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Abstract— Arrhythmia is an irregular heartbeat that may cause serious problems such as cardiac arrest and heart failure if left 

untreated. A dozen of studies have been conducted to make an automated arrhythmia detector. The classification approach uses a 

simple rule-based model, traditional machine learning, to a modern deep-learning technique. However, comparing an arrhythmia 

classifier performance is not an easy task. There are several different datasets, classification standards, data splitting schemes, and 

metrics. To assess the real performance of the developed models, it is important to train and evaluate the model in a standardized 

method such as the result score can become standard too. In this study, a set of CNN models from Acharya were re-implemented by re-

training and re-evaluating it in a more standardized method. The model uses a raw ECG waveform with 260 samples around the QRS 

peaks and classifies it into five arrhythmia classes. The experiment was conducted using three configurations, using both intra-patient 

and inter-patient schemes. The experimental results show good performance for the intra-patient scheme but not for the inter-patient. 

There is a reduction of sensitivity and precision in the intra-patient scheme using a standardized method in this study compared to the 

original paper. This result indicates biased results caused by the oversampled test data in the original paper. In addition to the intra-

patient result, the inter-patient result is also provided for a standardized comparison to other works in the future.  
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I. INTRODUCTION

There have been many methods and approaches for 

automatic ECG signal detection and classification over the 

last decade, thanks to open-access ECG databases such as 

MIT-BIH [1]. In the development of P, QRS, and T wave 

detection, there are many types of detection: signal 

derivatives and digital filters [2], wavelets [3]–[5], and 

learning algorithms[6]–[8] approaches. The segmentation of 
the ECG signal, particularly the QRS complex, is said to be 

very close to the optimal and leaves small room for 

improvements[9]. 

There are also many approaches to arrhythmia 

classification. The method with the traditional machine 

learning algorithm usually also focuses on feature extraction 

methods. The most traditional feature in arrhythmia detection 

is the R-R interval and its derivatives [10], [11]. The other 

feature extraction technique widely used for the task is 

wavelet[12]–[16] since it is believed to be the best feature 

extraction method for arrhythmia detection[9]. For the 

classifier, the conventional techniques employed for the task 
is Linear Discriminant (LD) [17], Fuzzy Logic [18]–[20], 

Decision Tree-based methods [21]–[23],  Support Vector 

Machine (SVM) [16], [24], [25], and Artificial Neural 

Network (ANN)[10], [11], [15]. The feature extraction is 

often not needed by a more modern algorithm such as 

reservoir computing[26] and deep learning-based technique 

[27]–[30]. They use raw data as the algorithm can extract the 

feature automatically, although some methods combine the 

raw data with traditional features[31], [32] to get a better 

result. 

Unfortunately, measuring and comparing arrhythmia 
classifier performance is not an easy task[9]. There are 

different arrhythmia classification standards, data splitting, 

and metrics (especially for imbalance problems). For example, 

in using the dataset, the majority uses MIT-BIH, while 

Alfaras et.al.[32] combines MIT-BIH with the AHA dataset 

and Hannun et.al.[29] uses their dataset. In terms of data 

splitting protocol, the majority of the studies use general 

random sampling. The testing data can contain data from the 

same patients in the training data (intra-patient). Some studies 
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[31], [33] use the patient-specific protocol, some studies [26], 

[30] use the inter-patient protocol, while only a few studies 

provide both the intra and inter-patient protocol such as [28]. 

As few authors use the same standard, it is difficult to 

compare methods fairly. One of the solutions for this 

challenge is to re-implement the method published in 

literature with a more standardized protocol, including the 

inter-patient protocol[34]. By presenting the re-implemented 

result in the standards scheme, the method can be compared 

fairly. 

Convolutional Neural Network (CNN) architecture from 
Acharya et al.[27] is one of the most cited papers for 

arrhythmia detection. It uses 1D CNN to classify the heartbeat 

with oversampling to deal with the imbalance problem. A 

separate feature extraction step usually incorporated in the 

traditional machine learning approach is not needed with 

CNN. Unfortunately, the result is difficult to compare as-is 

with other methods due to several reasons. The first reason is 

that the data were oversampled before splitting into training 

data and testing data in the cross-validation. It means both 

training data and testing data contained synthetic data from 

oversampling; thus, the accuracy of the results is questioned 

[28]. The second reason is that they did not provide the result 

from the inter-patient protocol. 

In this paper, the CNN architecture from Acharya et al.[27] 

was re-implemented with several changes that address the 

problem mentioned in the previous paragraph. This way, the 

result’s score will be more standards, and the architecture can 

be fairly compared with other methods. 

