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Abstract— Globally, the accelerating urbanization led by industrialization and population growth causes severe environmental 

degradation. The urban expansion particularly to the conversion of land activities affects the ecosystem services critically. This study 

helps to fill in the gap of determining water yield in the urban area to reduce water stress due to the spatial land use change. The 

research objectives are to quantify the spatial land use change in Batu Pahat, Johor in the year 1999, 2010, and 2018. Second, to identify 

the water yield of Batu Pahat in the years 1999, 2010, and 2018. Third, to determine the relationship between water yield, vegetation, 

and urban expansion. The methods used are landscape change, water yield simulation, and statistical analysis by using the software 

included ENVI, ArcGIS, FRAGSTAT, Annual Water Yield InVEST Model, and Microsoft Excel. Raw satellite images were extracted 

for the year 1999, 2010, and 2018. The supervised classification of LULC (Land Use and Land Cover) was done based on the region 

created which are built-up area, cleared land, vegetation, and water bodies. This study generates results for the changes in percentage 

area for each LULC class. The highest percentage of area in Batu Pahat is vegetation while the cleared land ranked lowest. In conclusion, 

this study will aid in understanding and provided empirical data result for the urban expansion and water yield in Batu Pahat, Johor 

by using GIS and remote sensing applications to produce land use and water yield map as final output. 
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I. INTRODUCTION

Currently, more and more countries worldwide have great 

impacts on environmental problems and natural disasters 
which the frequency is increasing, and the situation is more 

difficult [1], [2]. The crucial cause of such circumstance is the 

expansion of urban areas resulted from the change of land use 

and land cover (LULC) [3], [4]. The former vast agricultural 

area of forest has been changed into the urban area, industrial 

area, and bare land, which affects the ecological balance. 

Consequently, many problems arise, for instance, the off-

season natural disaster that the preparation is not possible as 

in the past, the increasing pollution due to the destruction of 

forest and the construction and tools and equipment [5]. 

Moreover, one of the crucial problems found in the 
agricultural country was the draught that directly impacts the 

agriculturist who does not have sufficient water to utilize in 

the farm and household. 

Additionally, the available water cannot be fully utilized 

due to its quality resulting from land-use change [6]. The 

flood that damages partial agricultural areas, so the 

agriculturist is unable to harvest the product, and the products 

are affected [7] is also the problem that arises from the lack 

of land use and land cover change monitoring. Previously, the 
fieldwork to survey LULC was applied. However, the 

limitation was that the number of laborers' amount of time 

was required [8].  

However, with the advancement of Geographic 

Information System (GIS) and Remote Sensing (RS), the data 

obtained from the Earth Observation Satellite were used for 

digital image processing using machine learning regardless of 

human labor. As a result, the LULC data are acquired quickly 

[8], [9] and used as the input to analyze water yield estimation 

in couple with other spatial data to determine the relationship 

between the water yield and the urban growth, as well as the 

change of LULC for monitoring and preparation. Further, 
such data might be useful for urban planning. From the 
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literature review and relevant research, most of them studied 

the LULC classification using satellite images and the LULC 

change detection using satellite images by utilizing the 

machine learning algorithms widely [8], [9]. Nevertheless, the 

study on the application of LULC and the spatial data to 

analyze the relationship between the water yield and urban 

growth and the use of each type of land is very rare. Most 

studies only emphasized the specific aspect, such as examined 

only the water yield at each area at the same period. Therefore, 

the application is limited; for instance, the automatic 

monitoring of land use is not possible, the data cannot be used 
for prediction [10], [11]. 

For this reason, this research proposes the application of 

machine learning techniques and supervised learning 

classification. It aims to classify and monitor the LULC 

change detection using satellite images Landsat 5 and Landsat 

7 at each period. Hence, this approach is subject to acquire 

LULC data to analyze the relationship between the water 

yield and the urban growth and the use of each type of land in 

the Batu Pahat district in Malaysia, the studied area.  

II.  MATERIALS AND METHOD 

The main contribution of this research is the classification 

and detection LULC using Landsat satellite images based on 

a supervised learning classification algorithm. Moreover, this 

research consisted of three steps, i.e., data collection and 

preparation, LULC classification and change detection, and 

water yield estimation. Each step is described in more detail 

in the following sub-sections. Fig. 1 depicts the conceptual 

diagram describing the proposed scheme. 
 

