{t+1|t} & + & \psi_1 a_{t+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & \psi_p & \psi_{p-1} & \ldots & 0 & Z_{t+p-1|t} & + & \psi_p a_{t+p-1}
\end{bmatrix}
\]

\[
Z_t = \begin{bmatrix}
0 & 0 & \ldots & 0 & 1 & Z_{t+1|t} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & Z_{t+p-1|t} & + & \psi_p a_{t+p-1}
\end{bmatrix}
\]

(11)

(12)
B. Kalman Filter

The recursive strategy [10] was developed based on a state-space representation called a Kalman filter, a general formula that handles stationary and non-stationary time series. The candidate is characterized by the recursive property, which allows us to take advantage of new data and information as times change. A Kalman filter can be defined as a recursive algorithm to find an optimal estimator for the state or parameter variable, i.e., the estimation error variance is minimal [11]. A Kalman filter has been used widely in many fields of application, especially those that have evolved and originated after the scientific revolution that occurred in communications engineering, computer, and space science, and from these applied fields: [12].

- Engineering applications include signal processing by satellites or radar tracking and navigation systems for spacecraft, aircraft, and cars.
- Computer applications: such as image processing, real-time graphics identification, and audio processing.
- Economic and statistical applications: such as forecasting economic indicators and in the field of statistical control and control theory (Control Theory).

The mathematical model of the filtering issue can be expressed by the state-space model, through which the system can be represented by the state (system) and viewing equations as follows [13]:

\[Z_t = \phi_t Z_{t-1} + w_t \]
\[y_t = M_t Z_t + v_t \]

Our goal is to obtain an estimate of the state vector \(Z_t \) and estimate the covariance matrix \(P_t \) based on available information. Likewise, observation \(y_0, y_1, \ldots, y_n \).

To facilitate the estimation process, we assume the following assumptions [14].

- The \(Z_t \) operation is a dimensional vector (p * 1) and the \(y_t \) operation is a dimensional vector (q * 1).
- The transformation matrix \(\phi_t \) is not anomalous and has a dimension (p * p) and the matrix \(M_t \) is the observation matrix dimension (q * p).
- The noise process \(w_t \) is a dimensional vector (p * 1) representing a strong white noise process so that:
 \[E(w_t) = 0 \]
 \[E(w_t w_t^\prime) = Q \]

- The observation noise \(v_t \) is a dimensional vector (q * 1) representing a strong white noise operation so that:
 \[E(v_t) = 0 \]
 \[E(v_t v_t^\prime) = R \]

- The \(P_t \) covariance matrix has a dimension (p * p) that is positive, defined, and written as:
 \[P_t = E(Z_t - Z_0)(Z_t - Z_0)^\prime \]

III. RESULTS AND DISCUSSION

In this part of the research, data are presented in the amount of daily electrical energy consumption for the city of Mosul (mW / hour). During the period from 15/6/2003 to 25/9/2003, the description of the time series was traced by drawing what is known as the time series plot. We also investigate and learn about the nature of the oscillations in it and whether it includes a trend or not. The general trend is beneficial in confirming the stationarity of the time series and its close relationship to forecasting.

![Time Series Plot of ori.series](image1)

Fig. 1 The timeline of the electric energy consumption in Mosul

![Time Series Plot of C3](image2)

Fig. 2 Observational behavior after converting the time series to a stationary series.

To convert the time series to a stationary series, predicting the classical methods requires that the series be stationary. The logarithmic transformation of the original series observations was performed as they are not stationary by variance, then Differences are taken, and they start with the first difference \(\Delta X_t \) and then the second difference \(\Delta^2 X_t \). After obtaining the stationary in the behavior of the series, as shown in Figure 2.

In order to determine the appropriate model and its rank, the auto-correlation function (ACF) and the partial autocorrelation function (PACF) had been calculated shown in Figure 3 as follows:
Figure 3 above represents the auto-correlation function and the partial correlation function of the stationary series. The appropriate series model is the ARMA(2,1) model also the AIC standard was used to choose the model, and the following table shows the appropriate results for a group of ARMA models (p, q) and different values from (p) and (q) as well as the AIC standard value in each state.

