
Vol.11 (2021) No. 6

ISSN: 2088-5334

Eight Prime Numbers of Modified RSA Algorithm Method for More
Secure Single Board Computer Implementation

Nanang Triagung Edi Hermawan a, Edi Winarko b,*, Ahmad Ashari b
a Indonesian Nuclear Energy Regulatory Agency, Jakarta, 10120, Indonesia

b Department of Computer Science and Electronics, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281, Indonesia

 Corresponding author: *ewinarko@ugm.ac.id

Abstract— RSA is the most popular public-key cryptography. The main strength of the algorithm is based on the difficulty of factoring

in a large integer number. RSA has also been applied in a system with limited resource environments like single-board computers

(SBC). To ensure data security, a recommendation to use a key size longer than 2048 bits generates challenges for implementing RSA

in the SBC. This research proposes an EPNR (Eight Prime Numbers of Modified RSA) method, a modified double RSA based on eight

prime numbers combined with the CRT method, to speed up the random key generation and decryption mechanism. The method is

implemented in a Raspberry Pi 4 Model B+. The running time and security performances of the EPNR were analyzed and compared

to the other models. Compared to the others model based on the standard RSA scheme, the proposed model is faster 21.78 times in a

random key generation, 9.03 times in encryption and decryption processing. The EPNR has resistance to Wiener, statistical, and

factorization attacks (GNFS and Fermat). Using standard RSA in the second encryption mechanism, the GNFS is not yet effective for

attacking the proposed model. The modified Fermat Factorization algorithm is more difficult and needed more extra times for factoring

a large composite number into eight prime numbers correctly. The method will be useful for implementing certificates authentication

and distribution of the secret key. It is very suitable to enhance more secure RSA implementation in an SBC environment.

Keywords— RSA algorithm; multi-prime numbers; single-board computer; information security.

Manuscript received 12 Nov. 2020; revised 12 Jun. 2021; accepted 24 Jul. 2021. Date of publication 31 Dec. 2021.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Data and information are essential assets; therefore, their
security aspects should be guaranteed. Cryptography
techniques can be implemented to ensure security aspects of
data, namely: confidentiality, integrity, and authentication [1]
[2]. As one of the popular asymmetric cryptography methods,
the RSA algorithm was developed by Rivest-Shamir-
Adleman in 1978 [1]. The standard RSA algorithm generates
a pair of keys based on two random prime numbers. The
security level of the RSA algorithm depends on how difficult
to factorize a big integer number that is used as a modulus
computation into two prime numbers. With the improvement
of computational capabilities, the key size should be longer
than 1024 bits [1], [3], [4]. Using longer than 2048 bits is also
recommended [5], [6]. Modulus factorization is the most
common type of RSA cryptosystem attack. The RSA
algorithm with a key size shorter than 1024 bits is easy to be
broken by some factorization algorithms, such as trial division,
Pollard Rho, Fermat factorization, Euler factorization, and

Quadratic Sieve algorithms [7]–[9]. The Quadratic Sieve, the
Number Field Sieve [10], and the Elliptic Curve Factoring
Algorithm [11] are considered to be the best and most
effective factoring algorithms on very large numbers [5], [12].

The RSA algorithm can be divided into three phases:
random key generation (public key and private key),
encryption, and decryption phases. The random key
generation and decryption phases need more resources and
time compared to the encryption phase. These phenomena are
very critical in terms of limited or constraint systems related
to speed computational, memory, and power supply, such as
in a single-board computer (SBC) [13]–[16]. Some SBC
samples with limited resources are implemented as a simple
sensor with minicomputer-instrument for system monitoring
in a remote territory, such as in smart grid line monitoring [17],
[18], [19], weather monitoring [20], [21], wireless body area
network [22]–[25], smart city [26], internet of things [27] and
radiation monitoring [28]–[30]. Security measurement should
be conducted in the transmission of monitoring data by
considering the site’s resources limitation and implementing
suitable cryptography techniques. Especially in RSA

2375

implementation, the multi-prime numbers technique can
generate keys faster than only uses two prime numbers, like
in the standard RSA algorithm [31]–[33]. On the other side,
the Chinese Remainder Theorem (CRT) can be implemented
to increase the acceleration of the decryption process [1], [22],
and [34].

Many studies have been done to improve the performance
of the RSA. These studies mainly focus on improving speed
execution and security level, especially from the factorization
attack. Some modification implemented methods to achieve
speed improvement by modifying repetitive modular
multiplication and modular exponentiation for suitable
modern hardware [35]. Another applied two different keys
pairs in brute force attack and probability bit different keys
pairs in brute force attack. Other researches improved
probability bit n RSA-PAKE protocol, two different size keys,
multiple public keys, and multi-prime [5].

In speed execution issues of RSA algorithm, the
researchers tend to focus on increasing the key generation and
decryption process speed. A combination of multi-prime
numbers and the CRT methods are used for achieving the
goals [31]. The modified RSA algorithms usually use more
than two prime numbers than standard RSA that uses two
prime numbers [36]. On the other side, the CRT method is
used to shorten the decryption exponent bit size by hiding
incompatible systems to have a better speed in decryption
processing [37].

Other studies have generated some set of public and its
corresponded private keys from two prime numbers [38] and
[39]. In the transmission process, the public key is disguised
or blinded by another number to improve confidentiality. The
mathematical operation, with the same modulo in the system,
generates vulnerability from modulus attacks. Other modified
RSA by adding two random numbers and uses two different
modulo have been proposed [40]. Implementation of small
private keys size is the security vulnerability hole from the
Wiener attack [35].

Dual RSA with two pairs of public and private keys to
improving the standard RSA's security has been performed
[41], [42]. The proposed dual RSA also implemented CRT to
speed up the decryption process [43]. RSA modifications by
utilization of multi public (w1, w2, w3, …, wk,, n) and private
(s1, s2, s3, …, sk, n) key pairs based on two prime numbers (p,
and q), also has been observed [44]. Each key pair is used for
each correlated segment of big matrices, corresponding to the
matrices of images. It is operated as big plain matrices to
produce cipher matrices. This method is suitable for
encrypting images or video files.

Additionally, some studies have modified RSA algorithm
by using three prime numbers (p, q, and r) [45], [46], and [47].
The simulation result in [45] proves that the key generation
was faster compared to standard RSA and it enhances security
by two levels in a modified RSA algorithm. Three Mersenne
prime numbers to construct a new RSA cryptosystem, which
provides more efficiency and reliability over the network,
have also been observed [46]. The Zaid and Hassan [47]
results indicate that the average speed improvement is about
80% in a key generation process, more or less 96% in the
decryption process, and only 4% in the encryption process.

This is reached by a combination of multi primes and CRT
methods.