 

Fig. 1 Conceptual framework diagram of the proposed scheme. 

A. Study Area 

Batu Pahat is a district in Malaysia (Fig. 2). The main river 

in Batu Pahat is the Batu Pahat River which also known as 

Sungai Batu Pahat. According to the official portal of Batu 

Pahat Municipal Council, the total number of Malaysian 

citizens in Batu Pahat is around 383,391, while non-

Malaysian citizens are around 18,511. The main factor Batu 
Pahat has been chosen as a study area is the demographic of 

the area. Batu Pahat is a developing district that mainly 

focuses on manufacturing, food packaging, and agritourism. 

The rapid growth of the district had increased the economic 

growth and the total population. In the meantime, the LULC 

change dramatically led to rapid urban expansion. 

 

 
Fig. 2 The map of Batu Pahat district.  

B. Data Collection and Preparation 

The satellite images of the study area were downloaded 

from the USGS website, which the satellite imagery had high 
acceptance and was widely used across the global [12]. The 

images were obtained from Landsat 7 for the year 1999, 

Landsat 5 for the year 2010, and Landsat 7 for the year 2018 

with only less than 1% cloud coverage for better visualization. 

Level 1 of the images being chosen as the images are 

atmospherically corrected which can reduce the influences 

and the uncertainty in processing with data analysis. The data 

collection needed for the water yield simulation included 

precipitation. Precipitation data for the three years was also 

downloaded from the freely available global dataset through 

the website climatologylab.org which the Climatology Lab 

developed as the field data was difficult to obtain for the three 
years. The datasets included primary climate variables and the 

derived variables. The temporal information precipitation is 

inherited from the Climatic Research Unit (CRU). Besides, 

the average annual reference evapotranspiration data 

expressed in depth of water in millimeters (mm) also 

downloaded from the same website as the TerraClimate were 

well linked to station-based reference evapotranspiration 

from FLUXNET stations. The file types of both the data used 

to process are in the raster dataset. The PAWC (Plant 

Available Water Content) was downloaded from HWSD 

(Harmonized World Soil Database) developed by the ISRIC-
World Soil Information. The database composed of a map in 

GIS polygon format consists of different soil mapping units 

linked to harmonized attribute data. Data were extracted and 

converted into the unit millimeter (mm) for the soil depth and 

fraction between 0 to 1 for the plant's available water content. 

Next, the biophysical table will be stored in a .csv file type 

showing each of the LULC classes in the map produced.  

C. LULC Classification and Change Detection 

LULC classification based on supervised learning 
classification using Landsat satellite images. On detecting 

LULC changes, the classified images were validating on 

Landsat imaging data acquired in 1998, 2010, and 2018. The 

LULC changes between subsequent annual periods were 

determined by comparing extracted LULC types at the 

respective year. In this paper, the accuracy of the LULC 
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classification by Maximum Likelihood Classification (MLC) 

algorithms was assessed by comparing the LULC result 

extracted against the LULC data from the Malaysia 

government.  

D. Water Yield Estimation 

InVEST Model invented by the Natural Capital Project is 

commonly used in the study because of the ease of use and 

the data requirement needed to run the modeling is relatively 
easy [11]. The model was quantified mainly from the LULC 

maps and the main input data. The water yield model works 

using the Budyko curve theory [13]. It simulates the water 

yield at grid level change associating with the biophysical 

components of the LULC maps. The InVEST model run in 

gridded format is required the input data, which consists of 

LULC, precipitation, soil-depth potential evapotranspiration, 

and PAWC to be in raster form to generate the pixel output 

[14]. Water yield equation calculated as follow: 
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Where ������  is annual real evapotranspiration for the 

pixel � ��� ���� is annual precipitation on pixel x.  

For LULC evapotranspiration fragment using an equation 

as follow: 
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PET(x) is defined as: 

 PET(x) = ��� !� ∙  ��"���  (3) 

Where ��"���  is evapotranspiration from pixel x and 

��� !�is an evapotranspiration coefficient associated with 

the LULC � ! ) on pixel x. #���  is a linear function of 

�$% ∙ &/����, where N is the number of the events per 

year, and AWC is the volumetric PAWC, and #���  is 

defined as: 

 #��� � ( ∙
)*+�!�

,�!�
 + 1.25  (4) 

Where AWC(x) is the volumetric (mm) of PAWC. The soil 

texture and effective rooting depth define AWC(x). Z is a 

constant of seasonal factors, which record the precipitation 

and hydrogeological properties [4]. 

