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Abstract— Compositional data are used in many applications such as Cement, Asphalt, and many other Chemical industries. Such data 

represent random variables whose values must sum up to a certain constant. Quality engineers and technicians require monitoring 

compositional data and detecting the source of the irregularity in the process as soon as it happens. Throughout the literature, 

complicated methods were introduced to monitor compositional data. Such methods are computationally complex and can lead to 

difficulties in interpreting the results. The Dirichlet distribution is commonly used in the literature to model compositional data. In this 

study, we propose three simple methods to monitor the mean vector of the Dirichlet distribution. The first method is based on a 

MEWMA control chart. The second method is based on transforming the Dirichlet random variables into beta random variables and 

then monitoring them using multiple EWMA control charts, while the third method uses multiple EWMA control charts for 

transformed independent random variables. Using a simulation technique, the performance of the three methods is investigated, and 

the three methods performed very well under different sample sizes, many random variables, and values of the distribution parameters. 

When the process is out-of-control, the source of the out-of-control signal can be detected using Method 2 and Method 3. Method 2 

maintained its good performance with a probability 0.99 of correctly detecting the source of the signal. Method 3 performed well except 

for the case of Dirichlet parameter values less than one. However, it maintained almost a probability of correct detection of at least 90% 

in most cases. The three proposed methods are simple, do not need complicated calculations, and can easily be applied and used by 

practitioners. 
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I. INTRODUCTION

It is well-known that quality plays an important role in the 

success of many industries and services. Low-quality products 

will never survive in the competitive market. Quality has many 

definitions, one of which is that "quality is inversely 

proportional to variability" [1]. The set of statistical tools and 

techniques used to measure, maintain and improve the quality 

of products and services are referred to as statistical quality 
control (SQC). Statistical process control (SPC) is a subarea 

of SQC in which the quality of a product or a process is 

maintained by monitoring one or more quality characteristics. 

In some cases, these quality characteristics are highly 

correlated, and their sum must be equal to one, and the data are 

called "compositional data." Compositional data (CoDa) 

analysis is applied in many industrial, economic, and 

psychological applications. Foley [2] is divided the 

individual's activities in a usual day into six components, 

treated them as compositional data, and compared their effect 

on active and non-active individuals. Quinn [3] treated the 

DNA counts as compositional data and used the appropriate 
statistical tools to analyze them. Compositional data is defined 

in the simplex space and not the real space to account for the 

sum constraint. Since the first research on CoDa by Pearson 

[4], many researchers have studied different ways to overcome 

the positivity and the sum constraints. Pawlowsky-Glahn and 

Buccianti [5] discussed and compared many of the work done 

on CoDa. It was mentioned that the Dirichlet distribution is the 

only known distribution so far to be defined in the simplex 

space with independent structure. This distribution is 

constructed from independent Gamma variables with the same 

scale parameters [6].  
In literature, most of the work done to monitor CoDa, in 

general, used the log-ratio transformations. Aitchison [6] 

showed different log-ratio transformations to compositional 

data. These transformations were used to transform the data 

from the simplex space to the real space, which is 

mathematically easier to deal with, and thus, standard 

unconstrained multivariate techniques can be used. Praus [7] 

used the log transformations mentioned in Egozcue [8] to 

study the compositional data of treated wastewaters. 
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Pawlowsky-Glahn [9] made a comprehensive literature review 

of compositional data techniques proposed in the literature and 

their implementation in R. 

Boyles [10] suggested a modified Chi-square chart to 

monitor compositional data and compared it to the �2 control 

charts based on the log-ratio transformations. He argued that 

for practitioners and technicians -who are usually non-
mathematicians- it is difficult and less practical to deal with 

these log-transformations, which require more complicated 

calculations. The author concluded that although the method 

used was less sensitive in extreme cases, it worked well to 

detect assignable causes. 