An asymmetric Key-based Cryptographic Algorithm using
Four Prime Numbers (ACAFP) to secure message
communication has been proposed [48]. Four prime numbers
(w, x, y, and z) are not easily disintegrated and increased the
networks' effectiveness. The proposed scheme is much
advanced in terms of memory consumption and
computational speed. Dual Modulus RSA, based on four
prime numbers and Jordan-Totient function, has been
developed [42]. However, both papers do not utilize the CRT
in the decryption process.

The hybrid RSA method was also proposed based on four
prime numbers [49], [49]. The public and private keys are
generated by implementing a modification to Euler’s totient
component. In the encryption and decryption process, the
modulus is hidden by some random number related to the real
modulus. The encryption and decryption processes are faster
than the standard RSA, but processing for key generation is
slower [50].

Modified RSA by four [51] and by five [52] prime numbers
combined with the CRT method has been observed to
enhancement the speed of the decryption mechanism. More
generally, RSA modification based on multi-prime numbers
by secretly keys sharing has been observed [12], [53]. Its
combination with CRT also has been analyzed [31]. Two
secret keys are used and combined in the calculation to
improve complexity in the encryption and decryption
mechanism. Secure secret keys distribution is needed
seriously in this system.

Based on the above discussions, implementing the RSA
algorithm in an SBC environment with limited computational
resources has not been studied deeply. Multi-prime numbers
combined with the CRT method will be very suitable and
useful to implement in this condition. Therefore, this research
proposes a method for improving the RSA algorithm
implemented in a more secure SBC. The improvement is
made by implementing multi-primes and the CRT based on a
double encryption/decryption mechanism. In our case, the
SBC will be installed in the Radiation Data Monitoring
System (RDMS) device used to monitor the level of radiation
in its surrounding area [28]. The function of SBC is to
increase the security of the RDMS data, especially for
authenticating the entity of new RDMS, secret key
distribution, and encrypting the monitoring data that is sent
from RDMS device to the server.

II. MATERIALS AND METHOD

This section discusses in detail the proposed EPNR method,
which is the modified version of the Dual RSA algorithm. The
motivation of EPNR development is that it will run on the
hardware or system with limited resources, such as the SBC.
RSA Cryptosystem implementation in a long key that is
longer than 2048 bits [5] to reach minimal security
requirements hugely influences SBC performance. Based on
the two main problems above, we conducted research method
in Figure to develop an EPNR algorithm model.

2376

Fig. 1 Research method

The method includes problem identification, literature

studies, proposed EPNR model, EPNR implementation in
Python programming, performance model testing and
analysis, followed by concluding and reporting. Fig.2 shows

the main diagram of an EPNR algorithm. Multi primes and
CRT are combined as the EPNR algorithm for more secure
SBC implementation is proposed in this to reach the goals.

Fig. 2 The main diagram of an EPNR algorithm

Based on the process as shown in Fig. 2, Bob generates a

public and private key (E, D) based on two strong prime
numbers (a, and b) as standard RSA in the first time. Bob also
computes the private key’s exponents (Da, and Db) and their
inverses (aInv, and bInv). The public key components (E, N)
are sent to Alice. Alice generates a public and private key
based on eight strong prime numbers (p, q, r, s, t, u, v, and w).

Alice also calculates each the private key’s exponents (dp, dq,

dr, ds, dt, du, dv, and dw) and their inverses (pInv, qInv, rInv,

sInv, tInv, uInv, vInv, and wInv).
Alice uses her private exponents and Bob’s public key to

encrypt a plain text (P) and send Bob's result (C). After
receiving the ciphertext, Bob uses his private key (D, N) and
Alice’s public key (e, n) in the decryption processing to get

2377

the plain text. The method also implements the CRT method
with eight private key exponents on Alice’s side and two
private key exponents on Bob’s side. By the double
mechanism, the random key generation and encryption based
on EPNR method in Alice’s side will be faster. It also can
guaranty authentication and confidentiality message
transmission from Alice to Bob. The mechanism is very
suitable for certificates authentication of new RDMS’s entity,
secret key distribution, and encrypting the monitoring data
that is sent from RDMS device to the server. More detail
about the generation of a public key pair, encryption of the
plain message, and decryption of ciphertext is given in
Algorithm 1, 2, and 3, respectively.

In Algorithm 1, the proposed method uses two strong prime
numbers (a and b) to generate public (PUB) and private keys
(PRB) in Bob’s side. Bob also computes the private key’s
exponents (Da, and Db) and their inverses (aInv, and bInv).
In another side, Alice uses eight-strong prime numbers (p, q,

r, s, t, u, v, and w) to generate Alice’s public (PUA) and private
keys (PRA). In order to generate Alice’s private keys, the
algorithm computes eight private key exponents (dp, dq, dr, ds,

dt, du, dv, and dw) and their inverses (pInv, qInv, rInv, sInv,
tInv,uInv, vInv, and wInv). During the double encryption
(Algorithm 2), firstly, a plain message is encrypted using
Alice’s private key and, secondly, using Bob’s public key to
produce ciphertext (C). In double decryption processing
(Algorithm 3), Bob uses his private key in the first decryption.
The final message has resulted from the second decryption
with Alice’s public key.

The CRT method is used for breaking a large integer of
each private key into smaller exponent to simplify
exponentiation computation both in encryption and
decryption processing. By a double encryption/decryption
mechanism, there are two layers of security. The first or outer
layer of security is an encryption/decryption mechanism using
Bob’s public and private keys. The second or inner security
layer is an encryption/decryption mechanism using Alice’s
public and private keys. These mechanisms are secure defense
in depth implementation in our model.

Algorithm 1: Key generation

Bob’s side:
1. Generate random prime numbers: a1, and b1.
2. Compute and find strong prime numbers:

a = 2a1+1, and b = 2b1+1.
3. Compute N as modulus a system: N = a*b.
4. Compute the totient of N: ɸ(N) = (a-1)*(b-1).
5. Choose integer E as a public key, where 1 < E < ɸ(N)

(randomly chosen from five digits of palindrom prime
number set).

6. Find D as a private key, where E*D ≡ 1 mod ɸ(N).
7. Calculate a private key exponent:

Da = D mod (a-1), and Db = D mod (b-1).
8. Calculate two private key exponents invers:

aInv = a-1 mod b, and bInv = b-1 mod a.
9. Bob’s public key: PUB = {E, N}.
10. Bob’s private key: PRB = {Da, Db, aInv, bInv, and N}
Alice’s side:
1. Generate random prime numbers:

p1, q1, r1, s1, t1, u1, v1, and w1.
2. Compute and find strong prime numbers:

p = 2p1+1, q =2q1+1, r = 2r1+1, s = 2s1+1, t = 2t1+1, u =
2u1+1, v = 2v1+1, and w = 2w1+1.

