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Abstract— This paper explores the capability of the Binary Artificial Bee Colony (BABC) algorithm for feature selection of Nonlinear 
Autoregressive Moving Average with Exogenous Inputs (NARMAX) model, and compares its implementation with the Binary 
Particle Swarm Optimization (BPSO) algorithm. A binarized modification of the BABC algorithm was used to perform structure 
selection of the NARMAX model on a Flexible Robot Arm (FRA) dataset. The solution quality and convergence were compared with 
the BPSO optimization algorithm. Fitting and validation tests were performed using the One-Step Ahead (OSA), correlation and 
histogram tests. BABC was able to outperform BPSO in terms of convergence consistency with equal solution quality. Additionally, it 
was discovered that BABC was less prone to converge to local minima while BPSO was able to converge faster. Results from this 
study showed that BABC was better-suited for structure selection in huge dataset and the convergence has been proven to be more 
consistent relative to BPSO. 
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I. INTRODUCTION 

SI is a process of building a mathematical model of a 
system from observed input and/or output data [1]-[3]. 
Among its applications is simulation, forecasting, controller 
design, process planning, monitoring, and modelling as well 
as an explanation of naturally-occurring phenomena in 
various fields [4]-[7].  

Recently, research in non-linear SI has increased as 
science increasingly discovers complex systems that require 
these modelling techniques to understand their behavior and 
to closely approximate their behaviour [8].  

A highly efficient and accurate model for modelling 
nonlinear systems called the NARMAX model was 
introduced [9] as a unified and accurate representation for a 
wide variety of nonlinear systems [10]-[18]. The NARMAX 
model represents its current output as a combination of its 
past inputs, outputs, and residuals [19], [20]. The residuals 
provide a feedback mechanism that may further improve the 
NARMAX model prediction.  

The NARMAX model can be constructed using various 
methods such as polynomials [21]-[24], Multilayer 
Perceptrons (MLP) [25]-[28] and Wavelet ANNs (WNN) 
[29], [30]. From all, the polynomial approach is more 

attractive and versatile because of the simplicity of the 
model structure, and it reveals the dynamical properties of 
the system in a straightforward manner [31]. Other than that, 
it has been proven to work well in practical application with 
a smaller number of parameters used compared to the 
Volterra or Wiener series. 

NARMAX identification involves three major processes 
namely structure selection, parameter estimation, and model 
validation. Of particular interest in this paper is model 
structure selection that is concerned with selecting a set of 
the most representative regressors from a large number of 
candidates. In addition, the selected regressors must obey the 
principle of parsimony in which the structure must be as 
small as possible, yet has the ability to represent the system 
well [32]. 

This research proposes a binarized modification of the 
Artificial Bee Colony (ABC) algorithm to perform structure 
selection of a polynomial NARMAX model on an FRA 
dataset. The ABC algorithm is an optimization algorithm 
that mimics the intelligent behavior of bee colonies in 
finding the best food source around its perimeter by dividing 
the responsibilities of the swarm and working together to 
achieve a common goal [33], [34]. A bee colony consists of 
three groups of bees that fulfil specific roles within the 

373



colony: scout bees are responsible for searching for potential 
food sources, while employed bees are tasked with collecting 
honey from discovering food sources. Onlooker bees stay in 
the hive and rotate their roles with scout and employed bees 
as the scout and employed bees relay information through a 
special dance that indicates the direction and quality of 
available food sources [35], [36].  

The performance of ABC is compared with another 
swarm-inspired optimization algorithm, the BPSO [37] with 
the experiment design focusing on solution quality and 
convergence consistency. This work is motivated by 
previous works [38], [39] that suggest that the ABC 
algorithm is capable of outperforming PSO in terms of local 
and global optimization problems. 

