Methodology for Business Intelligence Solutions in Internet Banking Companies

Alex Escalante Viteri^{a,*}, Javier Gamboa Cruzado^a, Leonidas Asto Huaman^b

^a Faculty of Systems Engineering, Postgraduate Unit, Universidad Nacional Mayor de San Marcos, Cercado, Lima, 15081, Perú ^b Professional School of Industrial Engineering, Universidad Nacional Autónoma de Tayacaja, José Olaya, Pampas, 0956, Perú

Corresponding author: **alex.escalante@unmsm.edu.pe*

Abstract— Business intelligence in the banking industry has been studied extensively in the last decade; however, business executives still do not perceive efficiency in the decision-making process since the management and treatment of information are very timeconsuming for the deliverer, generating costs in the process. On the other hand, there is no formal methodology for developing business intelligence solutions in this sector. This work aims to optimize decision-making in a business unit that works with internet banking companies, reducing the time, the number of people, and the costs involved in decision-making. To meet the objective, basic and applied research was conducted. The basic research allowed the construction of a new methodology from a study of critical success factors and approaches from the business intelligence literature. The applied research involved the implementation of a business intelligence solution applying the new methodology in a pre-experimental study. Thirty decision-making processes were analyzed using pre-test and post-test data. Tools such as a stopwatch and observation were used to collect and record data on time spent, the number of people, and the decision-making costs. This information was processed in the specialized Minitab18 statistical software, which allowed the observation and confirmation of relevant results regarding time reduction, the number of people, and the costs generated. Therefore, it was concluded that the business intelligence solution, applying the new methodology, optimized decision making in the business unit that works with internet banking for companies.

Keywords- Business intelligence; methodology; methodological approaches; critical success factors; decision making.

Manuscript received 7 Nov. 2020; revised 13 Apr. 2021; accepted 5 Aug. 2021. Date of publication 30 Jun. 2022. IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

CC 0 BY SA

I. INTRODUCTION

Business intelligence solutions are part of the global financial system, which is in a new stage of development, characterized by the introduction of information and communication technologies in all financial areas [1]. In this sense, decision-making in the internet banking business is especially significant for banks because legal clients or companies that use internet banking have high performance and liquidity in banking management [2]. They can also adjust their business strategies to improve the disposition of their consumers [3]. According to Yiu et al. [4], the implementation of business intelligence systems leads to greater operational capacity, particularly for large high-tech companies with high technological intensity and considering the strategic impact on business sustainability [5]. Therefore, it is important to apply appropriate methodologies to develop business intelligence solutions that help optimize decision-making in Peru because the use of virtual channels in the Peruvian

financial sector has been increasing significantly. According to Morisaki [6], during the first months of 2019, 430.5 million transactions were non-cash payments, and 19.79% (85.2 million) of transactions were made through virtual channels (internet banking, mobile banking, and commercial internet). Due to the COVID-19 pandemic, in May 2020, virtual channels surpassed face-to-face channels for the first time [7].

To develop business intelligence solutions, conceptual and theoretical frameworks of critical success factors have been proposed. These need to be evaluated in organizations [8], [9], [10] as well as concerning the factors that influence the selection of software tools [11]. For example, Ranjbarfard and Hatami [12] proposed a relationship between critical success factors and business intelligence methodologies that are more representative. The results revealed eleven critical success factors to consider in a business intelligence project. Adeyelure et al. [13] studied a proposed framework for deploying mobile business intelligence in small and mediumsized enterprises in developing countries. The factors of mobile business intelligence in another study were investigated through textual analysis [14]. Rezaie et al. [15] measured the key factors affecting the business intelligence implementation process and important effectiveness criteria for business intelligence in the Iranian banking industry.

Another factor that is of interest in defining a new methodology is the adoption of business intelligence systems. Ahmad et al. [16] and Ain et al. [17] attempted to reduce this gap through a systematic review of the literature. The adoption of business intelligence at the internet service level is another important indicator to take into account [18]. Rouhani et al. [19] conducted an in-depth analysis to understand the critical factors that affect the decision to adopt business intelligence in the context of the banking and financial industry.

A. Business Intelligence Solutions in Banking

Various business intelligence solutions could apply a new methodology. This would entail considering the key factors that influence developments [20] and agile values that contribute to the success of business intelligence solutions [21]. Gonzáles-Carrasco et al. [22] found that increasing the use of big data and artificial intelligence techniques improved the customer experience.

Predictive models have been built to study, for example, the client's retirement journey and to create a model for predicting churn [23]. On the other hand, financial and insurance services based on the use of IoT applications have also been examined [24].

A business intelligence solution must conform to a methodology to meet the minimum requirements of the business user. For example, Massardi et al. [25] designed a business intelligence application that adhered to the financial ratios required by the user to analyze the financial condition of rural banks. Another example is a business intelligence solution that described the importance of data selection over storage and OLAP development. This can help managers to make better decisions [26]. Therefore, user requirements are important for the organizational performance of banks since the effective adoption of business intelligence systems depends on them. This was evident in the case of a study carried out in the universal banks of Ghana [27].

Business intelligence solutions can be especially beneficial in decision-making if developed properly to gain competitive advantages and productivity. Al-Maaitah [28], in his study, identified the role of business intelligence skills (managerial skills, technical skills, and cultural skills) in the organizational capabilities of Jordanian banks (process improvement, innovations, flexibility, and agility). According to the author, business intelligence competencies have a significant impact on the organizational capabilities of Jordanian banks. In Poland, business intelligence solutions were used in a review of productivity, quality, profitability, and debt [29].

