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Abstract— This paper proposes an architecture for deploying applications on a fog computing environment by adding another layer of 

fog nodes in a network segment that gains high software application availability. The conventional fog computing architecture would 

permanently shift the storage, applications, and data from cloud servers to fog nodes, thus reducing the dependency on the cloud. As a 

result, fog nodes are burdened with the task previously done by cloud servers and have become “mini cloud servers.” Instead of 

permanently shifting the tasks from cloud servers to fog nodes, the proposed architecture would only do the shifting, when necessary, 

like if an internet outage. Additionally, this research also introduced the middleware application that acts as a detector and replacement 

if service outage so that the availability of the services is not interrupted, especially during the internet outage, by adding another layer 

of fog node in a network segment. The computational process occurs between end-users and the fog nodes without having to rely on 

cloud servers. An experiment was conducted to test the performance of the proposed architecture. From the experiment, it can be 

concluded that the deployment of fog nodes in a segmented network is possible and able to increase the availability of data and services 

if an internet outage. 

Keywords— Fog computing; high availability; deployment architecture; middleware. 

Manuscript received 23 Oct. 2020; revised 11 Mar. 2021; accepted 18 Apr. 2021. Date of publication 31 Dec. 2021. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

The birth of the internet and its wide usage has given birth 

to the cloud and mobile computing, where applications reside 

on cloud providers such as Google Cloud Platform, Microsoft 

Azure, and Amazon Web Service. These cloud service 

providers have upgraded their infrastructure to produce more 

scalable and robust cloud computing to meet the demand with 

better availability and the increasing number of data centers 

[1]. The resources constraint faced by end-user devices 

ranging from IoT devices, computers, and physical servers 
has made cloud computing the providers of a preferred and 

flexible resource in deploying the solution [2], giving them an 

advantage on resources to focus on developing quality and 

fewer bugs software applications [3] before delivering to the 

end-users. Previously, in the early days of computing, 

software was installed and run separately and independently 

[4] in every machine. This type of application is commonly

known as desktop or terminal applications such as Microsoft

Office or Telnet, requiring individual installations inside a 

machine. As data is kept separately, it leads to 
unsynchronized and inaccurate information [4]. For example, 

in the banking sector, a customer's information may reside on 

many computers as the customer could be dealing with 

multiple times by different counters. As one solution, the 

unsynchronized information problem has led to the birth of a 

centralized database where information could be stored in one 

single machine, and all other machines could retrieve or send 

the data via socket connections implemented in the 

applications [5]. However, each application would need to be 

updated individually as a different version to implement this 

method. Some of these applications also become obsolete, and 

new applications must be created again from scratch as 
updating the applications seems futile and costly [4], [6]. 

As modern technology emerges, so make software 

applications. In order to keep up with the pace of technology, 

existing software would need to be revamped from a desktop 

application to web-based applications that can promote 

centralized information [7] and faster application update. The 
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update would just need to be done on the server instead of 

each machine that would take more time and human resources. 

The server would be installed with the application, and it only 

requires internet for connecting between machines. The server 

would live either on the cloud or at the edge of network 

architecture within a premise.  

According to Mesbahi et al. [8], cloud computing is a type 

of computer paradigm consisting of massive physical 

machines working together that use computing utility for 

providing high reliability of software solutions. Cloud 

computing is categorized into three services, namely software 
as a Service(SaaS), Platform as a Service(PaaS), and 

Infrastructure as a Service(IaaS) [9]. With the advancement 

of the internet and the increasing number of applications and 

users, cloud computing as a Platform as a Service and 

Infrastructure as a Service has become popular deployment 

technique. With cloud infrastructure, users of all levels may 

benefit from the scalability and high availability, assuring less 

degradation in terms of performance [10]. However, it does 

not cover the availability on the edge of the network, and end-

users may still be prone to service interruption whenever the 

internet is unavailable.  
On the other hand, fog computing or edge computing is 

another computer paradigm concept where it does not rely on 

the cloud for computational processing tasks [11]–[13]. 

Instead, it runs the logical and computational process on the 

lower layer of the network closer to the end users’ machine. 

