
Vol.11 (2021) No. 6

ISSN: 2088-5334

Segmented Network Architecture for Promoting High Availability in

Fog Computing through Middleware

Mohd Hariz Naim a,*, Jasni Mohamad Zain b, Kamarularifin Abd Jalil b , Lizawati Salahuddin a

a Centre of Advanced Computing Technology C-ACT, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia
Melaka, 761000, Durian Tunggal, Melaka, Malaysia

b Department of Computer Technology and Network (CTN), Faculty of Computer Science and Mathematical, Universiti Teknologi MARA,
40450, Shah Alam, Selangor, Malaysia

Corresponding author: *mohdhariz@utem.edu.my

Abstract— This paper proposes an architecture for deploying applications on a fog computing environment by adding another layer of

fog nodes in a network segment that gains high software application availability. The conventional fog computing architecture would

permanently shift the storage, applications, and data from cloud servers to fog nodes, thus reducing the dependency on the cloud. As a

result, fog nodes are burdened with the task previously done by cloud servers and have become “mini cloud servers.” Instead of

permanently shifting the tasks from cloud servers to fog nodes, the proposed architecture would only do the shifting, when necessary,

like if an internet outage. Additionally, this research also introduced the middleware application that acts as a detector and replacement

if service outage so that the availability of the services is not interrupted, especially during the internet outage, by adding another layer

of fog node in a network segment. The computational process occurs between end-users and the fog nodes without having to rely on

cloud servers. An experiment was conducted to test the performance of the proposed architecture. From the experiment, it can be

concluded that the deployment of fog nodes in a segmented network is possible and able to increase the availability of data and services

if an internet outage.

Keywords— Fog computing; high availability; deployment architecture; middleware.

Manuscript received 23 Oct. 2020; revised 11 Mar. 2021; accepted 18 Apr. 2021. Date of publication 31 Dec. 2021.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The birth of the internet and its wide usage has given birth

to the cloud and mobile computing, where applications reside

on cloud providers such as Google Cloud Platform, Microsoft

Azure, and Amazon Web Service. These cloud service

providers have upgraded their infrastructure to produce more

scalable and robust cloud computing to meet the demand with

better availability and the increasing number of data centers

[1]. The resources constraint faced by end-user devices

ranging from IoT devices, computers, and physical servers
has made cloud computing the providers of a preferred and

flexible resource in deploying the solution [2], giving them an

advantage on resources to focus on developing quality and

fewer bugs software applications [3] before delivering to the

end-users. Previously, in the early days of computing,

software was installed and run separately and independently

[4] in every machine. This type of application is commonly

known as desktop or terminal applications such as Microsoft

Office or Telnet, requiring individual installations inside a

machine. As data is kept separately, it leads to
unsynchronized and inaccurate information [4]. For example,

in the banking sector, a customer's information may reside on

many computers as the customer could be dealing with

multiple times by different counters. As one solution, the

unsynchronized information problem has led to the birth of a

centralized database where information could be stored in one

single machine, and all other machines could retrieve or send

the data via socket connections implemented in the

applications [5]. However, each application would need to be

updated individually as a different version to implement this

method. Some of these applications also become obsolete, and

new applications must be created again from scratch as
updating the applications seems futile and costly [4], [6].

As modern technology emerges, so make software

applications. In order to keep up with the pace of technology,

existing software would need to be revamped from a desktop

application to web-based applications that can promote

centralized information [7] and faster application update. The

2509

update would just need to be done on the server instead of

each machine that would take more time and human resources.

The server would be installed with the application, and it only

requires internet for connecting between machines. The server

would live either on the cloud or at the edge of network

architecture within a premise.

According to Mesbahi et al. [8], cloud computing is a type

of computer paradigm consisting of massive physical

machines working together that use computing utility for

providing high reliability of software solutions. Cloud

computing is categorized into three services, namely software
as a Service(SaaS), Platform as a Service(PaaS), and

Infrastructure as a Service(IaaS) [9]. With the advancement

of the internet and the increasing number of applications and

users, cloud computing as a Platform as a Service and

Infrastructure as a Service has become popular deployment

technique. With cloud infrastructure, users of all levels may

benefit from the scalability and high availability, assuring less

degradation in terms of performance [10]. However, it does

not cover the availability on the edge of the network, and end-

users may still be prone to service interruption whenever the

internet is unavailable.
On the other hand, fog computing or edge computing is

another computer paradigm concept where it does not rely on

the cloud for computational processing tasks [11]–[13].