II. MATERIALS AND METHOD 

A. Overview 

In this experiment, we re-implemented the Acharya 

architecture by training a set of CNN models with three 

configurations. The general outline of the experiment was as 

follows: data loading and preparation, data splitting, 

oversampling, model training, dan evaluation, as shown in Fig. 

1 below.  

 

 
Fig. 1  Flowchart of the research stages: a) this paper, b) original paper [27] 

 

In the data splitting stage, we prepare the data used for 
training, validation, and testing. This stage is important as the 

type of protocol (intra-patient or inter-patient) is mainly 

characterized by splitting the data. The next stage is 

oversampling. This stage is employed to overcome the 

imbalance problem of the arrhythmia dataset. In this 

experiment, only the training data were oversampled. We also 

trained a model without oversampling to investigate the effect 

of oversampling in this architecture. 

The last stages are model training and evaluation. The 

training stage is the stage where the network is learning from 

the data by adjusting the weights in such a way as to minimize 
the error. After the model is done with the training, we need 

to test it to predict the data it has never seen before. The result 

is displayed in a confusion matrix, and from there, we can 

calculate other metrics to evaluate the model fully. The 

flowchart of the experiment in this study can be seen in Fig. 

1. The details of the dataset, preparation, configurations, and 
evaluation metrics are described in the following sub-sections. 

In data loading and preparation, we load the arrhythmia 

dataset (MIT-BIH), extract it, and transform it to the shape 

required by the architecture. Instead of recording our data, we 

used the widely available dataset for two major reasons. The 

first one is that we cannot do the annotation ourselves to 

decide the heartbeat class. Many cardiologists would need to 

manually annotate hundreds of thousands of heartbeats 

required to train the deep network. The second one to fairly 

assess the model’s performance with other studies, we need 

to use a standardized dataset, at least as the testing data. 

B. Dataset 

Data from the MIT-BIH arrhythmia dataset [1] were used 

for this research. This dataset contains approximately 110.000 

annotations of heartbeat with its arrhythmia label from 48 

records, with each record length being 30 minutes long. Each 
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record contains two channels (lead II and V1) with a sampling 

rate of 360 Hz, 11-bit resolution over a 10mV range. 

The data were classified into five classes according to the 

AAMI practice report recommendation [35]: Normal (N), 

Supraventricular ectopic beat (SVEB), Ventricular ectopic 

beat (VEB), Fusion beat (F), and Unknown beat (Q). In 

addition to the classification, four records of 48 records were 

excluded in this work to follow recommendations from AAMI. 

C. CNN Architecture 

CNN architecture from Acharya et al.[27] was used in this 

research. It contains three layers of 1D convolutional and 

max-pooling pairs as a feature extractor and is followed by 

three layers of fully connected layers as the classifier. The 

details of the architecture can be seen in Fig.  3. The 

Stochastic Gradient Descent (SGD) with Nesterov 

Momentum was used as the optimizer for the training stage. 

The learning rate was set at 0.003 with a momentum of 0.7. 

D. Data Preparation 

The original dataset contained ECG waveform data with 

two channels, the location of the QRS complex for each 

heartbeat, and the annotations of the heartbeat. For the 

classification, the data was prepared as follows: each 

heartbeat is considered as a row data, with its annotation as 

the label column. For the features, we use 260 samples of raw 

signal centered at R-peaks. The data was simply extracted by 

locating the R-peaks provided by the dataset and then 

extracting 130 samples before and after the peaks. The data 

preparation process can be seen in Fig. 2. 

 
Fig. 2  Data Preparation 

 

 
Fig.  3  Convolutional Neural Network architecture from Acharya[27] used in this study 

 

E. Data-splitting Schemes 

Supervised learning task such as arrhythmia classification 

relies on labeled data. The splitting scheme of these data into 

training and testing data has a big impact on how the model 

generalizes. There are three major data-splitting schemes in 
ECG arrhythmia classification: intra-patient, inter-patient, 

and patient-specific schemes. 

1) Intra-patient: The majority of the study on arrhythmia 

classification uses an intra-patient scheme. The validation and 

testing data were sampled randomly from the original data. In 

other words, this scheme allows testing data and training data 

to have heartbeats from the same patient. This scheme is 

simple to implement, and in numbers, the models generally 

have better result scores than models with the inter-patient 

scheme. However, the models with this scheme are not good 

for classifying data from patients it has never seen before. To 

make the model comply with the new patient, the expert must 
manually annotate a portion of heartbeats from this new 

patient and re-train the model with the additional data[36]. 
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2) Inter-patient: To address the generalization problem 
found in the intra-patient scheme, the inter-patient scheme 

was developed. In this scheme, we make sure there are no 

records from the same patient in training data and testing data, 

as opposed to the intra-patient scheme in the former 

configurations. The most widely adopted protocol for the 

inter-patient scheme is the protocol from de Chazal[34]. 