One of the prominent usages of fog computing is the health 

sector [14], [15] and home automation [16], where there are 

devices such as heartbeat sensors to read the heartbeat of a 

patient and infrared sensors to detect movement. The sensors 

may have their computational process from the data obtained 

to send alerts or notifications to the corresponding person in 
charge, such as medical practitioners or law enforcers. To 

increase high availability, this study proposes using IoT 

device from a Raspberry Pi that acts as a middleware residing 

in a network segment as part of a fog computing environment.   

In this paper, section 1 discusses the related works, 

including the architecture of cloud computing related to 

infrastructure as a service and platform as a service. Some 

issues are also discussed with cloud computing, followed by 

a fog computing architecture and how the computer nodes are 

segregated according to the certain subnet. In addition, the 

review of related deployment architecture is explained in this 

section. Section 2 then explains the material and method that 
describes the proposed software topology that is ideal and 

suitable to be deployed in a fog computing environment, 

followed by experimentation to explain how the simulation is 

run. The discussions on the result are presented in section 3. 

Lastly, section 4 discusses conclusions that provide 

motivations for providing high availability in data and 

software services. 

A. Cloud Computing Architecture 

Due to the increasing number of software applications, 

including back end services such as web services and socket 

connections, many software providers are looking for 

solutions that can deploy their products without having to 

consider specifications of physical servers and in addition to 

flexible resources that can expand when required [8]. This has 

promoted cloud computing as one of the solutions in favor as 

the cloud as a service may give software providers a cost-

effective [17] and more peace of mind when deploying their 

products. Cloud environments may differ according to how 

the software providers would choose to deploy their solution 

to which cloud providers. The architecture, in general, can be 
visualized in Figure 1.  

 

 
Fig. 1  The General Architecture of Cloud Architecture via Internet Backbone 
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The architecture in Figure 1 requires the internet as the 

backbone of the connection. End nodes or users may connect 

to the cloud by any connection such as High-Speed Downlink 

Packet Access (HSDPA) or common Wi-Fi or Ethernet that is 

linked to the Internet Service Provider. In order to prevent 

connection failures and provide high availability, most cloud 

providers have implemented a failure-recovery plan through 

mirroring and replication [18], where the replicas are 

geographically located far away from each other. Thus, in 

case of mishaps in the server farm, such as earthquakes or 

floods, the services and data may still be safe in the other 
replicas. 

Zooming into the deployment layer may differ according 

to how software providers may deploy their applications. The 

typical application layer may interact directly with the cloud, 

as depicted in Figure 2. On the end nodes, the users’ 

applications and sensors provide data and send it to the central 

cloud server [8], and there is no computational process at this 

layer. Only necessary logical processes such as authentication 

and validation, which is called front-end processing, may 

happen at this layer [7], [19] depending on functionalities and 

the type of the applications. This proves that it could reduce 
the burden at the client side [20] as most processes are done 

at the cloud layer. The database storages reside in the cloud 

layer, and the computational process is called the back-end 

process. 

The research done by Mesbahi et al. [8] has proposed using 

OpenStack architecture to promote a high and reliable cloud 

data center by implementing an 80/20 rule. The OpenStack is 

an open-source software platform for cloud deployment 

which provides infrastructure-as-a-service (IaaS) where 

resources are placed on virtual servers and made available to 

the end-users. The OpenStack is also considered a cloud 
management system, having the capabilities of dynamically 

scaling the resources according to many tasks assigned. 

Different computers, including physical and virtual machines, 

maybe clustered to form a single cloud datacenter through 

OpenStack. The authors also combined several components 

involving the Nova tool, Failure Analyzer, Heat and Glance 

tool to compose the proposed architecture. Those afore 

mention tools are available as part of components in the 

OpenStack controller.  

The authors introduced a hypothesis that 80% of failure 

tasks are derived from 20% of machine failure. Thus, the 

Nova can divide each cluster into less risky sub-cluster 

according to the machine failure record. These records are 
generated by the failure analyzer that monitors each machine's 

behavior and event seamlessly. Although the authors claim 

that the subclustered machine has a lesser failure rate and can 

provide 99.999% of availability, the proposed architecture is 

too dependent on the failure records, which could be incorrect 

to a certain machine that has received modification or part 

replacement. This would also lead to unutilized machine 

resources as only the less risky subclustered is assigned with 

the tasks while another machine could be idle or less assigned. 