Instead, it runs the logical and computational process on the

lower layer of the network closer to the end users’ machine.

One of the prominent usages of fog computing is the health

sector [14], [15] and home automation [16], where there are

devices such as heartbeat sensors to read the heartbeat of a

patient and infrared sensors to detect movement. The sensors

may have their computational process from the data obtained

to send alerts or notifications to the corresponding person in
charge, such as medical practitioners or law enforcers. To

increase high availability, this study proposes using IoT

device from a Raspberry Pi that acts as a middleware residing

in a network segment as part of a fog computing environment.

In this paper, section 1 discusses the related works,

including the architecture of cloud computing related to

infrastructure as a service and platform as a service. Some

issues are also discussed with cloud computing, followed by

a fog computing architecture and how the computer nodes are

segregated according to the certain subnet. In addition, the

review of related deployment architecture is explained in this

section. Section 2 then explains the material and method that
describes the proposed software topology that is ideal and

suitable to be deployed in a fog computing environment,

followed by experimentation to explain how the simulation is

run. The discussions on the result are presented in section 3.

Lastly, section 4 discusses conclusions that provide

motivations for providing high availability in data and

software services.

A. Cloud Computing Architecture

Due to the increasing number of software applications,

including back end services such as web services and socket

connections, many software providers are looking for

solutions that can deploy their products without having to

consider specifications of physical servers and in addition to

flexible resources that can expand when required [8]. This has

promoted cloud computing as one of the solutions in favor as

the cloud as a service may give software providers a cost-

effective [17] and more peace of mind when deploying their

products. Cloud environments may differ according to how

the software providers would choose to deploy their solution

to which cloud providers. The architecture, in general, can be
visualized in Figure 1.

Fig. 1 The General Architecture of Cloud Architecture via Internet Backbone

2510

The architecture in Figure 1 requires the internet as the

backbone of the connection. End nodes or users may connect

to the cloud by any connection such as High-Speed Downlink

Packet Access (HSDPA) or common Wi-Fi or Ethernet that is

linked to the Internet Service Provider. In order to prevent

connection failures and provide high availability, most cloud

providers have implemented a failure-recovery plan through

mirroring and replication [18], where the replicas are

geographically located far away from each other. Thus, in

case of mishaps in the server farm, such as earthquakes or

floods, the services and data may still be safe in the other
replicas.

Zooming into the deployment layer may differ according

to how software providers may deploy their applications. The

typical application layer may interact directly with the cloud,

as depicted in Figure 2. On the end nodes, the users’

applications and sensors provide data and send it to the central

cloud server [8], and there is no computational process at this

layer. Only necessary logical processes such as authentication

and validation, which is called front-end processing, may

happen at this layer [7], [19] depending on functionalities and

the type of the applications. This proves that it could reduce
the burden at the client side [20] as most processes are done

at the cloud layer. The database storages reside in the cloud

layer, and the computational process is called the back-end

process.

The research done by Mesbahi et al. [8] has proposed using

OpenStack architecture to promote a high and reliable cloud

data center by implementing an 80/20 rule. The OpenStack is

an open-source software platform for cloud deployment

which provides infrastructure-as-a-service (IaaS) where

resources are placed on virtual servers and made available to

the end-users. The OpenStack is also considered a cloud
management system, having the capabilities of dynamically

scaling the resources according to many tasks assigned.

Different computers, including physical and virtual machines,

maybe clustered to form a single cloud datacenter through

OpenStack. The authors also combined several components

involving the Nova tool, Failure Analyzer, Heat and Glance

tool to compose the proposed architecture. Those afore

mention tools are available as part of components in the

OpenStack controller.

The authors introduced a hypothesis that 80% of failure

tasks are derived from 20% of machine failure. Thus, the

Nova can divide each cluster into less risky sub-cluster

according to the machine failure record. These records are
generated by the failure analyzer that monitors each machine's

behavior and event seamlessly. Although the authors claim

that the subclustered machine has a lesser failure rate and can

provide 99.999% of availability, the proposed architecture is

too dependent on the failure records, which could be incorrect

to a certain machine that has received modification or part

replacement. This would also lead to unutilized machine

resources as only the less risky subclustered is assigned with

the tasks while another machine could be idle or less assigned.