Mortezaei et al. [30], however, investigated the role of business intelligence competence in improving the customer relationship management process. They developed a conceptual model that encompassed different dimensions of business intelligence competency and customer relationship management processes.

It is important to mention that data mining and neural networks are recommended in banking and business intelligence. For example, studies have applied algorithms based on artificial colonies of ants [31]. Alzeaideen [32], however, developed an artificial neural network model as a decision support system for evaluating credit approval in Jordanian commercial banks. Finally, it is important to mention blockchain technology, and thas a prospect for application in the future financial industry [33], [34].

B. Approaches and Critical Success Factors

According to Trieu [35], much of the research on business intelligence has examined the ability of business intelligence solutions to help organizations address challenges and opportunities. Nevertheless, the literature is fragmented and lacks an overarching framework to systematically integrate findings and guide research.

Critical success factors and approaches were very important in the present study. According to the research problem, these are starting points to ensure the greatest number of approaches. We can identify the critical factors to ensure a successful project based on this. Table I shows the identified approaches with relevance to the research problem.

TABLE I BUSINESS INTELLIGENCE APPROACHES

	Bosiness intelelidence All Kozenes						
Author	Description of approaches						
[36],	Plan-oriented approach or requirement-oriented						
[37]	approach: This is considered to be a traditional						
	approach; however, it is hard for users to define and						
	explain how they make their decisions.						
	Focus on data management: This approach focuses on						
	data: how they are structured, who uses them, and how						
	they use them. The data drive the process.						
	Focus on value chain data: This approach is an						
	evolution of the "data management" approach						
	concentrating on the data that will generate the						
	greatest value for the business.						
	Process-based approach: This approach is based on						
	the analysis of business processes, the information						
	they generate, and the information they consume.						
	Event-driven approach: This approach proposes to						
	divide the business processes into three points of view,						
	data, function, and organization, each of which is						
	connected through events.						
	Object-oriented approach: In this approach, both						
	objects and processes have the same importance from						
	a decisional point of view and should be treated in the						
	same way.						
	Joint approach: The main idea of this approach is that						
	the organization is a matrix of processes with different						
	information needs, but where they come together is						
	where the greatest effort is required.						
	<i>Goal-oriented approach</i> : This approach focuses on the						
	objective of the strategic processes of the organization						
	and is based on the analysis of the interaction of						
	customers and users to achieve this objective.						
	Model-based approach: This approach intends to						
	build a bridge between the business and the IT						
	department to provide the basis for developing quick						
	solutions that evolve easily and flexibly.						
	Adaptive business approach: This focuses on the						
	problems that a business has to solve to adapt to						
	market changes and on the data that we have for this.						
[38]	Demand-driven or prototype-driven user-based						
[20]	<i>approach</i> : This approach is based on methodologies						
	oriented towards the making of prototypes to obtain						
	oriented towards the making of prototypes to obtain						

sufficiently precise results.

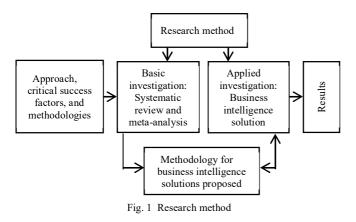
[39]	Three-pronged management approach: It is necessary				
	to commit to a combination of the best ideas of each				
	of the objective, data, and user management				
	methodologies, creating triple management since				
	these three approaches are considered to be perfectly				
	compatible.				
[40]	Agile approach: This approach can be considered				
	novel in the area of software engineering and even				
	more so in the area of business intelligence.				

Studies on techniques to choose the best strategic alternative are compelling research [41]. These techniques allow us to consider different alternatives to ensure a successful project. The critical success factors of business intelligence were analyzed to select the best options for a successful project. Critical success factors played an important role and allowed a previous analysis of methodological approaches to mature and offer more efficient business intelligence solutions. Table II shows the critical success factors selected from the literature relating to our research problem.

 TABLE II

 CRITICAL SUCCESS FACTORS OF BUSINESS INTELLIGENCE

CRITICAL SUCCESS FACTORS OF BUSINESS INTELLIGENCE				
Author	Description of critical success factors			
[42],	Include user participation in the definition of the			
[43]	level of service and the requirements			
	Define the quality plan			
	Choose the ETL (extract, transform, and load) tool to			
	use			
	Preferably carry out incremental data loads			
	Carefully choose the development platform and the			
	appropriate database system			
	Carry out data reconciliation processes			
	Periodically review and modify the planning			
	Provide user support			
[44],	Sponsorship of the project			
[45],	Management of user expectations			
[46]	Use of prototypes			
	Quick result search (quick win)			
	Choose a measurable organizational problem			
	Modeling and design of the "data warehouse."			
	Selection of the appropriate business case			
	Alignment with the organizational strategy			
	Careful selection of tools			
	End users' involvement			
[47],	Support for the management of the organization			
[48],	Existence of a project leader			
[49]	Adequate use of resources			
	Participation of the end-user			
	Team with adequate skills			
	Have adequate data sources			
	Consider the information and its analysis as part of			
	the organization's culture			
	Alignment with the organization's strategy			
	Effective BI management and control			
[= 0]	Management of organizational change			
[50]	Initiative linked to business needs			
	Existence of management sponsorship			
	Cross-organizational project			
	QA control			
	The flexibility of the data model			
	Data-oriented management			
	Automatic data extraction process			
	Knowledge			
[21]	Experience			
[51]	Make incremental changes			


