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Abstract— This document shows the results for two water quality-related trials based on the Physico-chemical characteristics given by 

the used dataset; both trials were carried out based on the same dataset from which the membership sets, and functions were defined 

the most relevant features. The first trial was a neural network method aimed to predict water quality through attributes as the pH, 

temperature, turbidity, salinity, among others; the second trial was a fuzzy logic system method for the detection of the Vibrio Cholerae 

in the water through the usual variables associated to its presence: temperature, salinity, phosphates, and nitrites' levels. The method 

for this research is divided into two phases. The first phase is developing suitable software using an iterative and incremental process 

model based on prototypes. The second phase or operative phase has an experimental characterization that allows for an adequation of 

the environment to establish the main features and properties that are relevant to the study object. The results showed effectiveness 

values of 99.99% (highest obtained value) for trial one and 70.23% for trial two; such values depict an accurate prediction on the quality 

of water and a valuable detection for Cholera related bacteria in water supplies. This research developed two highly interpretable and 

transparent systems to people through the graphic of the correspondences between the rules established and the membership functions 

in the input and output sets. 
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I. INTRODUCTION

Water, and its consumption, are vital for all human 
activities [1]. Nevertheless, there are several issues related to 
its management (its growing scarcity, inappropriate use, lack 
of treatment for contaminated supplies, etc.) that profoundly 
impact humankind [2]. One of the most worrying problems 
related to water is the transmission of diseases as Cholera, 
which kills around 20.000 people every year oxygen [3], and 
is a direct outcome for the consumption of non-drinking water 
nursing the Vibrio Cholerae bacteria [4], this means water 
undergoing temperatures between 20 and 40 °C, high salinity, 
and high phosphates and nitrites' levels [5], [6]. Considering 
the need for an acknowledgment of water supply status the 
following physio-chemical variables are defined as the most 
relevant: pH; temperature; concentrations for phosphates, 
nitrites, nitrates, and ammonium; salinity; turbidity; and 
dissolved  [7], [8].  

This research was carried out following two trial proposals; 
the first one consists of a simulation and prediction trial on 

water quality according to the data extracted from a sample 
dataset [9]. The second trial was planned as a monitoring and 
detection model for Vibrio Cholerae bacteria on human’s use 
water supplies [10], based on the main features that could 
foster its appearance [6]. 

As part of the applied computer science based on heuristic 
models, AI can offer the right tools to simulate, predict, and 
identify patterns from a single input dataset [11]. One of the 
most common techniques used to solve similar problems to 
our Water quality check is Neural Networking, which is well 
known for its high accuracy due to its multilevel sequence 
training process through different training, test, and 
assessment stages [12].  Besides, a Fuzzy Inference System 
(FIS) was used to approach the vibrio Cholerae bacteria 
detection because of the significance level on the output 
values this technique shows. The outcome is vital when 
relating the input/output datasets the established functions and 
rules [13]. 

To identify bacteria in water and evaluate its quality, 
different models have been presented using techniques as 
follows: 
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 Extreme Learning Machine (ELM) algorithm with 
Dolphine Swarm optimization  [14]. 

 SVR and XGBoost algorithms [15]. 
 A 3D model water quality system composed of a data 

management system and environmental models [16]. 
 The central point triangular whitening weight functions 

(CTWF) method [17]. 
 Convolutional neural networks [18]. 
 LSTM algorithm with rules of cross correlation and a 

priori association [19]. 
 Techniques such as Adaptive Synthetic Sampling 

(ADASYN) and Principal Component Analysis (PCA) 
[20]. 

 A fuzzy logic system based on the Internet of Things 
(IoT) [21]. 

 IoT sensor system [22]. 
 A long-term and short-term memory neural network 

(LSTM NN) [23]. 
As a consequence of the literature review, it can be said that 

this work refers to the method in previous studies [17], [22], 
which are based on the analysis, simulation, and prediction of 
data related to water quality through computer-aided 
techniques. The dataset used in this research is obtained from 
three measuring points across the water supply, each one 
presenting variations on the physio-chemical features in the 
water samples. The election for this dataset is confirmed 
through the comparison of conditions and variables [15], [16], 
[23]. Regarding the techniques used, the Neural Networks and 
Fuzzy Logic Systems are the most preferred to predict and 
assess water quality [16], [18], [19], [21]. Also, a comparison 
between the outcome system of this research and the ones in 
the literature review can be established. As a differentiating 
aspect, the detection for Vibrio Cholerae depended on the 
climate variables, and the rate of the population infected [20]. 
However, it does not consider the Physico-chemical 
characteristics of the water. Therefore, this research exploits 
such features for its detection, as discussed in Yan et al. [14] 
and Waleed et al. [21]. 