The research done by Acquaviva et al. [21] integrates three 

different cloud providers to ensure the high availability and 
performance of the cloud by implementing replication 

mechanisms to replicate services among cloud providers. The 

middleware that is the main component for managing virtual 

machine (VM) replicas has implemented an algorithm to 

optimize the resource optimization among VM. However, the 

proposed solution is to a constraint on middleware that is too 

app-centric where any application that does not follow the 

framework nor implement the algorithm could not improve 

the availability of the application. Furthermore, the 

middleware residing on the cloud would make the technique 

pointless whenever the connection is interrupted or 
unavailable. 

 

 
Fig. 2 Applications and Sensors devices at the same layer with Users 

 

B. Fog Computing Architecture 

In contrast to cloud computing, additional nodes known as 

fog nodes may be required where the back-end process is done 

within the network segments, as shown in Figure 3. Instead of 
sending data and depending on the cloud for a computational 

process that proves to be more latency and consuming 

resources [11], [22], the computational process is done at the 

end of the network done by fog nodes. Here, other nodes 
would send the data to the fog nodes for the computational 

process which would not require the internet backbone [12]. 

The fog nodes would be able to respond to the pre-decision-

making back to the nodes [16]. For example, whenever a 

smoke sensor detects smoke and sends the data to the fog node, 

the fog node would straight away send a notification to the 

authorities. Only important information after the data has 
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been processed, such as reporting information to be saved, 

would be sent to the cloud's central server for synchronization 

and further decision making. 

In terms of database storage, the fog nodes would be 

installed with the same database as the cloud server has, and 

it has performed almost at par as usual central server [5] 

though it could be upgraded or downgraded to meet its 

functional purposes. In addition, the fog nodes can be 

distributed and scattered around the intranet for better 

accessibility. The cost for fog nodes may vary according to 

the types of hardware specifications that it has and but any 

existing nodes could be turned to become fog nodes [22], [23] 

which give advantage in term of reusability of existing 

devices available on the network.  

 

 

Fig. 3 The architecture of fog computing connected to the cloud via Internet Service Provider (ISP) 

 
According to Hu et al. [12], fog computing architecture is 

composed of 3 layers structure:  

 Cloud layer. This layer positions on the topmost that 

resides on the internet, which consists of many high-

performance machines and enormous storage capacity 

for storing gigantic information. This layer also 

performs a heavy computational process such as 

decision-making and data analysis gained from the 

lower layer. 

 Fog layer. The layer comprises gateways, switchers, 

routers, network access points, and certain computer 
machines that are converted to become mini servers for 

achieving specific computational processes.   

 Terminal layer. This layer is the closest to the physical 

environments and end-users, generating the raw data 

from various devices scattered around the network, 

such as heat sensors, smoke sensors, mobile devices, 

and input readers. The data is then transmitted to the 

fog layers for pre-processing.  

As millions of fog devices, including the Internet of Things 

(IoT) scattered in certain networks, can produce zettabytes of 

information. Processing the massive information and looking 
up important data would consume high resources, which 

would mean a challenge for fog computing. The research done 

by Tortonesi et al. [24] proposed a model for fog computing 

to filter out massive information called the Sieve, Process, and 

Forward (SPF). The authors claimed that the model is capable 

of reusing the processing components to be used by numerous 

different services and this would certainly optimize resources 

of both fog layer and cloud layer. 

Even though having the fog computing layer running on an 

edge network seems promising, it still has some flaws, 

especially in power usage [25] where it must depend on 

battery capacity to continue operating. Depending on the 

battery's operation has caused the fog devices to have limited 

operational life and restricted processing power to conserve 

energy. Additionally, the challenges with resources 

capabilities such as memory and storage would also restrain 

the fog devices from operating at the same scale as a cloud 

server. Thus, deployment on the fog level would need 

meticulous consideration and careful set up to ensure the 
performance is optimized to avoid application service 

downtime due to software aging and operating system 

degradation. 

C. High Availability of Application Services 

According to the definition by Bahn [25], data and service 

availability can be defined as the level of a system that can 

operate, accessible when obliged, and the data should be 

confidentially protected from any attacks or breached [26]. 