TABLE I

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>MSE</th>
<th>AIC</th>
<th>σ^2_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.007314</td>
<td>-495.982</td>
<td>0.007232</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0.007179</td>
<td>-496.686</td>
<td>0.007032</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.01348</td>
<td>-433.976</td>
<td>0.013345</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.009625</td>
<td>-467.028</td>
<td>0.009432</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.009045</td>
<td>-472.337</td>
<td>0.008774</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.006782</td>
<td>-502.682</td>
<td>0.006627</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.007292</td>
<td>-494.322</td>
<td>0.007057</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.006360</td>
<td>-507.372</td>
<td>0.00608</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.006243**</td>
<td>-510.221**</td>
<td>0.006072</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.006354</td>
<td>-507.262</td>
<td>0.006087</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.006344</td>
<td>-506.641</td>
<td>0.006004</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.006366</td>
<td>-508.852</td>
<td>0.005992</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.006419</td>
<td>-505.406</td>
<td>0.006078</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.006444</td>
<td>-504.075</td>
<td>0.006038</td>
</tr>
</tbody>
</table>

* The lowest value for a standard AIC.
** The lowest value for the squared error mean.

When testing a set of ARMA (p, q) models and for different values of (p) and (q) it was found that the minimum AIC value at the ARMA (2,1) model and the estimated final model is as follows:

$$X_t = -0.3882X_{t-1} - 0.3369X_{t-2} + \epsilon_t + 0.9876\epsilon_{t-1}$$

To confirm the ARMA (2,1) model's validity, the auto-correlation function and the partial autocorrelation function of the residuals shown in Figure 4 and found to fall within the confidence limits, indicating that the residues of this model are not correlated with each other.

Using equations (11) and (12) that represent the state space of the ARMA model can be transformed ARMA(2,1) model in the above equation to represent the state space as in the following equation

$$\begin{bmatrix} Z_{t|t} \\ Z_{t+1|t} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \psi_2 & \phi_1 \end{bmatrix} \begin{bmatrix} Z_{t-1} \\ Z_{t-2|t} \end{bmatrix} + \begin{bmatrix} 1 \\ \psi_1 \end{bmatrix} a_t$$

$$\psi_1 = \phi_1 - \theta_1 = -0.3882 + 0.9876 = 0.5994$$

The following equations show the mathematical model of the filtering issue obtained through the state space model:

State equation:

$$\begin{bmatrix} Z_{t|t} \\ Z_{t+1|t} \end{bmatrix} = \begin{bmatrix} 0.3369 & 0.3882 \\ 0.0672 & 0.3175 \end{bmatrix} \begin{bmatrix} Z_{t-1} \\ Z_{t-2|t} \end{bmatrix} + \begin{bmatrix} 0.3715 \\ 0.321 \end{bmatrix} w_t$$

Observation equation:

$$y_t = [0.5248\ldots n0.3715] \begin{bmatrix} Z_{t|t} \\ Z_{t+1|t} \end{bmatrix} + \nu_t$$

The last transformation matrix was obtained after several iterations, and the state covariance and observation covariance were as follows:

$$Q = \begin{bmatrix} 0.006222 & 0.00045 \\ 0.00045 & 0.00621 \end{bmatrix} \quad R = \begin{bmatrix} 0.0058 \end{bmatrix}$$

Figure 5 below shows the time series of electrical energy consumption before filtration and after filtration, and it is clear from the figure how efficient a filter such as security is in purifying the chain of noise.
It is possible to clarify some statistical measures of localization and dispersion to compare the filtering efficiency as shown in Table 2, as we note from the table that the filtering process significantly reduced the dispersion of data, which indicates the efficiency of a Kalman filter such as security in the filtering process for the series of noise data.

TABLE II COMPARING THE ORIGINAL AND FILTERING DATA

<table>
<thead>
<tr>
<th>Data</th>
<th>Mean</th>
<th>SE Mean</th>
<th>Standard deviation</th>
<th>Coefficient of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Data</td>
<td>0.0029</td>
<td>0.0100</td>
<td>0.1010</td>
<td>34.828</td>
</tr>
<tr>
<td>Candidate Data</td>
<td>0.1142</td>
<td>0.0078</td>
<td>0.0784</td>
<td>0.6865</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

The time series for the consumption of electrical energy is non-stationary, so the logarithm and the second difference of data were taken to obtain a time-series of stationary by variance and arithmetic mean, and then drawing the auto-correlation and partial auto-correlation functions. Hence, the best model representing the data is ARMA (2,1).

The state-space model is characterized by being an efficient scale in all states that are not observed or controlled, and for this, the state-space model can be used to estimate states that cannot be observed. It can also express the state-space model simply for complex operations and is characterized by the flexible model.

A Kalman filter enjoy despite his complex calculations, has important and very useful features in different applications due to his dependence on the representation of the state space, we can immediately filter the time series and rely on the information.

REFERENCES