Forty-four records from the MIT-BIH dataset were split into 

two sets, namely DS1 and DS2, with DS1 used for training 

and DS2 for testing. Although this scheme was believed to be 

the most realistic scenario[9], the challenge of this task is 
much higher than the intra-patient scheme[9], [36]. Therefore, 

it is not uncommon for a model with high accuracy in the 

former scheme to get a lower score when it is applied to this 

scheme. 

3) Patient-specific: Instead of trying to be better in 
generalization as the inter-patient scheme, this scheme goes 

in the opposite direction by focusing on adjusting the model 

to the specific patient. It means that every patient has their 

model specifically trained for them[31]. The model is trained 

by using two kinds of data. The first one is local data, which 

is the data from the specific patient. Moreover, the latter is 
global data, which is the data from many other patients. We 

cannot say that this scheme is bad, as it has an application in 

a certain scenario. But as the main objective of this study is to 

get a model that generalizes, the patient-specific scheme was 

not implemented in this study. 

F. Experiment Configurations 

The procedure for data preparation and data splitting was 

made in such a way to make the results can be analyzed more 

objectively by following the best-practice and standardized 
procedure. To achieve it, several changes in the training 

procedure were made in this work. The first change was in the 

preprocessing stage. The sampling of signal used for the input 

was not changed, but to minimize processing cost, there was 

no filtering and normalization used in this experiment as in 

the original paper.  

The second change was the data splitting and oversampling. 

The data were oversampled in the original paper before it was 

split into training data and validation data/testing data. It 

means both training data and validation/testing data contained 

synthetic data from oversampling; thus, the accuracy of the 
results is questioned[28]. So in this experiment, only training 

data was oversampled using the synthetic minority over-

sampling technique (SMOTE) [37]. Three configurations, as 

shown in TABLE .  

TABLE I 

CONFIGURATIONS 

 Conf. 1 Conf. 2 Conf. 3 

Total 

original 

heartbeat 

100,733 

Data split 
scheme 

Intra-patient Intra-patient Inter-patient 

Oversampling 
Yes, training 
data 

No 
Yes, training 
data 

Training data 270,330 60,439 183,325 
Validation 
data 

20,147 20,147 10,205 

Testing data 20,147 20,147 49,712 

The configuration was created to assess the model from 

several perspectives. The first configuration was the most 

similar to the original paper, except for several points 

described in the previous paragraphs. The validation and 

testing data were sampled randomly from the original data. 

This scheme is known as the intra-patient scheme by allowing 

testing data and training data to have heartbeats from the same 

patient. The second configuration was the same as the first 

config, except there was no oversampling being made. This 

change was adopted to investigate the effectiveness of the 

oversampling. 
The last configuration took a different approach in the form 

of a data separation protocol. The inter-patient protocol from 

de Chazal [34] was adopted for this configuration. Instead of 

using random sampling, the training and testing data were 

split using a predetermined list (DS1 and DS2). The list was 

proposed by [34] to make sure there are no data from the same 

patient in both training and testing. 

G. Evaluation Metrics 

Several standard metrics were used to measure the 

performance of the models: accuracy (acc), sensitivity (se), 

specificity (sp), precision (ppv), and f1-score (f1). The 

metrics were calculated by: 
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True Positive (TP) is correctly predicted positive class, 

while True Negative (TN) is correctly predicted, negative 
class. In other words, the classifier is correctly recognizing the 

positive sample as positive (TP) and the negative sample as 

negative (TN).  The classifier naturally wants a high TP and 

TN, while minimizing False Positive (FP) and False Negative 

(FN). 

In addition to common metrics, other metrics are included, 

namely, Diagnostic Odds Ratio [38] (DOR) and Cohen Kappa 

score[39]. DOR is widely used in the medical community as 

a single indicator to measure diagnostic performance. DOR is 

denoted by: 
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The value of DOR ranges from 0 to infinity, but generally 

if the value is below 1. It means that the test does not 

discriminate between patients with and without the disorder. 

The next metric is the Cohen Kappa score. It is a measure for 

inter-rater agreement for categorical scales. Kappa score is 

denoted by: 

 ����� =
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with  �� and  �
 that can be calculated with: 
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Kappa score maximum value is 1, and according to Landis 

and Koch [40] a score < 0 is poor, 0.00 – 0.2 is slight, 0.21 – 
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0.4 is fair, 0.41 – 0.6 is moderate, 0.61 – 0.8 is substantial, and 

0.81 – 1 is almost perfect agreement. 