II. MATERIAL AND METHOD 

The methodology for this research is divided into two 
phases. The first one focuses on developing suitable software 
and is based on empirical, experimental, and incremental-
iterative prototyping [24] [25]. The second (operative) phase 
has an experimental characterization, that allows for an 
adequation of the environment, to establish the main features 
and properties that are relevant to the main trial [26]. (Fig. 1 
shows a flow chart of the stages of the research). 
 

 
Fig. 1 Stages of the research. 

The methodologic process to follow consists of four phases. 
Phase 1 is Neural Network and Fuzzy inference systems 
design. Phase 2 is Dataset load and pre-processing (extracting 
the most relevant attributes, deleting irregular entries, and 
normalization of values in a 0 to 1 range). Phase 3 is the 
algorithm is set depending on the main focus: prediction 
(neural network is configured, trained, and tested) or 
classification (Fuzzy system is configured and tested). Phase 
4 is the final procedure are validated through different rubrics 
for prediction and classification. (Fig. 2 shows an exploited 
flow chart of the methodology process). 

 
Fig. 2 Research method. 

A. Design and Application 

Network and Fuzzy Inference systems are designed 
considering both of the approaches in this research: water 
quality assessment and detection of the Vibrio Cholerae 
bacteria respectively. The dataset used contains the Physico-
chemical features of the Elwha River [8]. TABLE  shows the 
selected parameters relevant to this project. After finishing the 
pre-processing of the dataset the initial structures for the 
neural network and fuzzy inference systems are defined. 

TABLE I 
DATASET PARAMETERS 

Parameter Measure 

Phosphates concentration mg/l 
Nitrates concentration mg/l 

Ammoniums concentration mg/l 
Salinity g/l 

Turbidity ncu 
Temperature °C 

Dissolved Oxygen mg/l 
Dissolved Oxygen Percentage % 

ICA Weighing 
Vibrio Cholerae presence (0 o 1) 

 
 

Final Prototype

Detection of the Vibrio Cholerae 

Bacteria
Results analysis and conclusions

Operative Phase
Experimental 

characterization

Adequation of the 

environment
Establishment the main 

characteristics and properties

Development of Suitability Software

Incremental-iterative prototyping
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B.  Design of the Neural Network to Assess the Water Quality 

Seven different configurations, varying in the number of 
layers and neurons per layer (TABLE ). It was created to 
compare their performances and select the best performing 
one. Every system’s neurons operate under the function 
TANSIG. The threshold ranges were defined in terms of the 
minimum and maximum input parameter value (nine 
parameters) and the output corresponds to the Dataset 
parameters. The designed systems follow a feedforward 
scheme and use the training method Backpropagation during 
500 cycles.  

TABLE II 
NEURAL NETWORKS STRUCTURE. 

NN Layers Neurons per layer 

1 6 5 
2 5 5 
3 4 5 
4 4 8 
5 4 9 
6 3 10 
7 3 5 

C. Design of the fuzzy Inference System to Detect the 
Presence of Vibrio Cholerae Bacteria 

The designed fuzzy system is based on a Mamdani system 
to establish the input set for detecting the Vibrio cholera 
bacteria. The variables considered are temperature, 
phosphates and nitrates levels, and salinity. The output set is 
defined in terms of the presence or absence of the bacteria as 
shown in Fig. 3.  

 

 
Fig. 3 Fuzzy system 

 
Membership functions are defined for the input and output 

sets as follows: 

1) Temperature (Fig. 4): the linguistic values low, 
medium, and high are adapted in three triangular membership 
functions in a 0 to 37 range. 

 

 
Fig. 4 Fuzzy sets for temperature classification. 

2) Phosphate levels (Fig. 5): two triangular membership 
functions are set to classify them in a 0 to 1 range (low and 
high). 

 
Fig. 5 Fuzzy sets for Phosphate levels. 

3) Nitrate levels (Fig. 6): two triangular membership 
functions are set to classify them into high (0-8 range) and 
low(8-20 range). 

 

 
Fig. 6 Fuzzy sets for Nitrate levels.  

4) Salinity (Fig. 7): two triangular membership functions 
are set to classify them into high (10-20 range) and low (0-10 
range). 

 

 
Fig. 7 Fuzzy sets for Salinity levels. 

 
The output set (Fig. 8) is defined in a 0 to 1 range through 

triangular membership functions and assesses the water as 
sane or contaminated.  

 

 
Fig. 8 Output set. 

The fuzzy inference system associates the input sets and the 
established system rule set (Fig. 9) to show the water 
conditions and behaviors related to the presence and 
reproduction of the Vibrio Cholerae bacteria. 