II. MATERIAL AND METHOD 

Al l experiments were performed on a personal computer 
with 3.10 GHz Intel Xeon E3-1220 v3 microprocessor and 4 
GB of RAM. The operating system was Linux Mint XFCE 
version 17.1 with MATLAB 2014a as the development 
platform. The flowchart for the feature selection process is 
shown in Fig. 1 and parameter settings for BABC and BPSO 
is shown in Table 1. These parameters were selected to test 
the robustness of both algorithms under different 
initialization and exploration conditions. 
 

 
Fig. 1  Flowchart of experiments 

A. Dataset Description 

The dataset used for the structure selection experiments 
were the FRA dataset. FRA is a single input and single 
output (SISO) nonlinear system which torque input is 
effecting the acceleration in operation. The data have been 
used as a benchmark data for comparing seven different of 
identification program. The lag used was reported as 4 [40]. 
The possible combination of the regressor is 2x1044 from 44 
regressors. 
 

 
Fig. 1  The FRA dataset 

B. NARMAX Structure Selection Using BABC and BPSO 

The polynomial representation of the 
NARX/NARMA/NARMAX model for a given input-output 
series is: 

  (1) 
 
where  is the number of terms in the polynomial 
expansion,  is the -th regression term with  and 

 is the -th regression parameter.  is formed by a 
combination of input, output, and residual terms. In matrix 
form, identification involves the formulation and solution of 
the Least Squares (LS) problem: 

 
                                          (2) 

 
where  is a  regressor matrix,  is a  coefficient 
vector and  is the  vector of actual observations.  is 
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arranged such that its columns represent the  lagged 
regressors.  is the white noise residuals. 

For feature selection, suppose that the feature selection 
problem is defined as: 

 
                                 (3) 

 
where  consists of  columns representing each coefficient. 
To select a feature subset,  using OA, a binary string 
of length  is defined so that each column has a bit 
assigned to it. The initial value of the binary string can be 
randomly defined during initialization. A value of 1 will be 
given to the binary string to indicate the column will be 
considered in the construction of , while the value of 
0 is written to show the column is ignored.  

In the swarm/colony, each particle carries a  vector 
in solutions . This vector contains the “probabilities of 
change” defined earlier. During optimization, the vector 
elements will be used as a reference to altering the binary 
string from its initial state (zero). If the particle vector 
element is more than 0.5, the binary bit will be changed to 1, 
otherwise the bit value is maintained. 

C. Experiment Setup 

Table 1 shows the parameter values for the NARMAX 
experiments using BABC and BPSO. Four different pre-
processing methods were tested in the experiments: 

• No magnitude scaling, 50:50 training and testing 
division ratio using block division method (PP0). 

• No magnitude scaling, 50:50 training and testing 
division ratio using interleaving division method 
(PP1). 

• Magnitude scaling between -1 and 1, 50:50 training 
and testing division ratio using block division method 
(PP2). 

• Magnitude scaling between -1 and 1, 50:50 training 
and testing division ratio using interleaving division 
method (PP3). 

TABLE I 
PARAMETER SETTING FOR NARX AND NARMAX  EXPERIMENTS 

Parameters NARMAX 
Fitness criterion AIC, FPE, MDL 
Swarm size 10,20,30,40,50 
Max Iterations 500, 1000,1500 
Initial Seed 0, 10 000, 20 000 
Limit (BABC) 0, 0.25, 0.5, 0.75, 1 

 
After the regressor matrix was created, the BABC and 

BPSO algorithms were used to select the best possible 
structure guided by the Akaike Information Criterion (AIC), 
Final Prediction Error (FPE) and Model Descriptor Length 
(MDL) as the fitness functions. 

Several tests namely the One Step Ahead (OSA) 
prediction, residual plot, correlation tests and residual 
histogram analysis were performed to validate the model. 

III.  RESULTS AND DISCUSSION 

Because NARMAX is a recursive model, it has to be 
implemented in stages. Initially, the NARX model is 
constructed (section A). The residuals from the NARX 

model was then used to create the Moving Average (MA) 
model (section B). Finally, the combined NARX and MA 
model was used to construct the NARMAX model (section 
C). 