	Manage user expectations Mixed team involving technicians and end-users Direct contact with the organization and the business Avoid chasing perfection
	Transmit knowledge in subcontracted projects Use of standards Take advantage of the experience of the team
	members
[50]	End-user support The centralization of data in a "data warehouse" and
[52]	its division into several "data marts" allow fast and reliable access to the requested information
	The definition of standard lists for all users favors the
	exchange of information between departments in a clearer and more consistent way
	Some predefined report templates have to be
	implemented to provide decision makers with the
	functionality to add or remove particular items and
	create specific reports
	A team responsible for aligning standard reporting specifications with local needs and facilitating the
	execution of the BI project is necessary
	There must be strong commitment from the management to resolve any conflict and manage
	changes that occur during the development of the project
	Integration of "Six Sigma" techniques into the
	organization's IT infrastructure contributes to a
	robust BI system
	IT infrastructure has to focus on a single platform provided by well-known vendors
	Consideration of the culture of the organization
	Focus on data management
	Level of scalability and flexibility of the project and the solution
[53]	Senior management's support for the project
	Adequate resources
	Committed support from the organization
	Formal user participation throughout the entire project
	Support, education, and training
	Established and agreed business case
	Strategic BI vision integrated with the company
	initiatives
	Clearly defined scope of the project
	Adoption of an incremental results approach Project oriented to achieve quick results (quick wins)
	Team with the perfect combination of capabilities
	Participation of external consultancy in the initial
	phases of the project
	Experience in the business domain
	Multifunctional team
	Stable data provider systems Strategic, scalable, and extensible technical
	environment
	Use a prototype as proof of concept
	Quality data sources
	Common metrics and classifications established by
	the organization
	Scalable metadata model

Adaptive system construction

This research aims to optimize decision making in a business unit that works with internet banking companies through basic and applied research. Section II shows how the basic and applied research was conducted. Regarding the basic research, it describes how the new proposed methodology was built, and, in relation to the applied research, it shows how the tools and techniques were used during the pre-experimental research. Section III contains the results of the data analysis using Minitab18 statistical software and the hypotheses presented in section II. Finally, section IV reveals the conclusion based on the objective of the investigation.

II. MATERIALS AND METHOD

This study was conducted in a bank business unit that works with internet banking companies. It identified time problems, the number of people, and the costs generated in decision making. Accordingly, basic research was conducted to propose a new business intelligence methodology. Applied research was then conducted that used the new methodology to implement a business intelligence solution to solve the problem. Figure 1 shows the method used in the research.

A. Basic Investigation Method

First, a systematic review of the literature was conducted, filtering four business intelligence methodologies with thirteen representative approaches. The analysis technique was used to determine which methodology best suits a certain business intelligence approach. Table III shows the methodologies with the highest relationship score: Ralph Kimball (RK), DWEP (DW), and SAS Rapid (SR). Bill Immon (BI) and Hephaestus (HF) were eliminated.

 TABLE III

 BUSINESS INTELLIGENCE APPROACHES AND METHODOLOGIES

Author	BI approaches	RK	BI	HF	DW	SR
[36], [37]	The plan-oriented approach or requirement-oriented approach	Х		х		
[36], [37]	Focus on data management		Х			Х
[36], [37]	Focus on value chain data		Х			Х
[36], [37]	Process-based approach		Х		Х	
[36], [37]	Event-driven approach		Х			Х
[36], [37]	Object-oriented approach	Х				Х
[36], [37]	Joint approach		Х			
[36], [37]	Goal-oriented approach	Х		Х	Х	Х
[36], [37]	Model-based approach	Х			Х	

[36], [37]	Adaptive business approach	Х	Х	Х	Х
[38]	Demand-driven or prototype-driven user- based				
[39]	Three-pronged management approach (objective, data, and user management)	Х	Х	Х	х
[40]	Agile approach	Х		Х	Х

Second, a meta-analysis of more representative critical success factors was conducted. Critical success factors were weighted, ranked, and related to the methodologies that obtained the most approaches in the first analysis.

The QSPM technique was used. The Quantitative Strategic Planning Matrix (QSPM) is a high-level strategic management approach for evaluating possible strategies, and it provides an analytical method for comparing feasible alternative actions. This technique assigns weights, classifications, and scores. A weight (b) and a classification (c) are given to each critical success factor, whereby multiplying b \Box c will obtain a score for each methodology, which will be considered to be more attractive for a successful project. In this case, it will be in accordance with the critical success factor proposed by each author in the literature. David et al. [41] stated, "The criterion for the quantitative matrix is to determine the relative attractiveness of viable relative actions".

Each critical success factor was assigned a weight: weight = 0.0 = unimportant, weight = 0.1 = very important. The sum must always be equal to 1. A classification is then assigned to each strategic element as a degree of attraction (in this case, the strategically selected methodologies): 1 = not attractive, 2 = somewhat attractive, 3 = quite attractive, and 4 = very attractive.

The total score of the degree of attraction was obtained by multiplying the values of the ranking by weight; the total scores indicated the degree of attraction of each strategy. In Table IV, we can see the values found.