III. RESULT AND DISCUSSION 

The model was implemented using Tensorflow 2 with 

Keras as the high-level API. Tensorflow was chosen because 

of the wide array of deployment options: from fully powered 

server or workstation to internet browser, mobile phone, and 
IoT device. This is important for us as we also investigate the 

possibility of deploying a real-time arrhythmia classifier in 

low computing platforms as mobile phone and edge 

devices[41]. 

The models were trained in Google Colab with Intel(R) 

Xeon(R) CPU @ 2.30GHz, Tesla K80 GPU, and 13GB of 

RAM. Each configuration’s training was finished in 

approximately 40 minutes for 110 epochs. The history of 

accuracy and loss over epochs is shown in Fig. 4. 
 

 
Fig. 4  Training loss history of: a) configuration 1, b) configuration 2, c) 

configuration 3 

 

As can be seen in Fig. 4, the validation loss in configuration 

1 is rising slightly, and the gap between validation loss and 

training loss becomes more significant over time. It indicates 

that there is overfitting in configuration 1. There is no raise 

observed in the validation loss of configuration 2, and the gap 

with the training loss is small compared to configuration 1. 

However, compared to configurations 1 and 3, the training 

loss in configuration 2 is still higher. It means that 

configuration 2 is underfit compared to other configurations. 

In general, configuration 3 shows a lower training loss at the 

early epoch than the previous configurations, but the 

validation loss is slightly rising over time, which also 

indicates overfitting, albeit not as high as configuration 1. 

The final tests were done using test data to fully assess the 

model performance to see how the models predict the data it 

has never seen before. The result is shown in the confusion 

matrix of Fig.  5 and the calculated metrics in TABLE . In the 

final test, configuration 3 shows the worst performance in all 
metrics than the other configurations. 

 

 
Fig.  5  Confusion matrix for: (a) configuration 1, (b) configuration 2,  

(c) configuration 3. 
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This result is expected since it is harder to get good results 

on the inter-patient scheme than the intra-patient scheme[9], 

[34]. The separation of the patient in training data and testing 

data and the ratio of training and testing data (TABLE ) makes 

the inter-patient scheme more complicated. The real question 

is, how much worse the model performs in inter-patient 

compared to the intra-patient scheme? 

From the data in TABLE , we can see that this model has a 

high score on the intra-patient scheme (conf. 1 & 2). This 

indicates that the model is suitable for the intra-patient 

scheme. But contrary to the previous configurations, on conf. 
3, it only shows less than half the f1 score and less than a third 

of the kappa score compared to the intra-patient scheme. Thus, 

we can conclude that this CNN architecture is not suitable for 

the inter-patient scheme. 

TABLE II 

TEST RESULT METRICS 

    Class 

    N S V F Q 

C
o
n
fi

g
u
ra

ti
o
n
 1

 

acc 0.985 0.989 0.995 0.997 1,000 

se 0.988 0.883 0.971 0.840 0.000 

spe 0.954 0.993 0.997 0.998 1,000 

ppv 0.995 0.782 0.962 0.741 0.000 

dor 1,730 1,008 11,943 2,381 0.000 

acc macro 0.993 

f1 0.715 

kappa 0.914 

C
o
n
fi

g
u
ra

ti
o
n
 2

 

acc 0.988 0.992 0.996 0.997 1,000 

se 0.997 0.747 0.973 0.720 0.000 

spe 0.908 0.999 0.997 0.999 1,000 

ppv 0.989 0.963 0.963 0.900 0.000 

dor 3,785 3,387 12,833 4,283 0.000 

acc macro 0.994 

f1 0.720 

kappa 0.927 

C
o
n
fi

g
u
ra

ti
o
n
 3

 

acc 0.766 0.883 0.904 0.961 0.998 

se 0.786 0.08 0.808 0.108 0.000 

spe 0.604 0.913 0.91 0.968 0.998 

ppv 0.941 0.034 0.384 0.026 0.000 

dor 5.581 0.916 42.657 3.670 0.000 

acc macro 0.902 

f1 0.293 

kappa 0.251 

Several studies have reported having an excellent 

performance for the latter case. Escalona-Moran et al.[26] 

used Reservoir Computing with Logistic Regression, and 

Mousavi et al. [28] combined CNN with Bidirectional 

Recurrent Neural Network (BiRNN) to get the results shown 

in TABLE . 