3. Calculate n as modulus a system: n = p*q*r*s*t*u*v*w.
4. Calculate the totient of n:

ɸ(n) = (p-1)*(q-1)*(r-1)*(s-1)*(t-1)*(u-1)*(v-1)*(w-1).
5. Choose integer e as a public key, where 1 < e < φ(n) (fixed

setting to 65537).
6. Find integer d as a private key, where e*d ≡ 1 mod ɸ(n).
7. Compute eight private key exponents:

dp = d mod (p-1); dq = d mod (q-1); dr = d mod (r-1);

ds = d mod (s-1); dt = d mod (t-1); du = d mod (u-1);

dv = d mod (v-1); dw = d mod (w-1).

8. Compute eight private key exponent invers:
pInv = p-1 mod (q*r*s*t*u*v*w);

qInv = q-1 mod (p*r*s*t*u*v*w);

rInv = r-1 mod (p*q*s*t*u*v*w);

sInv = s-1 mod (p*q*r*t*u*v*w);

tInv = t-1 mod (p*q*r*s*u*v*w);

uInv = u-1 mod (p*q*r*s*t*v*w);

vInv = v-1 mod (p*q*r*s*t*u*w);

wInv = w-1 mod (p*q*r*s*t*u*v).
9. Alice’s public key: PUA = {e, n}.
10. Alice’s private keys: PRA = {dp, dq, dr, ds, dt, du, dv, dw,

pInv, qInv, rInv, sInv, tInv, uInv, vInv, wInv, n}.

Algorithm 2: Encryption of plain text

The encryption applies double encryption mechanism.
1. In first encryption steps, Alice’s eight private key exponents

and the invers modulation are used to compute separated
message by implementing CRT method as:

m1A = (Mdp mod p)*(q*r*s*t*u*v*w)*(pInv);

m5A = (Mdt mod t)*(p*q*r*s*u*v*w)*(tInv);

m2A = (Mdq mod q)*(p*r*s*t*u*v*w)*(qInv);

m6A = (Mdu mod u)*(p*q*r*s*t*v*w)*(uInv);

m3A = (Mdr mod r)*(p*q*s*t*u*v*w)*(rInv);

m7A = (Mdv mod v)*(p*q*r*s*t*u*w)*(vInv);

m4A = (Mds mod s)*(p*q*r*t*u*v*w)*(sInv);

m8A = (Mdw mod w)*(p*q*r*s*t*u*v)*(wInv).

2. Based on the result of above separated message, compute first
ciphertext (C1) as:

C1 = (m1A+m2A+m3A+m4A+m5A+m6A+m7A+m8A) mod n

3. In second encryption step, Bob’s public key exponents (E, N)
are used to compute a final ciphertext (C) as:

C = C1
E mod N

Algorithm 3: Decryption of ciphertext

1. In first decryption steps, Bob’s two private key exponents and
the invers modulation are used to compute separated message
by implementing CRT method as:
m1B = (CDa mod a)*(b)*(aInv)

m2B = (CDb mod b)*(a)*(bInv

2. Based on the result of above separated message, compute first
ciphertext (C1) as:
C1 = (m1B+m2B) mod N

3. In second decryption step, Alice’s public key exponents (e, n)
are used to compute an original plaint text (M) as:
M = C1

e mod n

In order to evaluate the performance of the EPNR method,

we compare it to the standard RSA and a modified RSA with
four prime numbers (the ACAFP). We implement these three
methods in Python 3.8 and run them in a Raspberry Pi 4
Model B. The Raspberry’s specifications are Cortex-A72
processor, 1.2GHz Quad-Core ARM Cortex-A53 (64Bit)

2378

802.11 b/g/n, 4.00 GB LPDDR4 memory, and Raspbian
Operating System.

We performed two sets of experiments. The first set of
experiments is to compare the running time of the three
methods on random key generation, encryption, and
decryption steps. In these experiments, we varied the size of
the key (in bits), that is, 800, 1024, 1600, 2048, 3200, 4096,
5000, 6000, 7000, and 8192 bits. The second set of
experiments is to compare the robustness of the three methods
from statistical and factorization attack. We use Shannon
Entropy values, and the modified Fermat factorization
algorithm to analyze the robustness of the three methods from
these two attacks.

III. RESULTS AND DISCUSSION

This section presents and discusses the computational
(running time) and security performance of our proposed
EPNR method.

A. Running Time Comparison

Computational performances of the proposed method,
which includes running time of random key generation,
encryption, and decryption processes, are discussed here.
Based on the duration of a key pair generation process for all
of its bits size, respectively, the processing time is shown in
Fig. 3 and Fig. 4. It can be compared more rigid, increasing
speed up on the process based on the utilization of multi-
prime numbers for the same key size. Generally, it can be seen
that for increasing the longer size of keys or system modulus
(n), the time processing to get the RSA key pair will also
increase exponentially for all of the methods.

Fig. 3 The running time comparison of the random key generation

In the same size of keys, our proposed method is the fastest
in key generation processing. A smaller running time means
a faster process. It is caused by generating a shorter bit prime
number when the multi-prime method was implemented. For
example, for generating 8192 bits, two of 4096 bits are needed
in standard RSA, and four of 2048 bits prime numbers are
needed in the ACAFP method.

For the same operation, our proposed EPNR only needs to
generate eight of 1024 bits prime numbers. Actually, generate
eight of 1024 bits prime numbers is faster than generate two
of 4096 bits or four of 2048 bits prime numbers. These
conditions correlate closely to the primality check mechanism
by executing such an algorithm as Miller-Rabin. Primality

checking is very dependent on bits long. It indicates that the
EPNR is the best approach.

Fig. 4 The speed comparison of random key generation

Fig. 4 shows the speed of random key generation of the

three methods. The speed information can indicate an
optimum of the key size in their generation process. The speed � (����/�) is formulated as:

 � =

� (1)

where b is the size of the key (bits), and t is the time of key
generation (second). The speed performances of random keys
generation of the proposed method are compared to standard
RSA and the ACAFP. It can be known that by increasing key
size, the speed of key generation for standard RSA always
decreases exponentially. This condition is hugely different
compared to EPNR that from 1024 to 2048 bits of key size
relatively little bit the same performance. For EPNR, from
3200 to 8192 bits of key, the speed decreases exponentially.
It can be concluded that in the key generation of prime
numbers, the EPNR is optimum in range 1024 to 2048 bits of
key size. It is a secure range of RSA algorithm. However, so
that security is always guaranteed we recommend using a key
length of more than 2048 for both Alice and Bob side.