 

 
Fig. 9 Fuzzy system rules set. 
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III. RESULTS AND DISCUSSION 

A. Water Quality Prediction 

All of the neural networks used were trained and tested 
using 70% and 30% of the input dataset. The outcomes were 
validated through different rubrics used in regression and 
prediction models such as the Mean Square Error (MSE) and 
Maximum and Minimum error values. TABLE  shows all the 
error values obtained as well as the effectiveness percentage 
represented by the RMSE for each network; the effectiveness 
range goes from 98.68% for the less accurate trial to 99.99% 
for the top one. According to the results, the network with the 
best performance (MSE 1.16X10-10, and 99.99% 
effectiveness) is network number 2, configured using five 
hidden layers and five neurons per layer, as shown in Fig. 10. 
When compared, the data collected using the best performing 
neural network for the obtained results and the expected ones 

on the prediction of the status of the Elwha River are 
significantly similar as shown in Fig. 11. 

TABLE III 
RESULTS FOR THE WATER QUALITY PREDICTION 

NN 
Minimu

m Error  

Maximum 

Error  
MSE RMSE 

Effectiveness 

(%) 

1 1.05E-07 8.92E-03 1.68E-06 1.30E-03 99.87036 
2 4.73E-08 3.34E-05 1.16E-10 1.079E-05 99.99892 
3 3.01E-08 1.75E-03 2.82E-08 1.68E-04 99.98321 
4 2.05E-12 1.67E-02 8.64E-06 2.94E-03 99.70609 
5 7.67E-14 4.11E-02 9.71E-05 9.86E-03 99.01439 
6 2.28E-10 8.05E-02 1.72E-04 1.31E-02 98.68912 
7 5.95E-08 6.66E-02 4.03E-05 6.35E-03 99.36515 
 

 
Fig. 10 Neural Network configuration #2 

 

 
Fig. 11 Expected data compared to the results of the best performing neural network. 

 

 
Fig. 12 Best performing Network error. 

 
Fig. 12 shows the error graph for the water quality 

prediction made by the best performing network; the 
minimum difference between the expected and obtained 
values explains the 10-5 order value for the error. 

B. Detection of the Vibrio Cholerae Bacteria 

The fuzzy inference system used in the second trial was 
tested with the totality of the input dataset, and its 
performance was validated using specialized classification 
rubrics such as Accuracy, Precision, recall, and f1-score. The 
resulting outcome for the fuzzy inference system is shown in 
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Fig. 13 through a Classification Confusion Matrix that depicts 
the hit ratio for each of the possible options: presence (0) and 
absence (1) of the vibrio cholera bacterium. 

 

 
Fig. 13 Fuzzy system confusion matrix 

 
All the calculated values to assess the system's performance, 

using every defined rubric, are shown in TABLE . 

TABLE IV 
FUZZY SYSTEM RESULTS. 

Accuracy Precision Recall F1-score 

70.23% 71.43% 94.44% 81.34% 

C. Discussion 

The fuzzy inference system used to detect the presence of 
the vibrio cholera bacteria in a water supply showed high 
interpretability as the rules that deal with the output set 
(temperature, salinity, sodium, and phosphorus levels) are 
directly related to the circumstances under which these 
specific bacteria can proliferate and survive. Nevertheless, as 
this AI technique is not highly accurate, the system's 
performance got a 70.23% score under the Accuracy rubric. 
Also, it can be inferred that greater accuracy levels can be 
achieved by using an input dataset completely focused on 
detecting the Vibrio Cholerae in water supplies. 

IV. CONCLUSIONS 

The neural network designs' results show high 
effectiveness in assessing the quality of a water supply, taking 
into account all the Physico-chemical parameters established 
in the input dataset. According to the measurements and the 
MSE, the systems operate on an effective range of 98.68% to 
99.99%. Furthermore, the best performing configuration (5 
layers with five neurons per layer) shows a 1.079x10-5 MSE 
value, implying a high capacity to assess the water supply as 
drinkable. The fuzzy system designed to detect the presence 
of the vibrio cholera bacteria showed 71.43% and 70.23% 
values for precision and accuracy, respectively. This implies 
that the system can recognize the presence of the bacteria in 

the water regarding the Physico-chemical characteristics that 
would foster its proliferation and survival (temperature, 
phosphates and nitrates' levels, and salinity). As the system 
graphically shows the correspondences between the rules 
established and the membership functions in the input and 
output sets, it can be said that the system has great 
interpretability and is transparent to the people approaching 
its design and setting. For future research direction, in 
detecting the bacteria in the water supply, we recommend an 
increase in the accuracy of the fuzzy system through a 
reevaluation of the membership functions in the input and 
output sets. This can be achieved using optimization 
techniques such as genetic and gradient algorithms, which 
tend to converge towards a local or global minimum based on 
the difference in the expected and obtained values. 
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