TABLE IV
SUMMARY OF THE META-ANALYSIS OF CRITICAL SUCCESS FACTORS

Methodologies selected		Ralph Kimball		DWEP		SAS RAPID	
FCE according to author (a)	Average weight (b)	Average rating (c)	Total score (d) = (b * c)	Average rating (e)	Total score V(f) = (b * e)	Average rating (g)	Total score $(h) = (b * g)$
[42], [43]	1.0	2.8	2.86	3.1	3.12	2.5	2.44
[44], [45], [46]	1.0	3.0	3.13	2.7	2.62	2.2	2.40
[47], [48], [49]	1.0	2.5	2.80	2.3	2.36	2.2	2.10
[50]	1.0	2.8	3.08	2.9	2.88	2.4	2.24
[51]	1.0	3.0	3.36	2.3	2.21	2.5	2.75
[52]	1.0	2.6	2.67	2.6	2.68	2.1	2.25
[43], [53]	1.0	2.9	3.0	2.3	2.06	2.7	2.74
[43], [53]	1.0	2.4	2.52	2.4	2.6	2.5	2.5
[43], [53]	1.0	2.8	2.94	2.9	3.22	1.9	1.8
[43], [53]	1.0	2.8	3.04	3.1	3.4	2.5	2.62
Total		29	.4	27.	.15	23.	84

Taking into account the highest scores of the meta-analysis, a new methodology was proposed. The most relevant concepts of the Ralph Kimball and DWEP methodologies were considered. Figure 2 shows the phases of the new proposed methodology used in applied research.

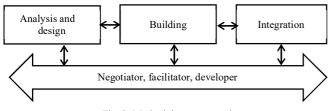


Fig. 2 Methodology proposed

This new methodology allows the efficient implementation of a business intelligence solution since it maintains its three development phases through communication between three actors who manage the information transversally in all the phases of the project.

1) The Analysis and Design Phase: This phase was used to obtain business value requirements through the method of interviews and observation. It allowed the design of the use cases, the architecture of the solution, and the entire flow of data input and output.

2) The Construction Phase: This phase facilitated the development of databases and the execution of ETL processes and automated dimensional cubes. It avoided impediments due to new changes. These changes were facilitated and accepted as a principle of agility.

3) The Integration Phase: This phase allowed for incremental deliverables. The methodology required the dashboards to be the business acceptance criteria, and it allowed for comprehensive tests that were verified by the same business. Finally, the solution was implemented and investigated within a culture of development and operations.

B. Applied Research Method

The new methodology was applied by developing a business intelligence solution to optimize decision-making in internet banking. The following variables and indicators were considered:

1) Independent Variable: A business intelligence solution applying a new methodology.

TABLE V				
OPERATIONALIZATION OF THE INDEPENDENT VARIABLE				
Indicator	Index			
Presence, absence	No, yes			

When the answer is NO, it is because the new methodology was not applied during the development of a business intelligence solution. The problem is still in its current situation. When it is YES, it refers to the new methodology being applied to the development of a business intelligence solution, which is expected to obtain better results.

2) Dependent Variable: Decision making in internet banking companies. Table VI shows the operationalization of the indicators of the dependent variable.

TABLE VI
OPERATIONALIZATION OF THE DEPENDENT VARIABLE

Dimensio n	Indicato r	Index	Unit of measureme nt	Formul a	Method
Time	Time spent in each decision making process	[20– 120]	Minutes	T = (TI1 + TIn) /NS	Direct observatio n
People	•	[2-5]	# of people used	P = (PN + PS)	Direct observatio n
Cost	•	[31,25]	Peruvian soles	C = (CH □TTD/ 60) □ NP	Manual review

Formula legend:

Time:

T = time invested in the process

TI1 + TIn = time spent according to 1 + n elements of the process

NS = number of outputs of a process

Persons:

PN = people involved in business

PS = people involved in systems

Cost:

CH = cost per hour

TTD = time in minutes in the decision-making process NP = number of people involved

3) Pre-experimental Research: The indicated formulas were applied in a pre-experimental research design because they worked with only one research group.

TABLE VII EXPERIMENTAL DESIGN NOTATION							
RG	01	Х	02				
Experimental Pre-test Experimental Post-test							
group measurement treatment measurement							

where:

- R = random group formation (random choice of decisionmaking processes)
- G = experimental group (decision-making processes)
- 01 = pre-test measurement (values found before the experimental stimulus)
- X = experimental treatment (business intelligence solution applying the new methodology)
- 02 = post-test measurement (values found after applying the experimental stimulus)

The decision-making processes of internet banking companies worldwide were considered as a population; however, as it was not possible to quantify all the processes:

N = indeterminate

The decision-making processes of internet banking companies were taken as a sample.

the number of people, it is 63% less, and, for the cost, it is 70% less.

n = 30 decision-making processes carried out

Direct observation was used as a technique and the stopwatch as a research tool to measure the indicators – time, number of people, and cost of the decision-making processes – in the pre-test and post-test of the data. Each process was analyzed in detail according to the indicators, and notes were taken to perform the calculations and obtain the results.

4) Statement of the Hypotheses: The parameter studied was the average (μ) of the indicators: time, the number of people, and the cost of the decision making of the internet banking companies. Therefore, the following hypotheses were stated:

- H₁: If a business intelligence solution is implemented with a new methodology, the time spent on decision making for internet banking companies is reduced.
- H₂: If a business intelligence solution is implemented with a new methodology, the number of people participating in internet banking companies' decisionmaking is reduced.
- H₃: If a business intelligence solution is implemented with a new methodology, the cost of decision making for internet banking companies is reduced.

To contrast the hypotheses, the following solution was proposed for each of the indicators:

 μ_1 = mean (H₁, H₂, H₃) of decision making in the pre-test μ_2 = mean (H₁, H₂, H₃) of decision making in the post-test where:

 $\begin{array}{l} H_0: \ \mu_1 \leq \mu_2 \\ H_a: \ \mu_1 > \mu_2 \end{array}$

Finally, the hypotheses were confirmed using the specialized software Minitab18. Data normality analysis, descriptive statistics analysis, and hypothesis contrast analysis were performed for statistical decisions.