Yang et al.[11] used the �2  control chart to monitor 

compositional data and suggested multiple univariate control 

charts to detect the source of the out-of-control signal without 
using the log transformations of the compositional data. They 

used the standard normal approximation to compute the 

control limits. They concluded that the  �2  control chart 

accounted for the correlated nature of the data and resulted in 

lower out-of-control ARL. However, it failed to detect which 

component is the source of the out-of-control signal. Vives-

Mestres et al. [12] suggested using a Hotelling  ��2  control 

chart after transforming the compositional data using the 

isometric log-ratio (ilr) introduced [13]. They stated that one 

of the difficulties of using this transformation is the absence of 

a unique orthonormal basis in the real space to transform the 

compositional components from the simplex ��  to the real 

space ��−1, besides the components cannot take zero values 

as this method depends on dividing the components by their 

geometric mean. They assumed that the compositional data 

follow a log-normal distribution which will not be the case in 

this paper. Vives-Mestres et al [12] compared their method to 

the traditional �2  control chart after deleting one of the 

components. They concluded that both methods perform well 

in the homogeneous cases where the data are concentrated in 

the center, while their method performs better in the extreme 

cases where the data are concentrated in the vertex. They used 

fixed control limits in both methods depending on the normal 

distribution, therefore in extreme cases the traditional method 

failed to maintain the assumed in-control ARL while their 

method did. Vives-Mestres et al [14], [15] introduced some 

methods to decompose the �2 control chart based on the ilr 

transformations to detect which component is the source of the 

out-of-control signal. Vives-Mestres et al. [14] found the 

percentage of correct detection of their method does not 

exceed 50%. Vives-Mestres et al. [15] continued their 

previous work and proposed two methods that can be used for 

cases where the number of compositional parts exceeds three. 

One of the proposed methods performed worse as the number 

of variables increases, and the other required using all possible 

log-ratios at every stage where a signal occurs; thus, the 

variance-covariance matrix changes. 
Tran et al. [16] proposed a MEWMA control chart based 

on the ilr transformations to monitor CoDa. They used a 

Markov chain to assess the performance of their proposed 

method. They concluded that their method outperformed the ��2 control chart proposed by Vives-Mestres [12]. 

Up to our knowledge, no research was introduced to 

monitor the Dirichlet random variables. Such variables have 

different nature and a well-known distribution, unlike the 

compositional data studied in the previous papers. In addition, 

although Multivariate Exponentially Weighted Moving 

Average (MEWMA) control charts are usually preferred in 

monitoring multivariate quality characteristics in Phase II than 

the Hotelling �2 control chart, they were used only in Tran [16] 

to monitor compositional data. The MEWMA charts are 
preferred because they use information from previous samples 

and not only information from the current sample being 

monitored, which makes them quicker in detecting small to 

moderate shifts. The remaining sections of this paper are 

arranged as follows. The Dirichlet probability distribution is 

presented in section 2. In section 3, the MEWMA control chart 

is proposed to monitor the Dirichlet random variables. 

Additionally, another two methods are proposed in the same 

section to detect quickly the source of the out-of-control signal 

using the special characteristics of the Dirichlet probability 

distribution. The proposed methods do not require 

complicated calculations and are easily applied. Moreover, the 
proposed methods have proved their efficiency for various 

sample sizes and various dimensions for the data.  Simulations 

are done to assess the performance of the three proposed 

methods, and their results are presented in section 4. Final 

conclusions and future work are presented in section 5. 

II.  MATERIAL AND METHOD 

A. Dirichlet Probability Distribution 

As for the Beta distribution, the Dirichlet random variables 
are related to a set of independent gamma variables, as shown 

below.  

Let a set of p independent Gamma random variables be: 

 	
~ 
amma��
 , 1�, � = 1,2, . . . . . . . � (1) 

where ��, . . . . . . , �� > 0, and they are the shape parameters of 

the Gamma distribution. The random variables �
 it is defined 

as. 