In all conditions of key size, the EPNR method’s speed is
always the fastest compared to ACAFP and standard RSA. By
increasing the length of key bits, the speed decreases, but the
speed ratio increase exponentially. Our proposed EPNR
method has the highest speed ratio compared to others (in the
average 21.78 compared to standard RSA and 5.76 compared
to the ACAFP). It shows that eight multi-prime numbers can
increase the key generation process significantly.

Alice’s public key is set to a fixed public key 65537 for all
experiments. The 65537 number is chosen based on reasoning
recommendations for achieving a minimum security level,
and it is the most common choice number [1]. In another side,
Bob’s public key is randomly chosen from five digits
palindrome prime number set to improve complexity. An ID
Code of the Radiation Data Monitoring System (example
SARA01SRPAGS711S21087) was used as plain text in the
experiments. The ID Code should convert into an integer
number before being encrypted. The plain text is encrypted
firstly using Alice’s private key and then secondly using
Bob’s public key. Fig. 5 shows the duration of each
encryption processing.

2379

Fig. 5 Running time comparison of the encryption process

Fig. 5 describes that all durations of encryption

exponentially increase by increasing of key size. The graph
trendlines are relatively identic with the graph trendlines of
key generation. It is caused by implementation of a double
encryption mechanism. First encryption using Alice’s private
key needs more extra-time compared to the second encryption
using Bob’s public key. It can be known that the Alice’s
private key always extra bigger than all possible Bob’s public
key. The message will only be useful for the receiver if he/she
decrypt the ciphertext into original plain text. Besides the
accuracy of the message, the decryption mechanism itself is
very important. Fig. 6 describes the complete time duration of
the decryption processing that conducted by Bob. In all RSA
systems, the decryption process always needs extra time. This
phenomenon is different in a double RSA scheme. In a double
RSA scheme, there are two pairs of random keys (one random
key pair from the sender, and another from the receiver). Both
in encryption and decryption process, there are two identic
exponentiation calculations but in opposite order. Firstly,
exponentiation calculation with a public key, and the second
is exponentiation with a private key. This fact can be observed
by comparing graph in Fig. 5 and Fig. 6.

Both in encryption and decryption processing, the CRT
method is the best approach to solve how to speed up the
exponentiation calculation process that uses the private key
components. Previous research on improving the decryption
processing in RSA only divides private key into two or four
exponents. This proposed method uses eight exponents of
private keys for implementing the CRT method in Alice’s side
and two exponents in Bob’s side.

Fig. 6 Running time comparison of the decryption process

In encryption and decryption for all conditions of key size,

the EPNR method’s duration time of process is always the
smallest compared to ACAFP and standard RSA. By
increasing the length of key bits, both the duration time and

duration time ratio increases exponentially. Our proposed
EPNR method has the highest speed ratio compared to others
(in the average 9.03 compared to standard RSA and 6.47
compared to the ACAFP). It shows that eight multi-prime
numbers can increase the encryption and decryption process
significantly.

Hinek formula has provided the iteration or bit operation
estimation for decryption processing related to multi-prime

numbers implementation, that: ��������� = �
��� (�����)� ,

when r is the number of primes in the n modulo. It can be
concluded that for more number of primes used in the
modulus, the fewer iterations required for decryption
computation [31]. Related to the maximum speed up ratio on
decryption process (�), Joseph in [54] has estimated by � =�
� �. �� formula, where m is the number of primes in the n

modulo. In comparison, uses 2, 4, 8, 16, and 32 prime
numbers, speed up ratio will be 4, 16, 64, 256, and 1024. In
the general formula, it presented as � = 2�, with k = 2, 4, 6,
8, and 10. In the context of double RSA mechanism, the two
above formulas still work related to modular exponentiation
calculation with a private key component.

The experiment also describes that our proposed method
by using eight exponents to implement the CRT method in
Alice’s side resulted the fastest speed on random key
generation and encryption processes. It is proofing that our
proposed method can improve the speed of the process in SBC
faster and better without having to override the security aspect
by implementing a double encryption/decryption mechanism.

B. Security Comparison

The security performances of the proposed method, that is,
a randomized level of ciphertext and its attack resistances, are
discussed here. Bit’s randomization level of ciphertext
represented by Shannon Entropy value H(x). The ciphertext
with a higher Shannon Entropy value will be more statistically
difficult to decompose by an attacker. The value was

calculated in reference to previous studies [55]–[58]:

 (!) = − ∑ $(!�)����$(!�)%�&' (2)

where p(xi) is a probability of such character appearing in

all sets of total characters observed (n). Table I describes the
determination of Shannon Entropy values based on multi-
prime numbers variation in integer and ASCII format of
ciphertext.

TABLE I
THE SHANNON ENTROPY VALUE OF CIPHERTEXT (BITS)

Size of

keys

RSA

(2 primes)

ACAFP

(4 primes)

EPNR

(8 primes)
(bits) Integer ASCII Integer ASCII Integer ASCII

800 3.30 5.4 3.29 5.4 3.29 5.4
1024 3.30 5.59 3.30 5.6 3.30 5.61
1600 3.31 5.96 3.31 5.95 3.31 5.96
 2048 3.31 6.12 3.31 6.11 3.31 6.1
3200 3.32 6.31 3.32 6.31 3.31 6.32
 4096 3.32 6.4 3.32 6.39 3.32 6.39
 5000 3.32 6.44 3.32 6.44 3.32 6.44
6000 3.32 6.48 3.32 6.47 3.32 6.47
7000 3.32 6.51 3.32 6.5 3.32 6.5
8192 3.32 6.53 3.32 6.52 3.32 6.52

2380

Based on the data in Table I, there are not significantly
different Shannon Entropy values for ciphertext in integer
format. It is mean that there is not significant influencing of
multi-prime numbers used with the values into Shannon
Entropy values of the ciphertext.

In the other fact that the average value is low, it is caused
by the character representation of ciphertext in integer format
only using decimal integer number from 0 to 9. The values
can be increased by using more complex character
representation, likes ASCII codes. This method can increase
an average of the Shannon Entropy values up to 1.86 times.
By increasing character complexity, the resistant of related
ciphertexts from statistical attack also will increase.

The security of the RSA depends on computationally
infeasible for an intruder to factorize large integer (n) into its
prime number components. This research uses eight
components (p, q, r, s, t, u, v, and w) in Alice’s side that the
strength of a huge prime number relied on. It is regarded to be
hard to break the vast number into eight prime factors. The
above EPNR scheme is still added with standard RSA as the
second layer of security. It is the key point of security from
our proposed method.

Regarding on private key using in standard RSA algorithm,
[35] and [59] recommend to use a big integer of a private key

((≥ '
� �'/*) for avoiding Wiener attack. Another research,

give suggestions to use (≥ +�,�-'.,/
� [60] and (≥

 +�(2√2 + 8/3)45.67/√8 [16], where t is chosen parameter.