Although the intra-patient scheme is considered not ideal 

for practical use, where the data to predict usually comes from 
the patient’s record that is not used in the training data, it can 

be useful for other systems. One possible use case is the 

system where the model is inclusive to the patient of a 

particular hospital. In this system, the model will have an 

excellent performance on their patient, and only one model is 

needed for all the patients. The downside of this approach is 

that the model needs to be re-trained every time there is a new 

patient, and the model's performance might be decreasing 

inversely proportional to the number of samples. 

The other possible—but slightly different—use case is a 

patient-specific classifier on personal devices[31], [33]. This 

scheme forms the data by combining specific patient data with 

globally aggregated data from all the patients. The downside 
of this approach is that every patient needs their own model, 

which will be expensive to train. Of course, further study is 

needed to investigate the application of this architecture in the 

patient-specific case. 

TABLE III 

INTER-PATIENT RESULT 

  Class 

  N S V F Q 

T
h
is

 p
ap

er
  

(c
o
n
f.

 3
) 

Acc 76.56 88.25 90.35 96.13 99.82 

Se 78.56 8.00 80.81 10.82 0.00 

Sp 60.37 91.33 91.01 96.80 99.84 

Ppv 94.15 3.42 38.39 2.59 0.00 

Avg 

Acc 
90.223 

Avg Se 35.640 

Avg Sp 87.869 

Avg 

Ppv 
27.709 

M
o
u
sa

v
i 

et
 a

l.
 [

2
8
] 

(I
n
te

r-
p
at

ie
n
t)

 

Acc - - - - - 

Se 99.68 88.94 99.94 - - 

Sp 96.05 99.72 99.97 - - 

Ppv 99.55 92.57 99.5 - - 

Avg 

Acc 
- 

Avg Se 96.19 

Avg Sp 98.58 

Avg 

Ppv 
97.21 

E
sc

al
o
n
a-

m
o
ra

n
[2

6
] 

Acc 96.28 96.28 99.71 99.91 99.99 

Se 96.82 79.37 96.06 92.26 57.14 

Sp 91.89 96.93 99.97 99.97 100 

Ppv 98.98 49.8 99.49 95.47 100 

Avg 

Acc 
98.43 

Avg Se 84.33 

Avg Sp 97.75 

Avg 

Ppv 
88.75 

 

The next question is the impact of the oversampling in the 

intra-patient scheme. In averaged metrics, the model trained 
without oversampling (configuration 2) shows a slightly 

better score. In general, both configurations 1 and 2 show 

mostly similar results. The difference in pattern is starting to 

show in the class-specific metrics. On average, configuration 
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1 has better sensitivity, while configuration 2 has better 

precision. In a high-risk context such as healthcare, where it 

is better to have more false positives in trade-off to have more 

false negatives, high sensitivity is preferred over high 

precision. In short, it is better to have falsely suspected 

arrhythmia instead of falsely ignored arrhythmia. This 

analysis suggests that the model with configuration 1 is 

preferred for the intra-patient scheme. 

As the original paper generally followed the intra-patient 

scheme, the paper’s comparison and the original paper are 

made with configuration 1. The difference between this paper 
(conf. 1) and the original paper is that in this paper, the final 

result was tested using test data, and there was no 

oversampling in the test data. In the original paper, the final 

result was tested using cross-validation, with oversampled 

data included. The difference in the result can be seen in 

TABLE . 

TABLE IV 

TEST RESULT’S DIFFERENCE WITH ORIGINAL PAPER IN  

INTRA-PATIENT SCHEME 

    Class 

    N S V F Q 

T
h
is

 P
ap

er
 (

co
n
f.

 1
) 

Acc 98.45 98.93 99.54 99.66 99.96 

Se 98.81 88.34 97.13 84 0 

Sp 95.41 99.25 99.72 99.78 99.97 

Ppv 99.45 78.18 96.23 74.12 0 

Avg Acc 99.31 

Avg Se 73.66 

Avg Sp 98.83 

Avg Ppv 69.6 

O
ri

g
in

al
 P

ap
er

 [
2
7
] 

Acc 95.14 96.82 97.84 97.97 99.16 

Se 91.64 89.04 94.07 95.21 97.39 

Sp 96.01 98.77 98.78 98.66 99.61 

Ppv 85.17 94.76 95.09 94.69 98.41 

Avg Acc 97.39 

Avg Se 93.47 

Avg Sp 98.37 

Avg Ppv 93.62 

D
if

fe
re

n
ce

 

Acc 3.31 2.11 1.7 1.69 0.8 

Se 7.17 -0.7 3.06 
-

11.21 
-97.39 

Sp -0.6 0.48 0.94 1.12 0.36 

Ppv 14.28 -16.58 1.14 
-

20.57 
-98.41 

Avg Acc 1.92 

Avg Se -19.81 

Avg Sp 0.46 

Avg Ppv -24.02 

 

In this result, we can see that there are significant 

difference scores in the average sensitivity and average 

precision, with a reduction of 21% in sensitivity and 25% in 

precision. 