 �
 = ������ �....�! , � = 1,2, . . . . . . � (2) 

The vector � = ���, �", . . . . . . , ���   is said to follow the 

Dirichlet ���, . . . . . . , ��� distribution , where ��, . . . . . . , �� > 0 

and �� + �"+. . . . �� = 1 . The density of the subvector 

(Y�, . . . . , Y%-��   is given by: '�(�, . . . . , (�)�� =
* +�,��.....�,!�+�,��.....+�,!� (�,�)�. . . . (�,!)��(�, . . . . . (�)�� ∈ .,0                                                           �(�, . . . . . (�)�� ∉ ., (3) 

 

where (� = 1 − (�−. . . . −(�)� and M are defined as . = {�(�, . . . . , (�)��: (� > 0, . . . . , (�)� > 0, (�+. . . +(�)�< 1} 

The marginal distribution of each variable from the random 

vector Y is distributed as Beta distribution with parameters ��4 , 5 − �4� , where 5 = ��+. . . . +�� , j=1,...,p and is called 

the concentration parameter. Therefore, the Dirichlet 

distribution is considered as the multivariate extension of the 

Beta distribution with mean, variance, and covariance as 

follows:  

 67�48 = ,9: , ; = 1, … … … , � (4) 
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 =�>7�48 = ,97:),98: �:��� , ; = 1,2, … . . � (5) 

 ?@A7�4 , �B8 = − ,9,C: �:��� , ; ≠ E; ;, E = 1, . . , � (6) 

The concentration parameter 5  (also known as the scale 
parameter) determines the shape of the Dirichlet distribution, 

as shown in Figure.1. For values of �� < 1, the distribution 

concentrates in the corners and along the boundaries of the 

simplex. For values of �� > 1, the distribution tends toward the 

center of the simplex. For values of  ��=1, the concentration 
parameter is equal to p, and the Dirichlet distribution becomes 

a uniform distribution in the p-1 simplex. 

 
Fig. 1 The distribution of 3 Dirichlet random variables with �� = �" = �G =0.1, �� = �" = �G = 1 and �� = �" = �G = 10 respectively from left to right 

B. The Multivariate EWMA Control Chart (MEWMA-Method  

The means of the Dirichlet random variables are functions 

of the Dirichlet parameters as shown in equation (4), and thus 

any shift in the parameters will be reflected in the mean. 

Therefore, the first proposed method is a multivariate EWMA 

control chart to monitor the means of the dirichlet random 

variables. An amendment was made to encounter the 

singularity of the variance-covariance matrix, as the pth 

dirichlet random variable is a linear combination of the other 
(p-1) random variables. The pth random variable was dropped 

to overcome this, and any shifts in its parameter will be 

reflected in the chart statistic. Vives-Mestres et al. [12] 

criticized using the compositional data without transforming 

them to log-ratio variables due to having a higher probability 

of false alarms when using fixed control limits based on the 

normal distribution. To overcome this drawback, we will use 

simulations to find control limits that would sustain the in-

control ARL assumed. 

The EWMA chart statistics are defined for the ith sample as 

follows: 

 6
 = H�I
 + �1 − H�6�
)��, � = 1,2, … ., (7) 

where EK  is the target mean vector of the (p-1) variables, 

λ is a constant that determines the weight given to current 

observations compared to the previous ones, 0 < λ ≤ 1 and 

the Hotelling T"statistic is given by: 

 TN" = n�EN − E�Y��′ΣP)��EN − E�Y�� (8) 

where ΣP = λ")λ
�1 − �1 − λ�"N�Σ, and Σ  is the variance-

covariance matrix of the Dirichlet random variables 

(Y�, Y", . . . . . . , Y%)�). 

C. EWMA Control Charts (Method 2) 

The main challenge in the multivariate control charts is 
detecting which variable is the source of the out-of-control 

signal. Many approaches were introduced in the literature, 

"using univariate control charts with Bonferroni control 

limits" is one of them. It was proposed by Alt and Jain [17] as 

a method to detect the source of out-of-control signal in Phase 

I analysis. Alt and Jain [17] adjusted the control limits of the 

univariate Shewhart control charts to give the required overall 

false alarm probability. Although this method ignores the 

correlation between the variables, it can be used to detect 

which variable is the source of the signal. In the case of 

Dirichlet distribution, the correlation matrix depends only on 

the parameters of the Dirichlet distribution. Therefore, using 

the univariate control charts will not ignore the correlation 

between the variables, as they are monitoring the Dirichlet 

parameters. Therefore, no detected signal means in-control 

parameters and an unchanged correlation matrix. The 

covariance of the Dirichlet random variables is proportional to 

the product of their means, as shown in equation (6). As 
mentioned before, the Dirichlet distribution is a multivariate 

extension of the beta distribution. Therefore, a transformation 

was made from the p Dirichlet random variables to (p-1) Beta 

random variables that are only correlated through the pth 

Dirichlet random variable.  