Cloud providers have to incorporate high availability as part 
of the Service Level Agreement(SLA) towards their client [27] 

so that in the event of any interruptions, their client may still 

be able to access the service. As defined by Mesbahi et al. [8], 

the SLA is that the availability of services should be 99.9999% 

or close to 100%. Although this seems theoretically 

achievable, in real-life situations, the percentage is almost 

impossible to achieve as there could be unexpected disaster 

occurrences such as network attacks or power failures. 
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Nabi et al. [28] stated that the availability technique, in 

general, is categorized as protective redundancy, fault 

tolerance, and overload protection, as visualized in Figure 4. 

In order to maintain and balance the performance when a 

server is straining with tasks and processing requests, the 

overload protection is implemented where some tasks and 

requests are delegated to another server that has fewer tasks. 

The cloud providers may embrace the high availability service, 

which may be achieved through replication and switchover 

[28] of the server as part of protective redundancy and fault 

tolerance where cloud providers usually position the data 
centers in the geographically distributed location around the 

world [29]. The replication of the server and the use of 

middleware as fault tolerance mechanisms have enabled the 

computer system to become better in terms of availability. 

The middleware is considered part of the components that can 

be removed, replaced, and even modified when failure has 

occurred [30] to function as normal.  

Having replication in multiple server farms would mean 

that data is cloned in every replicated server, and thus, it 

would mean the storage may increase [28], causing problems 

in terms servers’ resources consumption, including memory, 

CPU, and bandwidth. Each time a node is making a request, 

every replicated server consume their resources and in the 
event of mass request from many nodes, this would have a 

disastrous effect on performance. 

 

 
Fig. 4 The availability mechanism, in general, comprising protective redundancy, overload protection, and fault tolerance 

 

As for cloud computing, multiple virtual machines and 

integrated data centers would benefit from auto scaling and 

load balancer [31], where the traffic is redirected to which 

cloud node has less resource load. The load balancer is placed 

and configured at the entry point of the cloud networks, where 

it keeps track of the resources consumed by each replicated 

server and navigates the traffic evenly. Despite the existence 

of a load balancer, delegated tasks and requests may still 
suffer from latency [32], [33] as the replicated server could be 

geographically far from end-users. Another research has 

optimized task migration by considering user mobility in 

order to reduce latency[34]. The authors propose an algorithm 

for evaluating group migration for mobile edge computing 

before the predicted mobile device is assigned with the task. 

However, the research does not consider the congestion and 

applications running in the edge network that eventually 

contribute to the latency as the network bottleneck has been 

reached. 

II. MATERIAL AND METHOD 

Taking the concept and advantages of fog computing, an 

enhancement is proposed by adding another node deployed to 

the current network. An organization's network was 
segmented into several sections based on following criteria, 

the number of nodes, and the location of the designated 

intranet. The number of nodes would affect the network 

congestion, and thus, the number of nodes is capped at a 

maximum of 20 fog devices. The location of the designated 

intranet would depend on the geographical and physical 

devices available on the network where the fog devices are 

grouped according to departments for ensuring better group 

identification. The additional nodes, which are the fog nodes, 

were residing in every network segment as depicts in Figure 

5. 
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Fig. 5 The proposed deployment of fog nodes where the node lives in every segment of a network 

 

Each of the fog nodes or the middleware performs network 

checking to the central cloud server and the fog nodes are 
identical to the central servers residing in the cloud, which 

explains the purpose of having database and Apache service 

to mimic the services provided by the central servers. 

The experiment is done in an organization having several 

network segments that are divided by subnet. For the sake of 

experimentation, we only take one segment of a network that 

is deployed with the fog node. In the network segment, other 
nodes function as end users using desktop applications 

interacting with the central cloud servers via the internet, as 

visualized in Figure 6, which shows the proposed application 

layer.  

 
Fig. 6 The proposed fog layer located between application layer and cloud layer 

 

At first, the applications send and receive data from the 

central cloud as usual cloud-based computing. At the same 

time, the fog node receives data updates from the central 

server by the mirroring technique. The Internet Control 

Message Protocol (ICMP) ping service is developed in Python 

to detect network interruption between the network segment 
and the central cloud server. In comparison, the cron script is 

created to perform the Python script in a timely manner for 

every certain interval of 3 seconds.  

If internet line breakdown, where the end-users cannot 

access the data and service from the central server, the fog 

node performs a computation process by detecting it and 

quickly replacing the network address of the central server. 