The research done by Acquaviva et al. [21] integrates three

different cloud providers to ensure the high availability and
performance of the cloud by implementing replication

mechanisms to replicate services among cloud providers. The

middleware that is the main component for managing virtual

machine (VM) replicas has implemented an algorithm to

optimize the resource optimization among VM. However, the

proposed solution is to a constraint on middleware that is too

app-centric where any application that does not follow the

framework nor implement the algorithm could not improve

the availability of the application. Furthermore, the

middleware residing on the cloud would make the technique

pointless whenever the connection is interrupted or
unavailable.

Fig. 2 Applications and Sensors devices at the same layer with Users

B. Fog Computing Architecture

In contrast to cloud computing, additional nodes known as

fog nodes may be required where the back-end process is done

within the network segments, as shown in Figure 3. Instead of
sending data and depending on the cloud for a computational

process that proves to be more latency and consuming

resources [11], [22], the computational process is done at the

end of the network done by fog nodes. Here, other nodes
would send the data to the fog nodes for the computational

process which would not require the internet backbone [12].

The fog nodes would be able to respond to the pre-decision-

making back to the nodes [16]. For example, whenever a

smoke sensor detects smoke and sends the data to the fog node,

the fog node would straight away send a notification to the

authorities. Only important information after the data has

2511

been processed, such as reporting information to be saved,

would be sent to the cloud's central server for synchronization

and further decision making.

In terms of database storage, the fog nodes would be

installed with the same database as the cloud server has, and

it has performed almost at par as usual central server [5]

though it could be upgraded or downgraded to meet its

functional purposes. In addition, the fog nodes can be

distributed and scattered around the intranet for better

accessibility. The cost for fog nodes may vary according to

the types of hardware specifications that it has and but any

existing nodes could be turned to become fog nodes [22], [23]

which give advantage in term of reusability of existing

devices available on the network.

Fig. 3 The architecture of fog computing connected to the cloud via Internet Service Provider (ISP)

According to Hu et al. [12], fog computing architecture is

composed of 3 layers structure:

 Cloud layer. This layer positions on the topmost that

resides on the internet, which consists of many high-

performance machines and enormous storage capacity

for storing gigantic information. This layer also

performs a heavy computational process such as

decision-making and data analysis gained from the

lower layer.

 Fog layer. The layer comprises gateways, switchers,

routers, network access points, and certain computer
machines that are converted to become mini servers for

achieving specific computational processes.

 Terminal layer. This layer is the closest to the physical

environments and end-users, generating the raw data

from various devices scattered around the network,

such as heat sensors, smoke sensors, mobile devices,

and input readers. The data is then transmitted to the

fog layers for pre-processing.

As millions of fog devices, including the Internet of Things

(IoT) scattered in certain networks, can produce zettabytes of

information. Processing the massive information and looking
up important data would consume high resources, which

would mean a challenge for fog computing. The research done

by Tortonesi et al. [24] proposed a model for fog computing

to filter out massive information called the Sieve, Process, and

Forward (SPF). The authors claimed that the model is capable

of reusing the processing components to be used by numerous

different services and this would certainly optimize resources

of both fog layer and cloud layer.

Even though having the fog computing layer running on an

edge network seems promising, it still has some flaws,

especially in power usage [25] where it must depend on

battery capacity to continue operating. Depending on the

battery's operation has caused the fog devices to have limited

operational life and restricted processing power to conserve

energy. Additionally, the challenges with resources

capabilities such as memory and storage would also restrain

the fog devices from operating at the same scale as a cloud

server. Thus, deployment on the fog level would need

meticulous consideration and careful set up to ensure the
performance is optimized to avoid application service

downtime due to software aging and operating system

degradation.

C. High Availability of Application Services

According to the definition by Bahn [25], data and service

availability can be defined as the level of a system that can

operate, accessible when obliged, and the data should be

confidentially protected from any attacks or breached [26].

Cloud providers have to incorporate high availability as part
of the Service Level Agreement(SLA) towards their client [27]

so that in the event of any interruptions, their client may still

be able to access the service. As defined by Mesbahi et al. [8],

the SLA is that the availability of services should be 99.9999%

or close to 100%. Although this seems theoretically

achievable, in real-life situations, the percentage is almost

impossible to achieve as there could be unexpected disaster

occurrences such as network attacks or power failures.