A total of 45 and 180 parameter combinations were 
analyzed for BPSO and BABC, respectively. Additionally, 
experiments on each of these parameter combinations were 
repeated for each of the information criteria (AIC, FPE, 
MDL). BABC had more parameter combinations because of 
the additional limit parameter, which is not applicable for 
BPSO. 

A. NARX Part 

For the NARX model, the optimal results were obtained 
using FPE as the fitness criterion and PP0 as the pre-
processing method. Both BABC and BPSO obtained similar 
solutions with a fitness of 1.60×10-5. The training and testing 
MSE values of the optimal solution were 2.69×10-5 and 
2.72×10-5 respectively as shown in Table 2. 

 

TABLE III 
BEST BPSO AND BABC OPTIMIZATION SOLUTIONS FOR NARX MODEL. 

BABC CONSISTENTLY DISCOVERS THIS SOLUTION, WHILE BPSO 

MANAGED TO DISCOVER IT ONLY A FEW TIMES 

Criterion FPE 
Pre-processing PP0 
Fitness 1.60×10-5 
Training Violation 45 
Testing Violation 47 
Training MSE 2.69×10-5 
Testing MSE 2.72×10-5 

 
The significant result is shown in Fig. 2 and Fig. 3, which 

demonstrates the ability of BABC to consistently be able to 
find the optimal solution many times over the many 
experiments with different parameter settings. In comparison 
to BPSO, the solution distribution was inconsistent as the 
solutions were much more scattered and unfocused. 
 

 
Fig. 2  BABC and BPSO convergence histogram for the FRA NARX model. 
BABC managed to consistently discover the best solution (1.60×10-5) even 
when given different test parameters. The BPSO results were more 
distributed, discovering many different model structures resulting in various 
fitness values 
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This observation is further demonstrated in Fig. 3, where 
it shows the convergence versus the number of iterations for 
all experiments with different parameter settings with the 
FPE information criterion and PP0 as the pre-processing 
method. It can be seen that BPSO has a tendency to 
converge faster (as demonstrated by the rapid decrease in the 
fitness function), but fails to improve its fitness anymore 
after 500 iterations.  In comparison to BABC, the reduction 
in the fitness function is more gradual with the ability to 
search the solution space in a more in-depth manner which 
resulting in overall better-quality solutions. 
 

 
Fig. 3  BABC and BPSO convergence across iterations over various 
parameter combinations. BABC solutions are more gradual compared to 
BPSO, but BABC has the ability to explore in a more in-depth manner 
resulting in a much better fitness relative to BPSO 

B. MA Part 

Being a recursive model, NARMAX introduces the 
residuals back into the NARX model in an attempt to 
improve its prediction ability.  
 

TABLE IIIII 
BEST BPSO AND BABC OPTIMIZATION SOLUTIONS FOR MA  MODEL. 

SIMILAR TO TABLE 2, BABC CONSISTENTLY DISCOVERS THIS SOLUTION 

WHILE BPSO MANAGED TO DISCOVER IT ONLY A FEW TIMES 

Technique BPSO BABC 
Criterion FPE FPE 
Pre-processing PP0 PP0 
Fitness 7.07×10-7 7.05×10-7 
Training Violation 43 42 
Testing Violation 52 51 
Training MSE 1.35×10-6 1.35×10-6 
Testing MSE 1.53×10-6 1.54×10-6 

 
Table 3 shows the optimal MA result achieved using 

BABC and BPSO. The FPE fitness and MSE values were 
comparable. However, with the BABC algorithm, the 
number of correlation violations was lower compared to 
BPSO. This indicates that the MA residuals were more 
randomly distributed compared to BPSO. Furthermore, the 
BABC algorithm showed much more consistency in finding 
the best fitness as indicated in Fig. 4. This observation is 
similar to the experiment performed in section A. 
 