III. RESULT AND DISCUSSION 

A. LULC Change Detection Results 

The analysis was conducted in the ArcGIS Desktop 

Application to determine the spatial area change of the study 
area in the three years. The LULC changes have then been 

identified by applying the intersect function in the software to 

determine the transition of the class types from 1999 to 2018. 

The outcomes of the result were tabulated in Table I and Fig. 

3. From the data below, the most abundant class with the 

highest spatial area is the class vegetation in the three years, 

which has 67.04% in 1999, 69.78% in 2010, and 75.68% in 

2018, showing the area of the class increase gradually year by 

year. In contrast, the class water bodies decrease 

incrementally from the year 1999 (16.56%) to 2010 (12.6%) 

to 2018 (7.42%). According to the vegetation and forest area 

were converted to the palm oil plantation in the year 1999 due 

to the higher economic values. Consequently, the increased 

agriculture also raised the water demand for the plantation.  
 

 
Fig. 3 Land use map in the year 1999 and 2018 

However, the water bodies dropped by half from 2010 to 

2018 due to the increasing water stress issues from the 

unsustainable water management and drought season in 2015 

to 2016. The built-up area decreases from 12.74% (1999) to 

12% (2010) and increases dramatically to 14.53% (2018), 

while the cleared land increase in the year 1999 from 3.66% 

to 5.62% in the year 2010 and drop to 2.37% in 2018.  Both 

classes have fluctuated from 1999 to 2018, probably due to 
the urbanization mostly occurred the internal mitigation 

within the urban and suburban area.  Besides, the strategies of 

the ninth Malaysia plan included thrust three: improving the 

standard and sustainability of quality of life. 

TABLE I 

RESULT OF AREA CHANGE FOR YEAR 1999, 2010 AND 2018 

 1999 2010 2018 

Area 

(Ha) 

% Area 

(Ha) 

% Area 

(Ha) 

% 

Cleared 

Land 

7256.22 3.66 11142.81 5.62 4701.6 2.37 

Built Up 

Area 

25241.3 12.74 23765.31 12 28795.41 14.53 

Vegetation 132865.52 67.04 138305.48 69.78 149997.19 75.68 

Water 

Bodies 

32829.97 16.56 24979.4 12.6 14698.8 7.42 

 

The conversion of the land class water bodies in 1999 to 

2010 to vegetation met 55.40%, which is the highest among 

the classes in the transition years, while the least area of 

percentage convert from the water bodies to the cleared land 

in the cleared land 4.36%. This is clearly caused by the 

plantation's higher water consumption, which drives to the 

decrease water class in the area. During the time period, 

conversion classes to vegetation had the highest area 

percentage compared to the other classes (cleared land 
50.89%, built-up area 45.30%, vegetation 79.04%, and water 

bodies 55.40%) year 1999 to 2010. The data continue to grow 

to the year 2018 (cleared land 52.51%, built-up area 44.55%, 

vegetation 87.90%, and water bodies 47.98%), indicating that 

the vegetation was the most abundance class in the year 

LULC in the study area from the year 1999 to 2018. 

Furthermore, the rapid urbanization and development led to a 

percentage of the cleared land in the 1999 increase to 2010 

then decrease in the year 2018. This can be clearly shown on 
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the value of transition of cleared land to cleared land in the 

year 1999 have 17.15% while the transition value of cleared 

land from 2010 to 2018 had 10.53%.  

B. Landscape Metric Results 

The FRAGSTATS [15] results (Table III) at the class level 

show the four different landscape structures and patterns with 

the four different classes. The class-level metrics were used 

to quantify the landscape pattern change as the class level was 
more accurate. The data reflected that the patch density (PD) 

of water bodies increased by 0.08 from 1999 to 2010 and 

decreased by 0.43 to 0.65 in 2018. This indicated that the 

water bodies class was the least dispersed area in 1999 and 

2010 but became more dispersed from 1999 to 2018 while 

built-up area increased gradually and reached highest in the 

year 2018, showing that built-up area becomes more 

dispersed in the years. The trend corresponds to the study that 

mentioned the highest PD had the more dispersed and 

fragmented patches [16]. In the mean patch area 

(AREA_MN), vegetation is the highest area among the three 
years, which increase gradually from the year 1999 (654.88 

ha) to 2018 (1616.21 ha). This showed that area of vegetation 

class expanded gradually and ranked the highest distributed 

among the three years in the landscape. From 1999 to 2010, 

the water bodies and cleared land to undergo a fragmentation 

process as the PD increased while AREA_MN decreased.  