Along with n as a modulus or key size increasing, d will also
increase into a very big integer. Especially in a double RSA
scheme, [61] recommend a private key (d > n0.368) for
avoiding factorization attack based on lattice basis reduction
algorithm. In our proposed model execution, the above
minimum of private key size requirements always be fulfilled.

In principle, existing factorization algorithms are
formulated based on the assumption that RSA’s modulus
generates based on two prime numbers. By the above
assumption, our proposed method uses more than 2048 bits
and is based on eight prime numbers with double
encryption/decryption mechanism is secure from all existing
factorization attacks.

The most efficient of factorization attack to standard RSA
algorithm is the General Number Field Sieve (GNFS) method
[10], [16], [62]–[65]. Granger et al. [66] provide an in-depth
report in 2009 on the factorization of the 768-bit number
RSA-768 by the number field sieve (NSF) factoring method
and provide some implications for the RSA [8], [65]. The
largest such semi-prime yet factored was RSA-250, an 829-
bit number with 250 decimal digits, in February 2020. The
total computation time was roughly 2700 core-years of
computing using Intel Xeon Gold 6130 at 2.1 GHz [67], [66].
This newest fact further reinforces the assumption that 1024
bit will be factored and will not be secured enough to stand
against the factorization attacks [5]. This is the main reason
why our EPNR method is kept back up with standard RSA as
a double encryption/decryption mechanism. To more
confident on avoiding GNFS attack, the scheme must use a
standard RSA with a key size greater than 2048 bits in Bob’s
side.

Our proposed EPNR method implements a double
encryption/decryption mechanism. In the encryption
processing, the first encryption conducted using modified
RSA based on eight multi-prime numbers. In the context of
algorithm’s resistance to GNFS attack, implementation of
eight multi-prime numbers will reduce its resistance to one
eighth compared to standard RSA. The standard RSA is still
applied to the second encryption to overcome the previous
vulnerability. Thus, if the resistance to factorization attack in
dual standard RSA scheme is doubled, then our proposed
EPNR method only increase by one eighth. By this
mechanism, the random key generation and encryption in
Alice’s side (incidentally on SBC environment) can be
accelerated, ensuring security from GNFS factorization
attacks.

On the other hand, using eight multi-prime numbers in
Alice's side’s second security layer makes the difference each
prime number is smaller. In case an attacker can break the first
layer of security (standard RSA scheme), the system becomes
vulnerable to Fermat factorization attack [68], and [69]. The
Fermat Factorization algorithm is modified for measuring our
model’s security resistance from the attack. It factorized a
modulus number of n into eight prime components in our
proposed research. Fig. 7 describes complexity steps to
factorize n by modified Fermat Factorization.

Fig. 7 Modified Fermat Factorization algorithm steps to factorize n

Based on an equation to determine the modulus n = pq in

standard RSA system, where p and q assumed as an odd

2381

number with small different each other, the above equation is
approached with difference equation of two squares as [70],
[62], and [68]:

 � = �� − �� (3)

By repositioning, the new equation formulated as �� −� = �� and then:

 (�5 + 9)� − � = �� (4)

With initial approaching is started from �5 = √�, brute
force iterations are conducted by starting from k = 0, 1, 2,

3, … and so on until getting such a perfect squares number. In
that condition, it gets:

 $ = � + � (5a)

 : = � − � (5b)

To get eight primes’ factors as described in Fig. 6, steps in
Equation (4), (5a), and (5b) should be repeated to factorize p
into p1 and p2, q into q1 and q2, p1 into p11 and p12, p2 into p21
and p22, q1 into q11 and q12, and q2 into q21 and q22 completely
and correctly. Prime number p11, p12, p21, p22, q11, q12, q21, and
q22 equivalent to getting prime numbers p, q, r, s, t, u, v, and
w in our EPNR scheme. The minimum number of all
iterations steps (I) can be approached by formulation:

; = 0.994523 @A B-C
�D�CE� + ABF-CF

�D�CFE� + AB/-C/
�D�C/E� +

GBFF-CFF
�√CFF H� + GBF/-CF/

�√CF/ H� + GB/F-C/F
�√C/F H� + GB//-C//

�√C// H�I (6)

The constant number 0.994523 granted empirically from
experiment. It is a correction number to approach more
precise the minimum number of all iteration’s steps.

By Equation (6), the total estimated time for factoring n can
be determined based on the speed of computational iteration.
It analyzed that step of factorization intensely depend on
different of closer prime numbers. Based on mathematical
operation for the same size of short keys, it easy to predict that
by implementing eight prime numbers, each closer number
will be very closed and has smaller differences. It causes the
factorization of modulus into eight prime numbers faster than
into two prime numbers. It is very contradictory to improve
the security level of the modified algorithm.

By theory and experiment, the difference from each closer
prime number should be added to be more significant. It was
conducted by implementing a general small random number
(non-prime integer) to substitute one of a prime number. It
will also be advantageous and efficient if different bits size of
eight prime numbers are implemented. A simple example is
the implementation of p in 20 bits, q, r, s, t, u in 10 bits, then
v and w with 5 bits for 80 bits key size. The above strategy
should be implemented based on strong prime numbers as
stated in Algorithm 1. Equation (6) can be implemented to
estimate iteration operation of factorization for the long size
of keys, such as 800 bits, 1024 bits, 1600 bits, 2048 bits, 3200
bits, 4096 bits, 5000 bits, 6000 bits, 7000 bits, and 8192 bits.
Table II shows the factorization iteration estimations.

TABLE II
ESTIMATION OF FACTORIZATION ITERATION FOR LONG KEY SIZE

Size of

keys

(bits)

RSA

(2 primes)

ACAFP

(4 primes)

EPNR

(8 primes)

800 1.06832E+119 4.97808E+118 1.84691E+119
1024 3.44077E+150 5.01439E+152 7.99117E+152
1600 6.82261E+238 6.98096E+239 1.13168E+240
2048 1.88574E+306 8.36656E+306 7.50599E+374
3200 8.07506E+479 1.6116E+480 3.80980E+562
4096 6.47168E+613 3.30105E+614 1.33508E+752
5000 3.64525E+749 1.31847E+751 1.16201E+785
6000 7.40950E+900 1.16131E+901 2.09158E+1005
7000 6.53459E+1050 2.17134E+1051 1.06063E+1161

8192 1.07391E+1231 1.19817E+1232 Overflow

Error

The Fermat factorization takes high computation cost. It

also consumes high computation time to find all prime factors
correctly. By double encryption/decryption mechanism using
key size longer than 2048 bits and implementing the secure
protocol, the EPNR method is very secure from potential
factorization attacks.