III. RESULTS AND DISCUSSION

A. Reduction of Time, Number of People, and Cost

The effect of applying the business intelligence solution using the new proposed methodology had significant results. It reduced the time and the number of people involved and the costs generated in the decision-making process. Thirty decision-making processes were observed. The pre-test results determined the time that each process takes according to the tasks performed by the number of people involved and the cost generated by each person's work. In the subsequent test, a significant reduction of the indicators was observed. The business executive used the business intelligence solution to make decisions in a shorter time, using fewer people and generating lower costs. This new result was important to determine the time, number of people involved, and the cost generated in a new decision-making process.

Table VIII shows that 100% of the data on the decision making in the post-test are lower than the average of the data in the pre-test. It was observed that 67% of the decision-making time in the post-test is less than the average time. For

TABLE VIII
DIRECT OBSERVATION RESULTS

DIRECT OBSERVATION RESULTS								
No.	I1: 1	ïme	I ₂ : Number of people		I ₃ : Cost			
	Pre-	Post-	Pre-	Post-	Pre-	Post-		
	test	test	test	test	test	test		
1	63.33	1.77	3	0	84.87	0.42		
2	35.00	3.73	3	1	58.34	1.62		
3	21.67	1.41	4	1	47.00	0.44		
4	20.00	1.69	3	1	29.69	0.47		
5	71.67	18.33	3	1	100.06	9.17		
6	90.00	26.67	4	0	173.87	-0.73		
7	76.67	15.00	3	1	104.90	6.04		
8	106.67	28.33	2	1	120.30	17.72		
9	101.67	25.00	3	1	183.49	10.68		
10	76.67	10.00	2	1	97.52	6.73		
11	65.00	7.67	3	2	86.01	7.06		
12	68.33	20.00	3	1	96.62	9.54		
13	65.67	25.00	4	1	145.99	18.21		
14	38.33	7.67	2	0	37.25	1.50		
15	38.33	3.33	2	2	42.60	3.00		
16	18.33	0.60	3	1	30.20	0.43		
17	25.00	0.43	3	1	38.08	0.17		
18	43.33	1.50	3	1	57.37	0.50		
19	61.67	0.12	5	2	168.20	0.11		
20	52.33	0.08	4	1	97.67	0.03		
21	25.00	1.67	4	0	48.42	0.21		
22	46.67	0.32	3	1	65.08	0.24		
23	81.67	7.67	4	2	188.21	9.64		
24	78.33	11.67	4	0	161.93	2.00		
25	80.00	15.00	2	0	68.10	-1.03		
26	35.00	0.10	5	2	87.81	0.09		
27	76.67	7.67	2	1	92.98	2.43		
28	55.00	0.04	4	1	102.29	0.03		
29	76.67	0.08	4	0	154.56	0.01		
30	90.00	0.38	2	1	81.60	0.11		
μ	59.49	8.10	3	1	95.03	3.56		
Nro. <= μ	30	20	30	19	30	21		
%	100	67	100	63	100	70		

The direct observation method using the stopwatch as a recording tool is useful and allows empirical knowledge to be obtained to understand reality. Nevertheless, a data bias could have arisen when recording the information, so it can be understood as subjective. Therefore, the Minitab18 software was applied as a standardized method to supply the results with statistical evidence.

1) Descriptive Statistics Results: According to the results of the "Anderson Darling" normality test, the AD and p-value are > α (0.05); therefore, the data normality was confirmed for analysis. It was observed that, with a confidence level of 95%, the mean and the standard deviation revealed normal results concerning the data of the research indicators.

Table IX shows the results of the descriptive statistics according to the Minitab18 software.

TABLE IX DESCRIPTIVE STATISTICS RESULTS

Sample	N	Mean	Stand. dev.	AD	p- value
I_1 : Pre-test – time	30	59.49	25.11	0.460	0.243
I1: Post-test - time	50	1.350	0.5568	0.637	0.088
I2: Pre-test – number of people	30	3.120	0.9199	0.358	0.431
I ₂ : Post-test – number of people	50	0.9368	0.6028	0.431	0.287
I_3 : Pre-test – cost		95.03	47.93	0.721	0.054
I3: Post-test – cost	30	0.1066	2.051	0.378	0.386

It was observed that the pre-test values are higher than the post-test values. This provides evidence that the time was reduced from 59.49 to 1.35 minutes. The number of people was reduced from 3 to 1, and the average cost generated per hour was reduced from 95.03 to -0.1066. Therefore, the process of decision making was significantly reduced.

2) Hypothesis Testing Results: The results of the statistical values of the differences in the samples in the pretest and the post-test are shown in Table X. The t- and pvalues are verified in Figure 3 to decide the regions of acceptance and rejection.

TABLE X STATISTICAL VALUES OF ACCEPTANCE AND REJECTION

Sample	Ν	t-value	p-value
I1: Pre-test – time	30	12.84	0.000
I1: Post-test – time	30		
I ₂ : Pre-test – number of people	30	12.92	0.000
I2: Post-test – number of people	30	12.92	0.000
I ₃ : Pre-test – cost	30	10.95	0.000
I ₃ : Post-test – cost	30	10.95	0.000

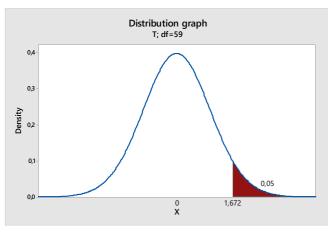


Fig. 3 Statistical acceptance limit

With a degree of freedom (n-1) = 59 for the two samples, a critical value of 1.672 was obtained, limiting the acceptance zone to 95% and producing a right-tailed rejection of 0.05. According to the result of the t-value calculated from the samples in Table X, it is within the rejection zone, and the result of the value p = $0.000 < \alpha = 0.05$ shows sufficient evidence to consider the test of the hypothesis to be significant.