2512

Nabi et al. [28] stated that the availability technique, in

general, is categorized as protective redundancy, fault

tolerance, and overload protection, as visualized in Figure 4.

In order to maintain and balance the performance when a

server is straining with tasks and processing requests, the

overload protection is implemented where some tasks and

requests are delegated to another server that has fewer tasks.

The cloud providers may embrace the high availability service,

which may be achieved through replication and switchover

[28] of the server as part of protective redundancy and fault

tolerance where cloud providers usually position the data
centers in the geographically distributed location around the

world [29]. The replication of the server and the use of

middleware as fault tolerance mechanisms have enabled the

computer system to become better in terms of availability.

The middleware is considered part of the components that can

be removed, replaced, and even modified when failure has

occurred [30] to function as normal.

Having replication in multiple server farms would mean

that data is cloned in every replicated server, and thus, it

would mean the storage may increase [28], causing problems

in terms servers’ resources consumption, including memory,

CPU, and bandwidth. Each time a node is making a request,

every replicated server consume their resources and in the
event of mass request from many nodes, this would have a

disastrous effect on performance.

Fig. 4 The availability mechanism, in general, comprising protective redundancy, overload protection, and fault tolerance

As for cloud computing, multiple virtual machines and

integrated data centers would benefit from auto scaling and

load balancer [31], where the traffic is redirected to which

cloud node has less resource load. The load balancer is placed

and configured at the entry point of the cloud networks, where

it keeps track of the resources consumed by each replicated

server and navigates the traffic evenly. Despite the existence

of a load balancer, delegated tasks and requests may still
suffer from latency [32], [33] as the replicated server could be

geographically far from end-users. Another research has

optimized task migration by considering user mobility in

order to reduce latency[34]. The authors propose an algorithm

for evaluating group migration for mobile edge computing

before the predicted mobile device is assigned with the task.

However, the research does not consider the congestion and

applications running in the edge network that eventually

contribute to the latency as the network bottleneck has been

reached.

II. MATERIAL AND METHOD

Taking the concept and advantages of fog computing, an

enhancement is proposed by adding another node deployed to

the current network. An organization's network was
segmented into several sections based on following criteria,

the number of nodes, and the location of the designated

intranet. The number of nodes would affect the network

congestion, and thus, the number of nodes is capped at a

maximum of 20 fog devices. The location of the designated

intranet would depend on the geographical and physical

devices available on the network where the fog devices are

grouped according to departments for ensuring better group

identification. The additional nodes, which are the fog nodes,

were residing in every network segment as depicts in Figure

5.

2513

Fig. 5 The proposed deployment of fog nodes where the node lives in every segment of a network

Each of the fog nodes or the middleware performs network

checking to the central cloud server and the fog nodes are
identical to the central servers residing in the cloud, which

explains the purpose of having database and Apache service

to mimic the services provided by the central servers.

The experiment is done in an organization having several

network segments that are divided by subnet. For the sake of

experimentation, we only take one segment of a network that

is deployed with the fog node. In the network segment, other
nodes function as end users using desktop applications

interacting with the central cloud servers via the internet, as

visualized in Figure 6, which shows the proposed application

layer.

Fig. 6 The proposed fog layer located between application layer and cloud layer

At first, the applications send and receive data from the

central cloud as usual cloud-based computing. At the same

time, the fog node receives data updates from the central

server by the mirroring technique. The Internet Control

Message Protocol (ICMP) ping service is developed in Python

to detect network interruption between the network segment
and the central cloud server. In comparison, the cron script is

created to perform the Python script in a timely manner for

every certain interval of 3 seconds.

If internet line breakdown, where the end-users cannot

access the data and service from the central server, the fog

node performs a computation process by detecting it and

quickly replacing the network address of the central server.

Here, the end-users are automatically redirected to the fog

node that acts as a secondary server. The computational
process now occurs between end-users and fog nodes without

relying on a central cloud server. All the data is saved into the

fog nodes database storage, and once the internet connectivity

2514

has been recovered. All the data is synchronized between fog

nodes with the central servers.