Here, the end-users are automatically redirected to the fog 

node that acts as a secondary server. The computational 
process now occurs between end-users and fog nodes without 

relying on a central cloud server. All the data is saved into the 

fog nodes database storage, and once the internet connectivity 
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has been recovered. All the data is synchronized between fog 

nodes with the central servers. 

A. Middleware as Computational Process 

Here, a fog device has been appointed as the middleware 

that can detect and replace the main server outage. The 

detection follows the heartbeat concept [18], [35], where the 

fog device keeps listening for the main server through ICMP. 

The chart visualizes the detection process in Figure 7. 
First, the middleware that is the Raspberry Pi is installed 

with the Cron script scheduler. Similarly, Python script is the 

main engine for the computation process that performs ICMP 

ping checks. The scheduler executes the python script, and the 

process continues by waiting to respond from the main server. 

If there is a response from the main server, the middleware 

fetch for any update from the main server and keep on 

listening for the response from the main server. If an outage, 

the middleware is not getting any response from the main 

server, and thus, the middleware performs another process to 

change its address and swapping it to become the main server. 

This way, applications refer to the middleware as if it is the 

main server. Meanwhile, the middleware keeps on listening 

to the main server by keeping on ping. Once the main server 

has recovered, the middleware sense it and change it back to 

the original address. The applications are now redirected back 
to the main server, and the middleware synchronizes back any 

update that the middleware has been getting during a server 

outage. 

 

 

Fig. 7 The detection of failure process executed by the fog node 

 

The detailed experimentation involves two phases 

involving detection of fog node failure and replication of 

services between server and fog node. Then, the last process 
is migrating tasks from the main server to and from the fog 

node. For simulating the experimentation, only one segment 

of the network has been deployed with the fog node, where it 

acts as a middleware for performing all the two phases. The 

mail server's address (MS) would need to be pointed by the 

middleware for listening to the heartbeat by the fog node (FN). 

B. Failure Detection and Replication Algorithm 

The logical algorithm for detecting outage occurrences 
follows Algorithm1, where the input is the main server 

address that needs to be listened to using ICMP that acts as a 

heartbeat listener. From the ICMP response, the output 

produces a response from the main server, which further 

performs another process of updating the database from the 

main server to the fog node database according to the binary 

log file that acts as a flag indicator whenever there are data 

changes that need to be updated. The synchronization and 

replication of data would occur when the method fnFetchData 

is invoked 

Algorithm 1: 
Input: Address of Selected Main Server (MS) 
Output: Main Server (MS) Acknowledgement Respond 
 /* Process for listening to the main server uptime */ 
respond_receive <- icmp event 
while (respond_receive) do 

if nodeCurrBinaryLog != main_server_binaryLog then  
fnFetchData() 

end 

if (respond_receive == 0) then 
     fnChangeAddress() 
Function fnFetchData 

nodeCurrBinaryLog <- main_server_data_log 
 nodeDatabase.update(main_server_data) 
end 

C. Failover and Recovery 

The failure and recovery process would perform swapping 

of address from its original IP Address to become similar to 

the main server IP address and this hand over the task from 

the main server to the middleware node.  

Algorithm 2: 

Input: Local Middleware address 

Output: Address Swapping to Main Server 
Function fnChangeAddress 

 nodeNetworkAdapterStat <- down 

 nodeCurrAddress <- main_server_address 

 nodeNetworkAdapaterStat <- up 

 application service startup 

 listen and lookup for main server second address 

end 

D. Experimentation Settings 

The network address of the fog node and main server are 
reserved and are assigned permanently to avoid other devices 

from taking the address, leading to address conflict. The main 

server is allocated with two static addresses, where the second 

address is for the fog node to listen for the main server when 

connectivity has been recovered. Here the fog node and main 

server have the following address: 
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Fog Node: 192.168.2.20 

Main Server Address 1: 192.168.1.2  

Main Server Address 2: 192.168.1.20 

The fog node which is a middleware function as a sensor 

for detecting any network interruption, and here we proposed 

the use of Raspberry Pi device that have certain service 

installed as follow:  

Database service (MySQL) 

 Apache service 

 Internet Control Message Protocol (ICMP) service 

 Cron script 
The MySQL database used is for simulating the real 

database that resides in the central cloud server whereas the 

Apache service is used to run web-based applications and 

listen on the used port 80 as part of the detection technique. 