3) Statistical Decision Result: H_0 is rejected: $\mu_1 \le \mu_2$ and H_a is accepted: $\mu_1 > \mu_2$. It is concluded that, at the significance level of 5%, the null hypothesis H_0 is rejected. The indicators "time", "number of people", and "cost" in the pre-test are less than or equal to those in the post-test. It is considered that there is sufficient statistical evidence to accept the alternative hypothesis. The decision-making indicators are higher in the pre-test than in the post-test. Therefore, it is resolved that the hypothesis indicators H_1 , H_2 , and H_3 are true with significant results.

B. The Effect on Internet Banking Companies

If business executives make decisions in the shortest possible time, using fewer people, and involving lower costs, they will be more productive. Performing data queries using a business intelligence solution that was developed with an effective methodology will allow greater agility in decision making. Business units will be able to improve their strategies and offer high-quality services with greater productivity on their internet banking platforms [3]. Customers will then have a high operational capacity [4] due to the offer of products that they can receive.

The new methodology for business intelligence solutions in internet banking returned significant results. These indicate greater business productivity and continued participation in the virtual channel market [7].

It is important to highlight the adoption of business intelligence methodologies for any type of information technology to make further improvements [17]. On the other hand, artificial intelligence and block technology are considered to be prospects for the future of banking [31], [33]. In this study, the results that were presented, with a reduction from 59.49 to 1.350 minutes in the work per process, are extremely significant for decision-making in the internet banking business unit. This will result in the project's development requests and product offerings being made more frequently. Business executives will be able to avoid opportunity costs in the business. On the other hand, the reduction from three to one person to generate decisionmaking reports can eliminate dependencies and gaps, enabling information to be obtained more efficiently. Finally, reducing people will reduce costs, and this reduction can be considered savings for investment in other opportunities in the business of internet banking companies.

IV. CONCLUSION

Decision-making was optimized in a financial sector business unit that offers internet banking to business clients. This optimization was achieved by implementing a business intelligence solution applying a new business intelligence solution methodology. The business unit will be able to make better decisions in less time, with fewer people, and with lower costs.

ACKNOWLEDGMENT

We thank the Universidad Nacional Mayor de San Marcos for accepting the research for a postgraduate thesis as well as the financial entity in Peru for allowing us to collect the necessary information.

References

- L. M. Yusupova, I. A. Kodolova, T. V. Nikonova, M. Agliullina, and Z. Agliullina, "Artificial intelligence and its use in financial markets," Int. J. Financ. Res., vol. 11, no. 5, pp. 353–358, Oct. 2020.
- [2] Z. Wang, "Influence of internet finance on commercial bank," presented at *the Int. Conf. on Appl. of Intell. Syst. in Multi-modal Inf. Anal.*, MMIA 2020, Changzhou, China, 2020.
- [3] W. Lin, Y. Wang, and Y. Hung, "Analyzing the factors influencing adoption intention of internet banking: Applying DEMATEL-ANP-SEM approach," *PLoS One*, vol. 15, no. 2, pp. 1–25, Feb. 2020.
- [4] L. M. D. Yiu, A. C. L. Yeung, and A. P. L. Jong, "Business intelligence systems and operational capability: An empirical analysis of high-tech sectors," *Ind. Manag. Data Syst.*, vol. 120, no. 6, pp. 1195–1215, May 4, 2020.
- [5] Y. Y. Lim and A. P. Teoh, "Realizing the strategic impact of business intelligence utilization," *Strat. Dir.*, vol. 36, no. 4, pp. 7–9, Mar. 2, 2020.
- [6] A. Morisaki, "Digital channels rapidly gaining ground in bank user preferences," Jun. 12, 2019. [Online]. Available: https://www.asbanc.com.pe/Publicaciones/ASBANC-SEMANAL-322.pdf, Accessed on: Mar. 28, 2021.
- [7] S. Urday, "In May, virtual channels surpass face-to-face channels for the first time," Jun. 30, 2020. [Online]. Available: https://www.asbanc.com.pe/Publicaciones/Asbanc_InfBancario_352. pdf, Accessed on: Mar. 28, 2021.
- [8] F. Jahantigh, A. Habibi, and A. Sarafrazi, "A conceptual framework for business intelligence critical success factors," *Int. J. Bus. Inf. Syst.*, vol. 30, no. 1, pp. 109–123, 2019.
- [9] F. Eder and S. Koch, "Critical success factors for the implementation of business intelligence systems," *Int. J. of Bus. Intell. Res.*, vol. 9, no. 2, pp. 27–46, Jul.–Dec. 2018.
- [10] A. Magaireah, H. Sulaiman, and N. Ali, "Theoretical framework of critical success factors (CSFs) for business intelligence (BI) system," presented at the 8th Int. Conf. on Inf. Tech., ICIT 2017; Al-Zaytoonah University of Jordan (ZUJ) Amman, Jordan, 2017.
- [11] B. Gina and A. Budree, "A review of literature on critical factors that drive the selection of business intelligence tools," presented at the 2020 Int. Conf. on Art. Intell., Big Dat., Comp. and Dat. Comm. Syst., icABCD 2020, Durban, 2020.
- [12] M. Ranjbarfard and Z. Hatami, "Critical success factors of BI project implementation: An implementation methodology perspective," *Int. J.* of Inf., Know., and Manag., vol. 15, pp. 175–202, 2020.
- [13] T. Adeyelure, B. Kalema, and K. Bwalya, "A framework for deployment of mobile business intelligence within small and medium enterprises in developing countries," *Oper. Res.*, vol. 18, no. 3, pp. 825–839, Oct. 1, 2018.
- [14] T. Adeyelure, B. Kalema, and K. Bwalya, "Deployment factors for mobile business intelligence in developing countries small and medium enterprises," *Afr. J. of Sci., Tech., Innov. and Dev.*, vol. 10, no. 6, pp. 715–723, Sep. 19, 2018.
- [15] S. Rezaie, S. Mirabedini, and A. Abtahi, "Designing a model for implementation of business intelligence in the banking industry," *Int. J. of Ent. Inf. Syst.*, vol. 14, no. 1, pp. 77–103, Jan. 2018.
- [16] S. Ahmad, S. Miskon, T. Alkanhal, and I. Tlili, "Modeling of business intelligence systems using the potential determinants and theories with the lens of individual, technological, organizational, and environmental contexts – A systematic literature review," *Appl. Sci. (Switzerland)*, vol. 10, no. 9, May 1, 2020.
- [17] N. Ain, G. Vaia, W. DeLone, and M. Waheed, "Two decades of research on business intelligence system adoption, utilization and success – A systematic literature review," *Dec. Supp. Syst.*, vol. 125, Oct. 2019.
- [18] E. Indriasari, S. Wayan, F. Gaol, A. Trisetyarso, B. Saleh Abbas, and C. Ho Kang, "Adoption of cloud business intelligence in Indonesia's financial services sector," presented at the 11th Asian Conf. on Intell. Inf. and Datab. Syst., ACIIDS 2019, Yogyakarta, 2019.
- [19] S. Rouhani, A. Ashraf, A. Ravasan, and S. Afshari, "Business intelligence systems adoption model: An empirical investigation," *J.* of Org. and End User Computing, vol. 30, no. 2, pp. 43–70, Apr. 1, 2018.
- [20] D. Batra, "Adapting agile practices for data warehousing, business intelligence, and analytics," *J. of Dbase Manag.*, vol. 28, no. 4, pp. 1– 23, Oct. 2017.
- [21] D. Batra, "Agile values or plan-driven aspects: Which factor contributes more toward the success of data warehousing, business