IV. CONCLUSION

In this paper, we have proposed the EPNR method that
modifies the dual RSA algorithm by using eight prime
numbers combined with the CRT to increase the speed of
random key generation and decryption processes. There are
two layers of security based on a double
encryption/decryption mechanism. The average speed-up
ratio of random key generation can reach 21.78 compared to
standard RSA and 5.76 compared to ACAFP. In the
decryption process, the average speed-up ratio can reach 9.03
compared to the standard RSA and 6.47 compared to the
ACAFP. In terms of data security, the modulus of the EPNR
algorithm is more difficult to be factorized. If the first layer of
security is broken, more effort and computational resources
are needed to factorize a large integer composite number into
eight compared to two or four prime number factors in
standard RSA and the ACAFP.

By implementing a modified Fermat Factorization
algorithm, it needed more extra times and iterations to attack
the system for factoring n until finding each eight prime
numbers correctly. Security analysis by implementing another
factorization attack will be useful to improve the security
performances of our proposed algorithm. The proposed
method is very suitable for enhancing security and
implementing in an environment with limited resources, like
SBC. A more comprehensive application of the double EPNR
method as a communication protocol for mutual
authentication of identity and distribution of secret keys to
support the Radiation Data Monitoring System in Nuclear
Installation or Radiation Facility will be studied in the next
research.

ACKNOWLEDGMENT

We are grateful to the Indonesian Nuclear Regulatory
Agency that supported our research by the Indonesian Nuclear
Regulatory Agency [memorandum of understanding numbers
01/KS 00 01/Set-PKS/II, 2016] scheme.

2382

REFERENCES

[1] W. Stallings, Cryptography and Network Security, Seventh Ed.
Singapore: Pearson Prentice Hall, 2017.

[2] A. Shoufan and E. Damiani, “On inter-Rater reliability of information
security experts,” J. Inf. Secur. Appl., vol. 37, pp. 101–111, 2017, doi:
10.1016/j.jisa.2017.10.006.

[3] M. Mumtaz and L. Ping, “Forty years of attacks on the RSA
cryptosystem: A brief survey,” J. Discret. Math. Sci. Cryptogr., vol.
22, no. 1, pp. 9–29, Jan. 2019, doi: 10.1080/09720529.2018.1564201.

[4] E. Barker, Guideline for Using Cryptographic Standards in the

Federal Government : Cryptographic Mechanisms NIST Special

Publication 800-175B Guideline for Using Cryptographic Standards

in the Federal Government : Cryptographic Mechanisms. USA: NIST
U.S. Department of Commerce, 2016, p. 26.

[5] S. S. Al-kaabi and S. B. Belhaouari, “A Survey on Enhanced RSA
Algorithms,” J. Comput. Inf. Technol. (CS IT), pp. 123–142, 2019, doi:
10.5121/csit.2019.90411.

[6] C. Thirumalai, S. Mohan, and G. Srivastava, “An efficient public key
secure scheme for cloud and IoT security,” Comput. Commun., vol.
150, no. November 2019, pp. 634–643, 2020, doi:
10.1016/j.comcom.2019.12.015.

[7] A. Overmars, “Survey of RSA Vulnerabilities,” Mod. Cryptogr. -

Theory, Technol. Adapt. Integr. [Working Title], no. June, 2019, doi:
10.5772/intechopen.84852.

[8] A. Overmars and S. Venkatraman, “Mathematical Attack of RSA by
Extending the Sum of Squares of Primes to Factorize a Semi-Prime,”
Math. Comput. Appl., vol. 25, no. 63, pp. 1–15, 2020, doi:
https://doi.org/10.3390/mca25040063.

[9] M. Patel, A. M. Patel, and R. B. Gandhi, “Prime numbers and their
analysis,” J. Emerg. Technol. Innov. Res., vol. 7, no. March, pp. 1–5,
2020.

[10] L. T. Yang, G. Huang, J. Feng, and L. Xu, “Parallel GNFS algorithm
integrated with parallel block Wiedemann algorithm for RSA security
in cloud computing,” Inf. Sci. (Ny)., vol. 387, pp. 254–265, 2017, doi:
10.1016/j.ins.2016.10.017.

[11] A. Nitaj and E. Fouotsa, “A new attack on RSA and Demytko’s elliptic
curve cryptosystem,” J. Discret. Math. Sci. Cryptogr., vol. 22, no. 3,
pp. 391–409, Apr. 2019, doi: 10.1080/09720529.2019.1587827.

[12] M. A. Islam, M. A. Islam, N. Islam, and B. Shabnam, “A Modified and
Secured RSA Public Key Cryptosystem Based on ‘n’ Prime Numbers,”
J. Comput. Commun., vol. 06, no. 03, pp. 78–90, 2018, doi:
10.4236/jcc.2018.63006.

[13] M. Mumtaz and L. Ping, “Remarks on the cryptanalysis of common
prime RSA for IoT constrained low power devices,” Inf. Sci. (Ny)., vol.
538, pp. 54–68, 2020, doi: 10.1016/j.ins.2020.05.075.

[14] P. J. Basford et al., “Performance analysis of single board computer
clusters,” Futur. Gener. Comput. Syst., vol. 102, pp. 278–291, 2020,
doi: 10.1016/j.future.2019.07.040.

[15] T. M. Fernández-caramés and S. Member, “From Pre-Quantum to
Post-Quantum IoT Security : A Survey on Quantum-Resistant
Cryptosystems for the Internet of Things,” IEEE Internet Things J.,
vol. 7, no. 7, pp. 6457–6480, 2020.

[16] W. Susilo, J. Tonien, and G. Yang, “Computer Standards & Interfaces
Divide and capture : An improved cryptanalysis of the encryption
standard algorithm RSA,” Comput. Stand. Interfaces, vol. 74, no. July
2020, p. 103470, 2021, doi: 10.1016/j.csi.2020.103470.

[17] H. Khalid and A. Shobole, “Existing Developments in Adaptive Smart
Grid Protection : A Review,” Electr. Power Syst. Res., vol. 191, no.
November 2020, p. 106901, 2021, doi: 10.1016/j.epsr.2020.106901.

[18] M. Bertolini, M. Buso, and L. Greco, “Competition in smart
distribution grids ✩,” Energy Policy, vol. 145, no. July, p. 111729,
2020, doi: 10.1016/j.enpol.2020.111729.

[19] O. Majeed, M. Zulqarnain, and T. Majeed, “Recent advancement in
smart grid technology : Future prospects in the electrical power
network,” Ain Shams Eng. J., vol. in progres, no. July, pp. 1–9, 2020,
doi: 10.1016/j.asej.2020.05.004.