A. Middleware as Computational Process

Here, a fog device has been appointed as the middleware

that can detect and replace the main server outage. The

detection follows the heartbeat concept [18], [35], where the

fog device keeps listening for the main server through ICMP.

The chart visualizes the detection process in Figure 7.
First, the middleware that is the Raspberry Pi is installed

with the Cron script scheduler. Similarly, Python script is the

main engine for the computation process that performs ICMP

ping checks. The scheduler executes the python script, and the

process continues by waiting to respond from the main server.

If there is a response from the main server, the middleware

fetch for any update from the main server and keep on

listening for the response from the main server. If an outage,

the middleware is not getting any response from the main

server, and thus, the middleware performs another process to

change its address and swapping it to become the main server.

This way, applications refer to the middleware as if it is the

main server. Meanwhile, the middleware keeps on listening

to the main server by keeping on ping. Once the main server

has recovered, the middleware sense it and change it back to

the original address. The applications are now redirected back
to the main server, and the middleware synchronizes back any

update that the middleware has been getting during a server

outage.

Fig. 7 The detection of failure process executed by the fog node

The detailed experimentation involves two phases

involving detection of fog node failure and replication of

services between server and fog node. Then, the last process
is migrating tasks from the main server to and from the fog

node. For simulating the experimentation, only one segment

of the network has been deployed with the fog node, where it

acts as a middleware for performing all the two phases. The

mail server's address (MS) would need to be pointed by the

middleware for listening to the heartbeat by the fog node (FN).

B. Failure Detection and Replication Algorithm

The logical algorithm for detecting outage occurrences
follows Algorithm1, where the input is the main server

address that needs to be listened to using ICMP that acts as a

heartbeat listener. From the ICMP response, the output

produces a response from the main server, which further

performs another process of updating the database from the

main server to the fog node database according to the binary

log file that acts as a flag indicator whenever there are data

changes that need to be updated. The synchronization and

replication of data would occur when the method fnFetchData

is invoked

Algorithm 1:
Input: Address of Selected Main Server (MS)
Output: Main Server (MS) Acknowledgement Respond
 /* Process for listening to the main server uptime */
respond_receive <- icmp event
while (respond_receive) do

if nodeCurrBinaryLog != main_server_binaryLog then
fnFetchData()

end

if (respond_receive == 0) then
 fnChangeAddress()
Function fnFetchData

nodeCurrBinaryLog <- main_server_data_log
 nodeDatabase.update(main_server_data)
end

C. Failover and Recovery

The failure and recovery process would perform swapping

of address from its original IP Address to become similar to

the main server IP address and this hand over the task from

the main server to the middleware node.

Algorithm 2:

Input: Local Middleware address

Output: Address Swapping to Main Server
Function fnChangeAddress

 nodeNetworkAdapterStat <- down

 nodeCurrAddress <- main_server_address

 nodeNetworkAdapaterStat <- up

 application service startup

 listen and lookup for main server second address

end

D. Experimentation Settings

The network address of the fog node and main server are
reserved and are assigned permanently to avoid other devices

from taking the address, leading to address conflict. The main

server is allocated with two static addresses, where the second

address is for the fog node to listen for the main server when

connectivity has been recovered. Here the fog node and main

server have the following address:

2515

Fog Node: 192.168.2.20

Main Server Address 1: 192.168.1.2

Main Server Address 2: 192.168.1.20

The fog node which is a middleware function as a sensor

for detecting any network interruption, and here we proposed

the use of Raspberry Pi device that have certain service

installed as follow:

Database service (MySQL)

 Apache service

 Internet Control Message Protocol (ICMP) service

 Cron script
The MySQL database used is for simulating the real

database that resides in the central cloud server whereas the

Apache service is used to run web-based applications and

listen on the used port 80 as part of the detection technique.

The ICMP ping service is used to obtain the status of the

targeted host by sending live messages by waiting for a

response from the targeted cloud server. By replying to the

ping message, the middleware knows that the server is

accessible. The cron script, on the other hand, is the scheduler

to execute the ICMP ping service based on a certain predefine

interval time which we have set to every 5 seconds
Initially, all application requests would point to the main

server, and when the middleware detects an outage, the fog

node detects and swaps its address to be similar to the main

server. All requests automatically point to the fog node by

broadcasting the newly changed address instead of looking

for the main server. At the same time, the fog node still

lookup the main server's second address.