intelligence, and analytics project development?" J. of Syst. and Soft., vol. 146, pp. 249–262, Dec. 2018.

- [22] I. Gonzáles-Carrasco, J. Jiménez-Márquez, J. López-Cuadrado, and B. Ruiz-Mezcua, "Automatic detection of relationships between banking operations using machine learning," *Inf. Sci.*, vol. 485, no. 6, pp. 319– 346, Jun. 2019.
- [23] F. Shirazi and M. Mohammadi, "A big data analytics model for customer churn prediction in the retiree segment," *Int. J. of Inf. Manag.*, vol. 48, no. 10, pp. 238–253, Oct. 2019.
- [24] H. Ramalingam and V. Venkatesan, "Conceptual analysis of Internet of Things use cases in banking domain," presented at the *IEEE Region* 10 Conf.: Tech., Know., and Soc., TENCON 2019, Hotel Grand Hyatt Kerala, Puducherry, 2019.
- [25] A. Massardi, and D. Utama, "Business intelligence design of rural bank performance assessment using financial ratio analysis," presented at the 3rd Int. Conf. on Inf. Manag. and Tech., ICIM Tech 2018, Bina Nusantara University, Alam Sutera Campus Jakarta, Indonesia, 2018.
- [26] K. C. Susena, D. M. Simanjuntak, P. Parwito, W. Fadillah, and A. Girsang, "Business intelligence for evaluating loan collection performance at bank," presented at the 6th Int. Conf. on Or. Tech., ICOT 2018, Bali, Indonesia, 2018.
- [27] A. Owusu, "Business intelligence systems and bank performance in Ghana: The balanced scorecard," *Cog. Bus. and Manag.*, vol. 4, no. 1, Jan. 1, 2017.
- [28] M. Al-Maaitah, "Impact of business intelligence competencies on the organizational capabilities in Jordanian banks," J. of Comp. Sci., vol. 14, no. 8, pp. 1144–1154, 2018.
- [29] R. Tunowski, "Sustainability of commercial banks supported by business intelligence system," *Sust. (Switzerland)*, vol. 12, no. 11, Jun. 1, 2020.
- [30] A. Mortezaei, M. S. Sangari, S. Nazari-Shirkouhi, and J. Razmi, "The impact of business intelligence (BI) competence on customer relationship management (CRM) process: An empirical investigation of the banking industry," *J. of Inf. Tech. Manag.*, vol. 10, no. 1, pp. 209–234, 2018.
- [31] R. Seidlova, J. Poživil, and J. Seidl, "Marketing and business intelligence with help of ant colony algorithm," *J. of Strat. Mark.*, vol. 27, no. 5, pp. 451–463, Jul. 4, 2019.
- [32] K. Alzeaideen, "Credit risk management and business intelligence approach of the banking sector in Jordan," *Int. J. of Innov. Creat. and Change*, vol. 8, no. 9, pp. 218–230, Oct. 2019.
- [33] X. Wan, Q. Hu, Z. Lu, and M. Yu, "Application of asset securitization and blockchain of internet financial firms," presented at the 14th Int. Conf. on Serv. Syst. and Serv. Manag., ICSSSM 2017, Dalian, China, 2017.
- [34] K.-K. Choo, S. Ozcan, A. Dehghantanha, and R. Parizi, "Editorial: Blockchain ecosystem – Technological and management opportunities and challenges," *IEEE Trans. on Eng. Manag.*, vol. 67, no. 4, pp. 982– 987, Nov. 2020.
- [35] V. Trieu, "Getting value from business intelligence systems: A review and research agenda," *Dec. Supp. Syst.*, vol. 93, no. 1, pp. 111–124, Jan. 2017.
- [36] R. Cicchetti, "Business intelligence methodological approaches," Jan. 18, 2012. [Online]. Available: https://www.dataprix.com/es/factorescriticos-exito-un-proyecto-business-intelligence/enfoquesmetodologicos-business, Accessed on: Mar. 28, 2021.
- [37] J. Fernández González and E. Mayol Sarroca, "With which methodology we must work?" Aug. 31, 2016. [Online]. Available: https://www.esan.edu.pe/apuntes-empresariales/2016/08/con-cualmetodologia-de-business-intelligence-debemos-trabajar/, Accessed on: Mar. 28, 2021.
- [38] B. Afolabi and O. Thiery, "Using users' expectations to adapt business intelligence," Laboratoire Lorraine de Recherche en Informatique et ses Applications (LORIA), Aug. 8, 2006. [Online]. Available: https://arxiv.org/ftp/cs/papers/0608/0608043.pdf, Accessed on: March 28, 2021.
- [39] Y. Guo, S. Tang, Y. Tong, and D. Yang, "Triple-driven data modeling methodology in data warehousing: A case study," in 9th ACM Int. Workshop on D. Wareh. and OLAP - DOLAP'06, held in conjunction with the ACM 15th Conf. on Inf. and Know. Manag., CIKM 2006, Arlington, VA, United States, 2006.
- [40] M. Prouza, S. Brodinova, and A. Tjoa, "Towards an agile framework for business intelligence projects," presented at the 43rd Int. Conv. on Inf., Comm. and Electr. Tech., MIPRO 2020, Grand Hotel Adriatic Congress Centre, and Remisens Hotel Admiral in Opatija, Croatia, 2020.