 
Fig. 4  BABC and BPSO convergence histogram for the MA NARX model. 
BABC managed to consistently discover the best solution (7.05×10-7) even 
when given different test parameters. The BPSO results were more 
distributed, discovering many different model structures resulting in various 
fitness values 

C. NARMAX Part 

The NARMAX model is a combination of the optimal 
NARX (section A) and MA (section B) models. The results 
of the NARMAX model are shown in Table 4. 

Comparing Table 4 and Table 2, it appears that the 
addition of MA terms to the NARX model did not add a 
significant advantage to the NARX model as the MSE values 
were slightly increased. Because of this, NARX was selected 
as the final model for comparison between BABC and 
BPSO. 
 

TABLE IVV 
OPTIMAL RESULT FOR NARMAX  ACHIEVE BY BPSO AND BABC 

Technique BPSO BABC 
Criterion FPE FPE 
Pre-processing PP0 PP0 
Training Violation 47 47 
Testing Violation 53 53 
Training MSE 6.2465×10-5 6.2469×10-5 
Testing MSE 6.2894×10-5 6.2923×10-5 

D. Model Validation 

The validation results for the NARX model is presented in 
this section. Validation measures two aspects, which are the 
model fit (using the OSA test) and the whiteness of the 
residuals (residual plot, correlation tests, and residual 
histogram analysis).  

The OSA results for BABC and BPSO training and 
testing sets are shown in Fig. 5 and Fig. 6 respectively. The 
model prediction results (red dotted line) closely follow the 
actual system output (solid blue line). This indicates that the 
model was able to approximate the actual system well. This 
observation is further supported by the R2 value nearing 
100% for both training and testing sets. 

For the model to be accepted, the residuals of the model 
need to exhibit properties similar to white noise. This can be 
validated using residual plots (Fig. 7), correlation (Fig. 8(a) 
to Fig. 8(e)) and histogram tests (Fig. 9).  
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The correlation tests measure the similarity between two 
signals [41] across different lags. For the residuals to appear 
as white noise, all correlation coefficients (except for lag 
zero in autocorrelation tests) should be within the 95% 
confidence limits (dotted red line). However, in real-life 
cases, a perfect result is difficult to achieve, and a 
sufficiently good result is acceptable. Based on the results in 
Fig. 8(a) to 8(e), the total number of correlation violations is 
45 from 160 lags tested (28%) which leaves the remaining 
72% correlation coefficients within the 95% confidence 
limits. The error histogram in Fig. 9 also supports the 
observation that the residuals are random. This is because 
the distribution of residuals appears as a bell-shaped curve 
indicating the residuals are randomly distributed. Because of 
this, we consider the NARX model to be valid and 
acceptable.   
 

 
Fig. 5  NARX OSA prediction on FRA (training set) 

 

 
Fig. 6  NARX OSA prediction on FRA (testing set) 

 

 
Fig. 7  Residuals in NARX model 

 

 
Fig. 8(a)  Autocorrelation test results of NARX model (1/5) 

 

 
Fig. 8(b)  Autocorrelation test results of NARX model (2/5) 
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Fig. 8(c)  Cross-correlation test results of NARX model (3/5) 

 

 
Fig. 8(d)  Cross-correlation test results of NARX model (4/5) 

 

 
Fig. 8(e)  Cross-correlation test results of NARX model (5/5) 

 

 
Fig. 9  Histogram of residuals (NARX model) 

IV.  CONCLUSION 

The optimal NARX solution similarly achieved by both 
BPSO and BABC (FPE criterion equal to 2.69×10-5 and 
2.72×10-5 for training and testing sets respectively with PP0 
pre-processing). Both algorithms managed to find the 
optimal solution from 2x1044 possible model structures. The 
optimal solution had passed all the necessary tests for it to be 
considered a valid and acceptable model. 

Comparing the two optimization algorithms, BPSO 
converged faster than BABC. However, in terms of 
convergence consistency, BABC was proven to significantly 
outperform BPSO by a huge percentage margin (BABC 
found the optimal solution 82.2% of the time, while BPSO 
managed 6.67% for the NARX model). This proves that 
BABC was the better method for feature selection. 
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