III. RESULTS AND DISCUSSION

The result is presented according to the description and

steps to simulate real network outage occurrences. The

network downtime is simulated by disabling and turning off

network adapters at the main switch, the gateway to the main

server. The adapters are enabled back to imitate that the

network has been recovered normally.

TABLE I

EXPERIMENT BASED ON THE PROPOSED FOG ARCHITECTURE

Experiment

Description

Steps Result

Deploy Raspberry
Pi as fog
node/middleware to
a network segment

Connect it with Wi-
Fi within the
designated network

Success. The
Raspberry Pi
now had become
one of the nodes

Connect and

synchronize fog
node to replicate
with central cloud
server

The Raspberry is

installed with the 4
services

Success. The

node is now a fog
node

Disconnect/Disable
internet on the
designated network
segment

The internet is
disabled by
disconnecting the
main switch from

the internet

Success. The
designated
network no
longer has

internet
connectivity

Detecting downtime
by the middleware
via ICMP heartbeat
technique

ICMP messages are
sent continuously to
the central server

Success.
Downtime
detected by the
middleware

Switching and
masking

Execute python
script to change the

Success. The
middleware has

middleware to
become a service

provider

address similar to a
central server

become the
service provider

Ensure end-user
applications are able
to run

Open and execute
the desktop
application on the
end user as usual

Success. The
desktop
application able
to retrieve and
save information

Connect back
internet on the

designated network
segment

The main switch on
the designated

network is to
reconnect

Success

Ensure end-user
application able to
run

Continue running
the application as
usual

Success. The
applications able
to execute

The experiment on the designated network has been

performed as in Table 1 with success which shows that if

network interruption, the service and data is still available

with the implementation of fog nodes as middleware for

performing the computational process at the edge of the

network without having to rely on a central cloud server. The

fog node can replace the functionality of a server even though

there is interval time for detection and failover recovery. It
has been recorded that the interval time taken for failover

detection is around 5 seconds, whereas the recovery of service

by the fog node is around 3 seconds and would take around

another 5 seconds to return the service back to the central

server. The experiment was run three times, and the result is

presented as shown in Table II.

TABLE II

TIME TAKEN FOR THE DETECTION AND RECOVERY

No of

Run

Detection

Time(s)

Recovery

Time(s)

Middleware

Respond Time(s)

First 4.5 2.3 2.7
Second 4.7 2.4 3.1
Third 4.4 2.4 3.0

IV. CONCLUSION

From the experiment that has been done, it can be

concluded that deploying a fog node at the edge of the

network is possible. Also, it is possible to increase the

availability of data and services by creating another layer of

fog that resides between the cloud and end users. In the event

of network interruption, applications communicate to the fog

layer without experiencing network error. However, the scope

of this research does not take response time and network
bandwidth usage into consideration. In addition, the scope of

the application is limited to desktop applications only.

The proposed architecture will be tested on other segments

in the future, and the performance in terms of response time

and bandwidth utilization is considered. In addition, the

technique is enhanced to support the high availability of

Domain Name Service (DNS) required for web applications.

ACKNOWLEDGMENT

This research is supported and funded by UTeM through a

short-term grant with references PJP/2019/FTMK(B)/S01681.

The authors are grateful to the Center of Advanced

Computing Technology (C-ACT) Faculty of Information and

Communication Technology, Universiti Teknikal Malaysia

2516

Melaka, and Center of Computing Technology and Network

(CTN) Faculty of Computer Science and Mathematical

Universiti Teknologi Mara, Malaysia, for offering facilities in

term of research provision.

REFERENCES

[1] P. Alves, L. Antônio, S. Barreto, and N. Paulo, “Data centers ’ services

restoration based on the decision-making of distributed agents,”

Telecommun. Syst., 2020, doi: 10.1007/s11235-020-00660-2.

[2] Y. Jin and H. J. Lee, “On-demand computation offloading architecture

in fog networks,” Electron., vol. 8, no. 10, 2019, doi:

10.3390/electronics8101076.

[3] E. Hassan, Z. M. Yusof, and K. Ahmad, “Factors Affecting

Information Quality in the Malaysian Public Sector,” Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 9, no. 1, pp. 32–38, 2019, doi:

10.18517/ijaseit.9.1.6385.