The ICMP ping service is used to obtain the status of the 

targeted host by sending live messages by waiting for a 

response from the targeted cloud server. By replying to the 

ping message, the middleware knows that the server is 

accessible. The cron script, on the other hand, is the scheduler 

to execute the ICMP ping service based on a certain predefine 

interval time which we have set to every 5 seconds 
Initially, all application requests would point to the main 

server, and when the middleware detects an outage, the fog 

node detects and swaps its address to be similar to the main 

server. All requests automatically point to the fog node by 

broadcasting the newly changed address instead of looking 

for the main server. At the same time, the fog node still 

lookup the main server's second address. 

III. RESULTS AND DISCUSSION 

The result is presented according to the description and 

steps to simulate real network outage occurrences. The 

network downtime is simulated by disabling and turning off 

network adapters at the main switch, the gateway to the main 

server. The adapters are enabled back to imitate that the 

network has been recovered normally. 

TABLE I 

EXPERIMENT BASED ON THE PROPOSED FOG ARCHITECTURE 

Experiment 

Description 

Steps Result 

Deploy Raspberry 
Pi as fog 
node/middleware to 
a network segment 

Connect it with Wi-
Fi within the 
designated network 

Success. The 
Raspberry Pi 
now had become 
one of the nodes 

Connect and 

synchronize fog 
node to replicate 
with central cloud 
server 

The Raspberry is 

installed with the 4 
services 

Success. The 

node is now a fog 
node 

Disconnect/Disable 
internet on the 
designated network 
segment 

The internet is 
disabled by 
disconnecting the 
main switch from 

the internet 

Success. The 
designated 
network no 
longer has 

internet 
connectivity 

Detecting downtime 
by the middleware 
via ICMP heartbeat 
technique 

ICMP messages are 
sent continuously to 
the central server 

Success. 
Downtime 
detected by the 
middleware 

Switching and 
masking 

Execute python 
script to change the 

Success. The 
middleware has 

middleware to 
become a service 

provider 

address similar to a 
central server 

become the 
service provider 

Ensure end-user 
applications are able 
to run 

Open and execute 
the desktop 
application on the 
end user as usual 

Success. The 
desktop 
application able 
to retrieve and 
save information 

Connect back 
internet on the 

designated network 
segment 

The main switch on 
the designated 

network is to 
reconnect 

Success 

Ensure end-user 
application able to 
run 

Continue running 
the application as 
usual 

Success. The 
applications able 
to execute 

 

The experiment on the designated network has been 

performed as in Table 1 with success which shows that if 

network interruption, the service and data is still available 

with the implementation of fog nodes as middleware for 

performing the computational process at the edge of the 

network without having to rely on a central cloud server. The 

fog node can replace the functionality of a server even though 

there is interval time for detection and failover recovery. It 
has been recorded that the interval time taken for failover 

detection is around 5 seconds, whereas the recovery of service 

by the fog node is around 3 seconds and would take around 

another 5 seconds to return the service back to the central 

server. The experiment was run three times, and the result is 

presented as shown in Table II.  

TABLE II 

TIME TAKEN FOR THE DETECTION AND RECOVERY 

No of 

Run 

Detection 

Time(s) 

Recovery 

Time(s) 

Middleware 

Respond Time(s) 

First 4.5 2.3 2.7 
Second 4.7 2.4 3.1 
Third 4.4 2.4 3.0 

 

IV. CONCLUSION 

From the experiment that has been done, it can be 

concluded that deploying a fog node at the edge of the 

network is possible. Also, it is possible to increase the 

availability of data and services by creating another layer of 

fog that resides between the cloud and end users. In the event 

of network interruption, applications communicate to the fog 

layer without experiencing network error. However, the scope 

of this research does not take response time and network 
bandwidth usage into consideration. In addition, the scope of 

the application is limited to desktop applications only. 

The proposed architecture will be tested on other segments 

in the future, and the performance in terms of response time 

and bandwidth utilization is considered. In addition, the 

technique is enhanced to support the high availability of 

Domain Name Service (DNS) required for web applications. 
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