If we break down and see the specific class metrics, the 

highest gap comes from the F and Q class, wherein the pre-

oversampled data, these classes are the two-top minority class 

among the others. This gap indicates that the original paper’s 

test result is biased due to the use of oversampled data in the 

final test. Therefore, in this paper, we propose using the data 

in TABLE  as a standardized score for Acharya’s CNN 

architecture for arrhythmia detection, with configuration 1 as 

the score for the intra-patient scheme and configuration 3 as 

the score for the inter-patient scheme. 

IV. CONCLUSION 

In this study, a set of CNN models were trained and tested 

to investigate its performance in a more standardized method. 

The model shows good results for the intra-patient scheme but 

not for the inter-patient scheme. There is a reduction of 

sensitivity and precision in the intra-patient scheme using a 

standardized method in this study compared to the original 

paper, indicating biased results caused by the oversampled 
test data in the original paper. Therefore, this paper proposes 

the standardized score for Acharya’s CNN architecture in 

arrhythmia detection, with configuration 1 as the score for the 

intra-patient scheme and configuration 3 as the score for the 

inter-patient scheme.  

REFERENCES 

[1] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia 

database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, 2001, 

doi: 10.1109/51.932724. 

[2] D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, and C. P. 

Lim, “A lightweight QRS detector for single lead ECG signals using a 

max-min difference algorithm,” Comput. Methods Programs Biomed., 

vol. 144, pp. 61–75, Jun. 2017, doi: 10.1016/j.cmpb.2017.02.028. 

[3] M. Rakshit and S. Das, “An efficient wavelet-based automated R-

peaks detection method using Hilbert transform,” Biocybern. Biomed. 

Eng., vol. 37, no. 3, pp. 566–577, Jan. 2017, doi: 

10.1016/j.bbe.2017.02.002. 

[4] D. Berwal, A. Kumar, and Y. Kumar, “Design of high performance 

QRS complex detector for wearable healthcare devices using 

biorthogonal spline wavelet transform,” ISA Trans., vol. 81, pp. 222–

230, Oct. 2018, doi: 10.1016/j.isatra.2018.08.002. 

[5] A. Sharma, S. Patidar, A. Upadhyay, and U. Rajendra Acharya, 

“Accurate tunable-Q wavelet transform based method for QRS 

complex detection,” Comput. Electr. Eng., vol. 75, pp. 101–111, May 

2019, doi: 10.1016/j.compeleceng.2019.01.025. 

[6] J. S. Lee, S. J. Lee, M. Choi, M. Seo, and S. W. Kim, “QRS detection 

method based on fully convolutional networks for capacitive 

electrocardiogram,” Expert Syst. Appl., vol. 134, pp. 66–78, Nov. 2019, 

doi: 10.1016/j.eswa.2019.05.033. 

[7] A. A. Suárez-León, C. Varon, R. Willems, S. Van Huffel, and C. R. 

Vázquez-Seisdedos, “T-wave end detection using neural networks and 

Support Vector Machines,” Comput. Biol. Med., vol. 96, pp. 116–127, 

May 2018, doi: 10.1016/j.compbiomed.2018.02.020. 

[8] A. Malali, S. Hiriyannaiah, G. M. Siddesh, K. G. Srinivasa, and N. T. 

Sanjay, “Supervised ECG wave segmentation using convolutional 

LSTM,” ICT Express, vol. 6, no. 3, pp. 166–169, Sep. 2020, doi: 

10.1016/j.icte.2020.04.004. 

[9] E. J. da S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti, 

“ECG-based heartbeat classification for arrhythmia detection: A 

survey,” Comput. Methods Programs Biomed., vol. 127, pp. 144–164, 

2016, doi: 10.1016/j.cmpb.2015.12.008. 

[10] F. Ma, J. Zhang, W. Liang, and J. Xue, “Automated Classification of 

Atrial Fibrillation Using Artificial Neural Network for Wearable 

Devices,” Math. Probl. Eng., vol. 2020, 2020, doi: 

10.1155/2020/9159158. 

[11] G. Sannino and G. De Pietro, “A deep learning approach for ECG-

based heartbeat classification for arrhythmia detection,” Futur. Gener. 