However, the vegetation aggregated as the PD decreased, 

reduced the density stand on the landscape; AREA_MN 

increased grew the patch of the class on the area, they become 

clustered together in 2018. While the water bodies from 2010 

experienced patches loss in the land as the PD decrease from 

1.08 to 0.65, AREA_MN dropped from 11.65 ha to 11.39 ha.  
Besides, vegetation class also ranked highest in the largest 

patch index (LPI), which show 62.60% in 1999, reduced to 

68.73% in 2010 then increased back to 75.04% in 2018 among 

the three years. The other class type only had around 1% (0.71% 

water bodies, 1.33% built-up area, 0.12% cleared land in 2018; 

0.82% water bodies, 1.40% built-up area, 0.53% cleared up in 

year 2010). For 1999, the water bodies had 6.26% in the 

landscape but dropped in the following years.  This scenario 

showed that vegetation had the largest single patch, which 

dominates the landscape [17]. This indicated that the spatial 

distribution of the water bodies dropped from 2010 to 2018, 
probably due to the drought season in the year, which led to 

the shrinkage of the water bodies' size. This finding 

corresponded to the existing studies. 

TABLE II 

THE RESULT DATA FOR LANDSCAPE METRIC PARAMETER  

Year PD LPI 

(%) 

LSI 

(m/Ha) 

AREA_MN 

(Ha) 

ENN_MN 

(m) 

2018 2.02 75.03 31.89 49.50 389.86 

2010 2.72 68.72 39.98 36.72 343.2 

1999 2.30 62.59 39.45 43.40 353.98 

 

For the landscape level, the PD increased from the year 

1999 to 2010 then dropped in 2018. The LPI at the landscape 

level grew gradually from the year 1999 to 2018. LSI value 

was almost the same for 1999 and 2010 but decreased to 

31.8947 m/Ha in 2018. The AREA_MN and ENN_MN 

accounted for dropping values from 1999 to 2010 then 

increased significantly in the year 2018. 

C. Water Yield Results 

The total amounts of water yield produced varied among 

the three years, which was 3709.97 mm in 1999, decrease to 

2335.58 mm in the year 2010, and rose to 10988.57 mm in the 

year 2018. This may be because the precipitation of a certain 

year decreased greatly during the three years. The highest 
amount of water yielded was in 2018, which was near twice 

the year 2010. The water depth yielded showed a different 

range for temporal and spatial distribution with various areas 

of hectares. The highest and lowest water depth different in 

range among the three years. In 1999, the highest range 

between 180 mm to 222 mm covered the region in the 

northeast region. In 2010, the area with the highest range was 

between 120 mm to 145 mm, located in the northeast area. In 

2018, the highest water depth ranges from 484 mm to 598 mm 

as the amount of precipitation in the year was the highest 

concentration in the north and east. In both years 2010 and 
2018, a small portion of the area had a higher water depth. 

The water depth decreased from north-east to west and south 

area correspond to the monsoon season, bringing the 

precipitation from west and south to the northeast.  

TABLE III 

THE RESULT DATA FOR WATER YIELD AND LULC TYPES. 

 Land Class 2018 

1999 2010 2018 AET 

mm % mm % mm % mm 

Clear 

Land 
126.6 3.4 131.9 5.7 260.4 2.4 128.5 

Built Up 480.3 12.9 284.9 12.2 1609.8 14.7 138.9 

Vegetation 2496.8 67.3 1641.4 70.2 8355.7 76 751.3 

Water 

Bodies 
606.9 16.4 277.2 11.9 762.6 6.9 127.8 

Total 3710.6 100 2335.4 100 10988.5 100 1146.5 

 