[20] A. Munandar, H. Fakhrurroja, M. I. Rizqyawan, R. P. Pratama, J. W.
Wibowo, and I. A. F. Anto, “Design of Real-time Weather Monitoring
System Based on Mobile Application using Automatic Weather
Station,” in 2017 2nd International Conference on Automation,

Cognitive Science, Optics, Micro-Mechanical Systems, and

Information Technology (ICACOMIT), 2017, pp. 44–47.
[21] D. Devapal, “Smart Agro Farm Solar Powered Soil and Weather

Monitoring System for Farmers,” Mater. Today Proc., vol. 24, pp.
1843–1854, 2020, doi: 10.1016/j.matpr.2020.03.609.

[22] K. Hasan, K. Biswas, K. Ahmed, and N. S. Nafi, “A comprehensive

review of wireless body area network,” J. Netw. Comput. Appl., vol.
143, no. April, pp. 178–198, 2019, doi: 10.1016/j.jnca.2019.06.016.

[23] B. Narwal and A. K. Mohapatra, “A survey on security and
authentication in wireless body area networks,” J. Syst. Archit., no.
August, p. 101883, 2020, doi: 10.1016/j.sysarc.2020.101883.

[24] S. Al-janabi, I. Al-shourbaji, M. Shojafar, and S. Shamshirband,
“Survey of main challenges (security and privacy) in wireless body
area networks for healthcare applications,” Egypt. Informatics J., vol.
18, no. 2, pp. 113–122, 2017, doi: 10.1016/j.eij.2016.11.001.

[25] X. Liu, Z. Wang, Y. Ye, and F. Li, “An efficient and practical
certificateless signcryption scheme for wireless body area networks,”
Comput. Commun., vol. 162, no. August, pp. 169–178, 2020, doi:
10.1016/j.comcom.2020.08.014.

[26] M. M. Rathore, A. Paul, A. Ahmad, N. Chilamkurti, W. Hong, and H.
Seo, “Real-time secure communication for Smart City in high-speed
Big Data environment,” Futur. Gener. Comput. Syst., vol. 83, no. Jun,
pp. 638–652, 2018, doi: 10.1016/j.future.2017.08.006.

[27] F. H. Al-naji and R. Zagrouba, “A survey on continuous authentication
methods in Internet of Things environment,” Comput. Commun., vol.
163, no. Sept, pp. 109–133, 2020, doi: 10.1016/j.comcom.2020.09.006.

[28] N. T. E. Hermawan, E. Winarko, and A. Ashari, “Securing Data
Transmission for Radiation Monitoring System in Nuclear Installation,”
Int. J. Comput. Appl., vol. 179, no. 22, pp. 32–40, 2018.

[29] K. A. P. Kumar, G. A. S. Sundaram, B. K. Sharma, S. Venkatesh, and
R. Thiruvengadathan, “Advances in gamma radiation detection
systems for emergency radiation monitoring,” Nucl. Eng. Technol., vol.
52, no. 10, pp. 2151–2161, 2020, doi: 10.1016/j.net.2020.03.014.

[30] J. H. Kim, K. H. Park, and K. S. Joo, “Development of low-cost ,
compact , real-time , and wireless radiation monitoring system in
underwater environment,” Nucl. Eng. Technol., vol. 50, no. 5, pp. 801–
805, 2018, doi: 10.1016/j.net.2018.03.023.

[31] M. G. Kamardan, N. Aminudin, N. Che-Him, S. Sufahani, K. Khalid,
and R. Roslan, “Modified Multi Prime RSA Cryptosystem,” J. Phys.

Conf. Ser., vol. 995, no. 1, pp. 1–6, 2018, doi: 10.1088/1742-
6596/995/1/012030.

[32] K. El Makkaoui, A. Beni-Hssane, A. Ezzati, and A. El-Ansari, “Fast
Cloud-RSA Cloud-RSA Scheme for Promoting Promoting Data Data
Confidentiality in the the Cloud Computing,” in Procedia Computer

Science, 2017, vol. 113, pp. 33–40, doi: 10.1016/j.procs.2017.08.282.
[33] S. Nalajala, P. Ch, A. Meghana, and P. M. B, “Data Security Using

Multi Prime RSA in Cloud,” Internatinal J. Recent Technol. Eng., vol.
7, no. 6S4, pp. 110–115, 2019.

[34] P. Matta, M. Arora, and D. Sharma, “A comparative survey on data
encryption Techniques: Big data perspective,” Mater. Today Proc., no.
xxxx, 2021, doi: 10.1016/j.matpr.2021.02.153.

[35] W. Susilo, J. Tonien, and G. Yang, “A generalised bound for the
Wiener attack on RSA,” J. Inf. Secur. Appl., vol. 53, p. 102531, 2020,
doi: 10.1016/j.jisa.2020.102531.

[36] N. A. A. Sani and H. Kamarulhaili, “RSA cryptography and multi
prime RSA cryptography,” in AIP Conference Proceedings, 2017, vol.
1870, doi: 10.1063/1.4995903.

[37] N. T. E. Hermawan, E. Winarko, and A. Ashari, “Multi prime numbers
principle to expand implementation of CRT method on RSA
algorithm,” in AIP Conference Proceedings, 2021, vol. 2331, no. April,
pp. 1–10, doi: 10.1063/5.0041856.

[38] C. Intila, B. Gerardo, and R. Medina, “A study of public key ‘e’ in
RSA algorithm,” IOP Conf. Ser. Mater. Sci. Eng., vol. 482, no. 1, pp.
1–9, 2016, doi: 10.1088/1757-899X/482/1/012016.

[39] J. Sahu, V. Singh, V. Sahu, and A. Chopra, “An Enhanced Version of
RSA to Increase the Security,” J. Netw. Commun. Emerg. Technol.,
vol. 7, no. 4, pp. 2395–5317, 2017.

[40] R. M. Pir, “Security improvement and Speed Monitoring of RSA
Algorithm,” Int. J. Eng. Dev. Res., vol. 4, no. 1, pp. 195–200, 2016.

[41] Manu and A. Goel, “Encryption algorithm using dual modulus,” in 3rd

IEEE International Conference on Computational Intelligence and

Communication Technology (IEEE-CICT 2017), 2017, pp. 1–4, doi:
10.1109/CIACT.2017.7977331.

[42] B. Swami, R. Singh, and S. Choudhary, “Dual Modulus RSA based on
Jordan-Totient function,” Procedia Technol., vol. 24, pp. 1581–1586,
2016, doi: 10.1016/j.protcy.2016.05.143.

[43] R. S. Abdeldaym, M. A. Elkader, Hate, and R. Hussein, “Modified
RSA Algorithm Using Two Public Key and Chinese Remainder
Theorem,” Int. J. Electron. Eng., vol. 10, no. 1, pp. 51–64, 2019, doi:
10.6636/IJEIE.201903.

[44] K. D. M. AlSabti and H. R. Hashim, “A New Approach for Image
Encryption in the Modified RSA Cryptosystem Using MATLAB,”
Glob. J. Pure Appl. Math., vol. 12, no. 4, pp. 3631–3640, 2016.