- [41] M. David, F. David, and F. David, "The quantitative strategic planning matrix: A new marketing tool," J. of Strat. Mark., vol. 25, no. 4, pp. 342–352, June 7, 2017.
- [42] M. Salomon, "Ensuring a successful data warehouse initiative," Inf. Syst. Manag., vol. 22, no. 1, pp. 26–36, 2005.
- [43] S. Rezaie, S. Mirabedini, and A. Abtahi, "Identifying key effective factors on the implementation process of business intelligence in the banking industry of Iran," *J. of Intell. Stud. in Bus.*, vol. 7, no. 3, pp. 5–24, November 2017.
- [44] D. Briggs and D. Arnott, "Decision support systems failure, an evolutionary perspective," J. of Dec. Syst., vol. 13, no. 1, pp. 91–111, April 18, 2012.
- [45] R. L. Hayen, C. D. Rutashobya, and D. E. Vetter, "An investigation of the factors affecting data warehousing success," *Iss. in Inf. Syst.*, vol. 8, no. 2, pp. 547–553, 2007.
- [46] R. A. Eryadi and A. N. Hidayanto, "Critical success factors for business intelligence implementation in an enterprise resource planning system environment using DEMATEL: A case study at a cement manufacture company in Indonesia," J. of Inf. Tech. Manag., vol. 12, no. 1, pp. 67–85, 2020.
- [47] B. H. Wixom and H. J. Watson, "An empirical investigation of the factors affecting data warehousing success," *MIS Quart.: Manag. Inf. Syst.*, vol. 25, no. 1, pp. 17–41, 2001.

- [48] B. Wixom, T. Ariyachandra, D. Douglas, M. Goul, B. Gupta, L. Iyer, U. Kulkarni, B. J. G. Mooney, G. Phillips-Wren, and O. Turetken, "The current state of business intelligence in academia: The arrival of big data," *Comm. of the Assoc. for Inf. Syst.*, vol. 34, no. 1, pp. 1–13, 2014.
- [49] J. Becerra-Godínez, J. L. Serralde-Coloapa, M. Ulloa-Márquez, A. Gordillo-Mejía, and E. Acosta-Gonzaga, "Identifying the main factors involved in business intelligence implementation in SMEs," *Bull. of Electr. Eng. and Inf.*, vol. 9, no. 1, pp. 304–310, Feb. 2020.
 [50] D. Sammon and P. Finnegan, "The ten commandments of data
- [50] D. Sammon and P. Finnegan, "The ten commandments of data warehousing," D. B. Adv. in Inf. Syst., vol. 31, no. 4, pp. 82–91, Sep. 1, 2000.
- [51] R. Weir, T. Peng, and J. Kerridge, "Best practice for implementing a data warehouse: A review for strategic alignment," presented at the 5th Int. W. Des. and Manag. of Data Wareh. 2003, Berlin, Germany, 2003.
- [52] S. Abdullaev and I. S. Ko, "A study on successful business intelligence systems in practice," J. of Conv. Inf. Tech., vol. 2, no. 2, pp. 89–97, June 2007.
- [53] W. Yeoh, J. Gao, and A. Koronios, "Towards a critical success factor framework for implementing business intelligence systems: A Delphi study in engineering asset management organizations," presented at the *IFIP Int. Fed. for Inf. Proc.*, 2008.