Comput. Syst., vol. 86, pp. 446–455, Sep. 2018, doi: 

10.1016/j.future.2018.03.057. 

1325



[12] Y. Jung and H. Kim, “Detection of PVC by using a wavelet-based 

statistical ECG monitoring procedure,” Biomed. Signal Process. 

Control, vol. 36, pp. 176–182, Jul. 2017, doi: 

10.1016/j.bspc.2017.03.023. 

[13] M. Sharma, R. S. Tan, and U. R. Acharya, “Automated heartbeat 

classification and detection of arrhythmia using optimal orthogonal 

wavelet filters,” Informatics Med. Unlocked, vol. 16, p. 100221, Jan. 

2019, doi: 10.1016/j.imu.2019.100221. 

[14] N. Sinha and A. Das, “Automatic diagnosis of cardiac arrhythmias 

based on three stage feature fusion and classification model using 

DWT,” Biomed. Signal Process. Control, vol. 62, p. 102066, Sep. 

2020, doi: 10.1016/j.bspc.2020.102066. 

[15] R. Arvanaghi, S. Daneshvar, H. Seyedarabi, and A. Goshvarpour, 

“Fusion of ECG and ABP signals based on wavelet transform for 

cardiac arrhythmias classification,” Comput. Methods Programs 

Biomed., vol. 151, pp. 71–78, Nov. 2017, doi: 

10.1016/j.cmpb.2017.08.013. 

[16] C. K. Jha and M. H. Kolekar, “Cardiac arrhythmia classification using 

tunable Q-wavelet transform based features and support vector 

machine classifier,” Biomed. Signal Process. Control, vol. 59, p. 

101875, May 2020, doi: 10.1016/j.bspc.2020.101875. 

[17] H. Zhou et al., “A Novel Cardiac Arrhythmias Detection Approach for 

Real-Time Ambulatory ECG Diagnosis,” Int. J. Pattern Recognit. 

Artif. Intell., vol. 31, no. 10, Oct. 2017, doi: 

10.1142/S0218001417580046. 

[18] E. Ramirez, P. Melin, and G. Prado-Arechiga, “Hybrid model based 

on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac 

arrhythmia classification,” Expert Syst. Appl., vol. 126, pp. 295–307, 

Jul. 2019, doi: 10.1016/j.eswa.2019.02.035. 

[19] P. Kora, K. Meenakshi, K. Swaraja, A. Rajani, and M. Kafiul Islam, 

“Detection of Cardiac arrhythmia using fuzzy logic,” Informatics Med. 

Unlocked, vol. 17, p. 100257, Jan. 2019, doi: 

10.1016/j.imu.2019.100257. 

[20] M. Lee, T. G. Song, and J. H. Lee, “Heartbeat classification using local 

transform pattern feature and hybrid neural fuzzy-logic system based 

on self-organizing map,” Biomed. Signal Process. Control, vol. 57, p. 

101690, Mar. 2020, doi: 10.1016/j.bspc.2019.101690. 

[21] M. Mohanty, S. Sahoo, P. Biswal, and S. Sabut, “Efficient 

classification of ventricular arrhythmias using feature selection and 

C4.5 classifier,” Biomed. Signal Process. Control, vol. 44, pp. 200–

208, Jul. 2018, doi: 10.1016/j.bspc.2018.04.005. 

[22] K. Gajowniczek, I. Grzegorczyk, and T. Ząbkowski, “Reducing false 

arrhythmia alarms using different methods of probability and class 

assignment in random forest learning methods,” Sensors (Switzerland), 

vol. 19, no. 7, p. 1588, Apr. 2019, doi: 10.3390/s19071588. 

[23] K. Gajowniczek, I. Grzegorczyk, T. Ząbkowski, and C. Bajaj, 

“Weighted random forests to improve arrhythmia classification,” 

Electron., vol. 9, no. 1, p. 99, Jan. 2020, doi: 

10.3390/electronics9010099. 

[24] W. Yang, Y. Si, D. Wang, and B. Guo, “Automatic recognition of 

arrhythmia based on principal component analysis network and linear 

support vector machine,” Comput. Biol. Med., vol. 101, pp. 22–32, Oct. 

2018, doi: 10.1016/j.compbiomed.2018.08.003. 

[25] K. N. V. P. S. Rajesh and R. Dhuli, “Classification of ECG heartbeats 

using nonlinear decomposition methods and support vector machine,” 

Comput. Biol. Med., vol. 87, pp. 271–284, Aug. 2017, doi: 

10.1016/j.compbiomed.2017.06.006. 