[4] J. Eloff and M. Bihina Bella, Software Failure Investigation A Near-

Miss Analysis Approach, 1st ed. Cham, Switzerland: Springer

International Publishing, 2018.

[5] J. Liu, F. Liu, X. Li, K. He, Y. Ma, and J. Wang, “Web Service

Clustering Using Relational Database Approach,” Int. J. Softw. Eng.

Knowl. Eng., vol. 25, no. 8, pp. 1365–1393, 2015, doi:

10.1142/S021819401550028X.

[6] J. Rahme and H. Xu, “A software reliability model for cloud-based

software rejuvenation using dynamic fault trees,” Int. J. Softw. Eng.

Knowl. Eng., vol. 25, no. 9–10, pp. 1491–1513, 2015, doi:

10.1142/S021819401540029X.

[7] M. H. Naim, M. K. A. Ghani, A. S. H. Basari, B. Aboobaider, L.

Salahuddin, and W. N. A. Rashid, “Synchronization technique via

raspbery Pi as middleware for hospital information system,” Adv. Intell.

Syst. Comput., vol. 734, pp. 262–271, 2018, doi: 10.1007/978-3-319-

76351-4_27.

[8] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, “Highly

reliable architecture using the 80/20 rule in cloud computing

datacenters,” Futur. Gener. Comput. Syst., vol. 77, pp. 77–86, 2017,

doi: 10.1016/j.future.2017.06.011.

[9] K. Syed and K. Vijaya, “Cloud Computing: Review on Recent

Research Progress and Issues,” Int. J. Adv. Trends Comput. Sci. Eng.,

vol. 8, no. 3, pp. 959–962, 2019, doi: 10.30534/ijatcse/2019/96832019.

[10] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, “Reliability

and high availability in cloud computing environments: a reference

roadmap,” Human-centric Comput. Inf. Sci., vol. 8, no. 1, 2018, doi:

10.1186/s13673-018-0143-8.

[11] I. Sittón-Candanedo, R. S. Alonso, J. M. Corchado, S. Rodríguez-

González, and R. Casado-Vara, “A review of edge computing

reference architectures and a new global edge proposal,” Futur. Gener.

Comput. Syst., vol. 99, no. 2019, pp. 278–294, 2019, doi:

10.1016/j.future.2019.04.016.

[12] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:

architecture, key technologies, applications and open issues,” J. Netw.

Comput. Appl., vol. 98, no. September, pp. 27–42, 2017, doi:

10.1016/j.jnca.2017.09.002.

[13] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and

prospects in edge technologies: Fog, cloudlet, mobile edge, and micro

data centers,” Comput. Networks, vol. 130, no. 2018, pp. 94–120, 2018,

doi: 10.1016/j.comnet.2017.10.002.

[14] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog

Computing in Healthcare-A Review and Discussion,” IEEE Access,

vol. 5, no. 2169, pp. 9206–9222, 2017, doi:

10.1109/ACCESS.2017.2704100.

[15] Y. Ren, R. Pazzi, and a Boukerche, “Monitoring patients via a secure

and mobile healthcare system,” Wirel. Commun. IEEE, vol. 17, no.

February, pp. 59–65, 2010, doi: 10.1109/MWC.2010.5416351.

[16] A. M. Rahmani et al., “Exploiting smart e-Health gateways at the edge

of healthcare Internet-of-Things: A fog computing approach,” Futur.

Gener. Comput. Syst., vol. 78, pp. 641–658, 2018, doi:

10.1016/j.future.2017.02.014.

[17] B. Snyder, J. Ringenberg, R. Green, V. Devabhaktuni, and M. Alam,

“Evaluation and design of highly reliable and highly utilized cloud

computing systems,” J. Cloud Comput., vol. 4, no. 1, 2015, doi:

10.1186/s13677-015-0036-6.

[18] R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente,

“Orchestrating the deployment of high availability services on multi-

zone and multi-cloud scenarios,” J. Grid Comput., vol. 16, no. 1, pp.

39–53, 2017, doi: 10.1007/s10723-017-9417-z.

[19] H. Shahzad, X. Li, and M. Irfan, “Review of data replication

techniques for mobile computing environment,” Res. J. Appl. Sci. Eng.

Technol., vol. 6, no. 9, pp. 1639–1648, 2013, doi:

10.19026/rjaset.6.3883.