2383

[45] S. A. Jaju, “A Modified RSA Algorithm to Enhance Security for
Digital Signature,” Int. Conf. Work. Comput. Commun., pp. 1–5, 2015,
doi: 10.1109/IEMCON.2015.7344493.

[46] C. J. L. Padmaja, V. S. Bhagavan, and B. Srinivas, “RSA Encryption
using Three Mersenne Primes,” Int. J. Chem. Sci., vol. 14, no. 4, pp.
2273–2278, 2016.

[47] M. M. A. Zaid and S. Hassan, “Lightweight RSA Algorithm Using
Three Prime Numbers,” Int. J. Eng. Technol., vol. 7, pp. 293–295,
2018.

[48] P. Chaudhury et al., “ACAFP : Asymmetric Key based Cryptographic
Algorithm using Four Prime Numbers to Secure Message
Communication . A Review on RSA Algorithm,” in 2017 8th Annual

Industrial Automation and Electromechanical Engineering

Conference, 2017, pp. 332–337, doi:
10.1109/IEMECON.2017.8079618.

[49] M. Krishnamoorthy and V. Perumal, “Secure and efficient hand-over
authentication in WLAN using elliptic curve RSA,” Comput. Electr.

Eng., vol. 64, pp. 552–566, 2017, doi:
10.1016/j.compeleceng.2017.06.002.

[50] P. K. Panda and S. Chattopadhyay, “A hybrid security algorithm for
RSA cryptosystem,” 2017 4th Int. Conf. Adv. Comput. Commun. Syst.

ICACCS 2017, 2017, doi: 10.1109/ICACCS.2017.8014644.
[51] A. Nivetha, P. M. S, and S. K. J, “Modified RSA Encryption

Algorithm using Four Keys,” Int. J. Eng. Res. Technol., vol. 3, no. 07,
pp. 3–7, 2015.

[52] H. Ukwuoma and M. Hammawa, “Optimised Key Generation for RSA
Encryption Optimised Key Generation for RSA Encryption,” Innov.

Syst. Des. Eng., vol. 6, no. November 2015, pp. 1–12, 2017.
[53] A. H. Lone and A. Khalique, “Generalized RSA using 2 k Prime

Numbers with Secure Key Generation,” Int. J. Secur. Commun.

Networks, vol. 9, no. September, pp. 4443–4450, 2016, doi:
10.1002/sec.

[54] T. L. Grobler and W. T. Penzhorn, “Fast Decryption Methods for the
RSA Cryptosystem,” in 7th AFRICON Conference in Africa, 2004, no.
9.

[55] R. Gu, “Multiscale Shannon entropy and its application in the stock
market,” Phys. A Stat. Mech. its Appl., vol. 484, pp. 215–224, 2017,
doi: 10.1016/j.physa.2017.04.164.

[56] L. Truffet, “Shannon entropy reinterpreted,” Reports Math. Phys., vol.
81, no. 3, pp. 303–319, 2018, doi: 10.1016/S0034-4877(18)30050-8.

[57] K. Ahmad, M. Adil, S. Khan, A. Ali, and Y. Chu, “New estimates for
generalized Shannon and Zipf-Mandelbrot entropies via convexity
results,” Results Phys., vol. 18, no. July, p. 103305, 2020, doi:

10.1016/j.rinp.2020.103305.
[58] P. M. Cincotta, C. M. Giordano, R. Alves Silva, and C. Beaugé, “The

Shannon entropy: An efficient indicator of dynamical stability,” Phys.

D Nonlinear Phenom., vol. 417, pp. 1–10, 2021, doi:
10.1016/j.physd.2020.132816.

[59] A. Dujella, “A variant of wiener’s attack on RSA,” Computing, vol.
85, no. 1–2, pp. 77–83, 2018, doi: 10.1007/s00607-009-0037-8.

[60] M. Bunder, A. Nitaj, W. Susilo, and J. Tonien, “A generalized attack
on RSA type cryptosystems,” Theor. Comput. Sci., vol. 704, pp. 74–
81, 2017, doi: 10.1016/j.tcs.2017.09.009.

[61] L. Peng, L. Hu, Y. Lu, J. Xu, and Z. Huang, “Cryptanalysis of Dual
RSA,” Des. Codes Cryptogr., vol. 83, no. 1, pp. 1–21, 2017, doi:
10.1007/s10623-016-0196-5.

[62] D. Vogel, Y. Onayemi, and V. Murad, “Integer Factorization
Algorithms,” Teach. Course - Math Proj., pp. 1–20, 2016.

[63] G. Pandey and S. K. Pal, “Polynomial selection in number field sieve
for integer factorization,” Perspect. Sci., vol. 8, pp. 101–103, 2016, doi:
10.1016/j.pisc.2016.04.007.

[64] L. T. Yang, Y. Huang, J. Feng, Q. Pan, and C. Zhu, “An improved
parallel block Lanczos algorithm over GF(2) for integer factorization,”
Inf. Sci. (Ny)., vol. 379, pp. 257–273, 2017, doi:
10.1016/j.ins.2016.09.052.

[65] E. J. Vuicik, D. Šešok, and S. Ramanauskaitė, “Efficiency of RSA Key
Factorization by Open-Source Libraries and Distributed System
Architecture,” Balt. J. Mod. Comput., vol. 5, no. 3, pp. 269–274, 2017,
doi: 10.22364/bjmc.2017.5.3.02.

[66] R. Granger, T. Kleinjung, A. K. Lenstra, B. Wesolowski, and J. Zumbr,
“Computation of a 30 750-Bit Binary Field Discrete Logarithm,” 2020.

[67] F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé, and P.
Zimmermann, “New factorization and discrete logarithm record
computations,” Nancy, France, 2020.

[68] K. Somsuk, “The new integer factorization algorithm based on
Fermat’s Factorization Algorithm and Euler’s theorem,” Int. J. Electr.

Comput. Eng., vol. 10, no. 2, pp. 1469–1476, 2020, doi:
10.11591/ijece.v10i2.pp1469-1476.

[69] K. Somsuk, “The improvement of initial value closer to the target for
Fermat’s factorization algorithm,” J. Discret. Math. Sci. Cryptogr., vol.
21, no. 7–8, pp. 1573–1580, Nov. 2018, doi:
10.1080/09720529.2018.1502737.

[70] V. Zadiraka, Y. Nykolaychuk, and S. Ivasiev, “The theory of
factorization multidigit numbers,” Proc. 13th Int. Conf. Exp. Des. Appl.

CAD Syst. Microelectron. CADSM 2015, pp. 221–225, 2015, doi:
10.1109/CADSM.2015.7230841.

2384