[26] M. A. Escalona-Morán, M. C. Soriano, I. Fischer, and C. R. Mirasso, 

“Electrocardiogram classification using reservoir computing with 

logistic regression,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 3, 

pp. 892–898, 2015, doi: 10.1109/JBHI.2014.2332001. 

[27] U. R. Acharya et al., “A deep convolutional neural network model to 

classify heartbeats,” Comput. Biol. Med., vol. 89, pp. 389–396, Oct. 

2017, doi: 10.1016/j.compbiomed.2017.08.022. 

[28] S. Mousavi and F. Afghah, “Inter- and Intra- Patient ECG Heartbeat 

Classification for Arrhythmia Detection: A Sequence to Sequence 

Deep Learning Approach,” in ICASSP, IEEE International 

Conference on Acoustics, Speech and Signal Processing - Proceedings, 

May 2019, vol. 2019-May, pp. 1308–1312, doi: 

10.1109/ICASSP.2019.8683140. 

[29] A. Y. Hannun et al., “Cardiologist-level arrhythmia detection and 

classification in ambulatory electrocardiograms using a deep neural 

network,” Nat. Med., vol. 25, no. 1, pp. 65–69, 2019, doi: 

10.1038/s41591-018-0268-3. 

[30] L. Guo, G. Sim, and B. Matuszewski, “Inter-patient ECG classification 

with convolutional and recurrent neural networks,” Biocybern. Biomed. 

Eng., vol. 39, no. 3, pp. 868–879, Jul. 2019, doi: 

10.1016/j.bbe.2019.06.001. 

[31] S. Saadatnejad, M. Oveisi, and M. Hashemi, “LSTM-Based ECG 

Classification for Continuous Monitoring on Personal Wearable 

Devices,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 2, pp. 515–

523, Feb. 2020, doi: 10.1109/JBHI.2019.2911367. 

[32] M. Alfaras, M. C. Soriano, and S. Ortín, “A Fast Machine Learning 

Model for ECG-Based Heartbeat Classification and Arrhythmia 

Detection,” Front. Phys., vol. 7, p. 103, Jul. 2019, doi: 

10.3389/fphy.2019.00103. 

[33] J. P. Allam, S. Samantray, and S. Ari, “SpEC: A system for patient 

specific ECG beat classification using deep residual network,” 

Biocybern. Biomed. Eng., vol. 40, no. 4, pp. 1446–1457, Oct. 2020, 

doi: 10.1016/j.bbe.2020.08.001. 

[34] P. De Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic 

classification of heartbeats using ECG morphology and heartbeat 

interval features,” IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196–

1206, Jul. 2004, doi: 10.1109/TBME.2004.827359. 

[35] ISO/ANSI/AAMI, “ANSI/AAMI/ISO EC57: Testing and reporting 

performance results of cardiac rhythm and ST-segment measurement 

algorithms,” 2008. 

[36] G. De Lannoy, D. François, J. Delbeke, and M. Verleysen, “Weighted 

conditional random fields for supervised interpatient heartbeat 

classification,” IEEE Trans. Biomed. Eng., vol. 59, no. 1, pp. 241–247, 

Jan. 2012, doi: 10.1109/TBME.2011.2171037. 

[37] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, 

“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell. 

Res., vol. 16, pp. 321–357, 2002, doi: 10.1613/jair.953. 

[38] A. S. Glas, J. G. Lijmer, M. H. Prins, G. J. Bonsel, and P. M. M. 

Bossuyt, “The diagnostic odds ratio: A single indicator of test 

performance,” J. Clin. Epidemiol., vol. 56, no. 11, pp. 1129–1135, Nov. 

2003, doi: 10.1016/S0895-4356(03)00177-X. 

[39] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ. 

Psychol. Meas., vol. 20, no. 1, pp. 37–46, Apr. 1960, doi: 

10.1177/001316446002000104. 

[40] J. R. Landis and G. G. Koch, “The Measurement of Observer 

Agreement for Categorical Data,” Biometrics, vol. 33, no. 1, p. 159, 

Mar. 1977, doi: 10.2307/2529310. 

[41] M. I. Rizqyawan, A. Munandar, M. F. Amri, R. Korio Utoro, and A. 

Pratondo, “Quantized Convolutional Neural Network toward Real-

time Arrhythmia Detection in Edge Device,” in Proceeding - 2020 

International Conference on Radar, Antenna, Microwave, Electronics 

and Telecommunications, ICRAMET 2020, Nov. 2020, pp. 234–239, 

doi: 10.1109/ICRAMET51080.2020.9298667. 

 
 

1326