[20] R. K. Lomotey, S. Jamal, and R. Deters, “SOPHRA : A Mobile Web

Services Hosting Infrastructure in mHealth,” 2012 IEEE First Int.

Conf. Mob. Serv., pp. 88–95, 2012, doi: 10.1109/MobServ.2012.14.

[21] L. Acquaviva et al., “NoMISHAP: A Novel Middleware Support for

High Availability in Multicloud PaaS,” IEEE Cloud Comput., vol. 4,

no. 4, pp. 60–72, Jul. 2017, doi: 10.1109/MCC.2017.3791011.

[22] M. Singh and V. M. Srivastava, “Implementing architecture of fog

computing for healthcare systems based on iot,” Int. J. Eng. Adv.

Technol., vol. 8, no. 4C, pp. 23–27, 2019.

[23] H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, and Z. Han, “Fog

computing in multi-tier data center networks: A hierarchical game

approach,” 2016 IEEE Int. Conf. Commun. ICC 2016, pp. 1–6, 2016,

doi: 10.1109/ICC.2016.7511146.

[24] M. Tortonesi, M. Govoni, A. Morelli, G. Riberto, C. Stefanelli, and N.

Suri, “Taming the IoT data deluge: An innovative information-centric

service model for fog computing applications,” Futur. Gener. Comput.

Syst., vol. 93, pp. 888–902, 2019, doi: 10.1016/j.future.2018.06.009.

[25] C. Bahn, “IEEE Standard Computer Dictionary: IEEE Standard

Computer Glossaries.” .

[26] L. Cassandra et al., “Adopting an ISO / IEC 27005 : 2011-based Risk

Treatment Plan to Prevent Patients from Data Theft,” Int. J. Adv. Sci.

Eng. Inf. Technol., vol. 10, no. 3, pp. 914–919, 2020.

[27] Y. Tang, H. Sun, X. Wang, and X. Liu, “Achieving convergent causal

consistency and high availability for cloud storage,” Futur. Gener.

Comput. Syst., vol. 74, pp. 20–31, 2017, doi:

10.1016/j.future.2017.04.016.

[28] M. R.Kaseb, M. H. Khafaqy, I. A. Ali, and E. M.Saad, “An Improved

Technique For Increasing Availability in Big Data Replication,” Futur.

Gener. Comput. Syst., no. 91, pp. 493–505, 2019.

[29] P. Alves Lima, A. Sá Barreto Neto, and P. Romero Martins MacIel,

“Data Centers Service Restoration Based on Distributed Agents

Decision,” Proc. - 2018 IEEE Int. Conf. Syst. Man, Cybern. SMC 2018,

pp. 1611–1616, 2019, doi: 10.1109/SMC.2018.00279.

[30] M. Stoicescu, J. C. Fabre, and M. Roy, “Architecting resilient

computing systems: A component-based approach for adaptive fault

tolerance,” J. Syst. Archit., vol. 73, pp. 6–16, 2017, doi:

10.1016/j.sysarc.2016.12.005.

[31] M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Generic input

template for cloud simulators: A case study of CloudSim,” Softw. -

Pract. Exp., vol. 49, no. 5, pp. 720–747, 2019, doi: 10.1002/spe.2674.

[32] A. Alelaiwi, “An efficient method of computation offloading in an

edge cloud platform,” J. Parallel Distrib. Comput., vol. 127, pp. 58–

64, 2019, doi: 10.1016/j.jpdc.2019.01.003.

[33] Y. Aldwyan and R. O. Sinnott, “Latency-aware failover strategies for

containerized web applications in distributed clouds Cloud Failover

Techniques :,” Futur. Gener. Comput. Syst., vol. 101, pp. 1081–1095,

2019, doi: 10.1016/j.future.2019.07.032.

[34] F. Tang, C. Liu, K. Li, Z. Tang, and K. Li, “Task Migration

Optimization for Guaranteeing Delay Deadline with Mobility

Consideration in Mobile Edge Computing,” J. Syst. Archit., p. 101849,

2020, doi: 10.1016/j.sysarc.2020.101849.

[35] J. H. Lee and J. M. Gil, “Adaptive fault-tolerant scheduling strategies

for mobile cloud computing,” J. Supercomput., vol. 75, no. 8, pp.

4472–4488, 2019, doi: 10.1007/s11227-019-02745-5.

2517