The simulated water yield and the actual 

evapotranspiration (AET) differ significantly from the LULC 

types (Table II). The highest AET was the vegetation class 

with 751.3 mm, while the lowest AET had both cleared land 

and water bodies classes. The higher the AET, the lower the 

water yield will be Spracklen et al. [18]. This trend showed 

that the built-up area had a higher water yield than vegetation 

but a lower yield than the other classes. However, our results 

indicate that the water yield from the vegetation area was far 
higher than the built-up area. This had met the inconsistent 

with the other existing research that the finding of the built-

up area produced higher water yield while lower in vegetation 

land. As Li et al. [4] stated, the results might explain by some 

are a portion of the study area are sparse vegetation that 

enlarges evapotranspiration allow the water infiltration 

through the vegetation canopy, coverage and roots without 

capturing the moisture. Similar research Yang et al. [19] and 

Zhao et al. [20] showed that water yield during flooding due 

to urbanization increased as the vegetated area could transfer 

water to the soil. 
Furthermore, the highest water yield is on the vegetation 

class type among the three years. Accordingly, the percentage 

of water yield for the vegetation increases gradually from 67.3% 

to 76.04% as the total area of the vegetation grew 67.04% 

from 1999 to 75.08% in 2018. However, the water yielded by 
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the built-up decreased 0.75% from the year 1999 and increase 

to 1609.82 mm in the year 2018, corresponding to the area 

taken by the built-up area dropped from 25241.3 ha to 

23765.31 ha then increase to 28795.41ha in the three years. 

This trend indicates that the increase of total water yields 

mainly resulted from the expansion of the vegetation, while 

the fluctuation of total water yield could be ascribed to the 

variation of the build-up area. This result corresponds to the 

spatial area changes that show that the vegetation class 

increases while the water bodies decrease. This may be due to 

the water coefficient of the plant in a certain area and have a 
lower AET value. 

D. Statistical Analysis Results

Statistical analysis is used for the data comparison between

the LULC types and the water yield. The steps started with 

checking the datasets were normally distributed through a 

normality test. The Z-value of the skewness of area is 0.0019, 

and 0.0017 for the water yield data indicated that the dataset 

was normally distributed. One justification is gained, the one-
way ANOVA test in the process to determine the significance 

of the value. The popular alpha used in most of the tests is 

0.05 due to the difference between means. Conversely, if the 

p-value is smaller than 0.05, the null hypothesis cannot be

concluded as the mean does not exist. The results of the three

years were greater than 0.05 showed that all the values are

insignificant; no posthoc test was needed.

Pearson correlation was then analyzed between the area of 

LULC built-up and vegetation type with the hydrological 

component of water yield (Fig. 4(a) and (b)). Results revealed 

that the built-up or urban area was stably correlated to the 

water yield change positively as the correlation coefficient, r2 
value is 0.9773. This shows that the higher the build-up area, 

the higher the water yield in the class type. In addition, the 

vegetation type was also positively associated with the water 

yield change with the r2 value equals 0.8241. The correlation 

results indicate that the built-up area had a higher impact on 

the change of the water yield than the vegetation. 

Fig. 4 The graph shows relationship between (a) built-up area and water yield 

(b) vegetation and water yield.

E. Discussion

Research results illustrated the LULC classification and

monitoring method at each period using the satellite image 

Landsat with the supervised learning classification method. 

To acquire the data to analyze the water yield estimation to 
find the relationship between the water yield and use of each 

type of land proposed. This research provided the data used to 

prepare and solve the problems and prevent the possible 

problems about LULC monitoring and water yield, which 

affected the living and career of people in each area. It was 

contrary to the studies that proposed only the LULC change 

monitoring and studies that only presented the method of 

water yield analysis without monitoring the automatic change 

of land use [10] [11]. As a result, it delayed the data utilization 

in water yield analysis or other applications. 

IV. CONCLUSION

Land use and land cover classification and monitoring 

using the satellite image Landsat 5 and Landsat with 

supervised learning classification technique fastened the 

monitoring regardless of the fieldwork. Furthermore, the use 

of data acquired from the data processing and other spatial 

data, such as precipitation soil-depth potential 

evapotranspiration and PAWC, to analyze the relationship 

between the water yield and the use of each type of land using 
InVEST Model, could predict the water yield in the future for 

planning the solutions and prevention of problems about 

water and urban planning control. Further research should 

apply the high-definition satellite image, such as WorldView-

3 and SPOT, to classify LULC due to the high resolution of 

the results. Moreover, the analysis results of water yield 

would have a higher resolution. However, other spatial data 

to be used should also have a high resolution as well.    
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