Let 

 Q4 = R9R9 �R! = �9�9��! ; = 1,2, … . . , � − 1, Q4~Beta��4, ��� (9) 
where �.4 , �� > 0 and are the shape parameters of the Beta 

distribution. 

Afterward, (p-1) EWMA control charts are introduced to 

monitor the means of the (p-1) Beta random variables, and 

their control limits are chosen to give the desired overall out-

of-control average run length (ARL). The EWMA chart 

statistics are defined for the ith sample and the jth variable as 

follows:  

 6
4 = HQI4 + �1 − H�6�
)��4 , � = 1,2, . . . . , ; = 1,2, . . . . � − 1 (10) 

where 6K4  is the target mean of the jth Beta random variable. 

Assuming no shifts occurring in the distribution of the pth 

Dirichlet random variable, shifts occurring in the distribution 

of the jth Dirichlet random variable will only be detected by the 

jthEWMA control chart. As shown in equation 9, each variable 

of the newly introduced Beta random variables is a function of 

the corresponding Dirichlet random variable and the pth 

Dirichlet random variable. Therefore, shifts occurring in the 

pth Dirichlet random variable distribution will be detected by 

some or all of the EWMA charts. This will be assessed later 

using simulations. 

D. Independent EWMA control charts (Method 3) 

Ongaro and Migliorati [18] stated that partitioning the 

Dirichlet random variables into subsets and dividing each 

element in the subset by their sum will make these subsets 

independent from each other. Using this proposition, a method 

is introduced to transform the p Dirichlet random variables 

into p-1 independent random variables, and thus separate 

EWMA control charts can be used to monitor the means of 

these independent variables. A proof for this transformation is 
found in the Appendix. 

Define the following new p-1 random variables: 

 �4.� = R9�)R� , ; = 2,3, . . . . . . , � (11) 

Therefore, �4.� = ��".�, . . . . . . , ��.��  will be a random vector 

distributed as Dirichlet ��", . . . . . . , ��� where �", . . . . . . , �� >0and �".�+. . . . ��.� = 1 

Now �� is independent of the new set of the p-1 Dirichlet 

random variables �4.�. 

Define new p-2 random variables: 
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 �4.�," = R9.��)R .� , ; = 3, . . . . . . , � (12) 

 

Therefore �4.�," = ��G.�,", . . . . . . , ��.�,"�   will be a random 

vector distributed as Dirichlet ��G, . . . . . . , ���  where �G, . . . . . . , �� > 0 and �G.�,"+. . . . ��.�," = 1. 

Now �".�  is independent of the (p-2) Dirichlet random 

variables �4.�,". Also �� is independent of these variables. 

This approach will be continued until the (p-1)th  

transformation is done as follows: 

 �4.�,",…,��)"� = R9.�,..,�!WX��)R�!W �.�,..,�!WX� , ; = �� − 1�, � (13) 

 

Now ���)��.�,",...,��)"�&��.�,",...,��)"�  are Beta distributed 

with parameters ���)�, ���, and they are independent of the 

variables ��, �".�, . . . . . , ���)"�.�,",...��)G�. 
In this section, (p-1) EWMA control charts are introduced 

to monitor the means of the (p-1) independent random 

variables. The control limits of the EWMA charts are chosen 

to give the desired overall out-of-control average run length 

(ARL).  The chart statistics for the p-1 EWMA charts are 

defined for the ith sample and the jth transformed variable as 

follows:  

 6
4.Z = H�I4.Z + �1 − H�6�
)��4.Z , � = 1,2, … . , ; = 1,2, . . . . � − 1, (14) 

where K is a vector of the variables removed to attain the 

independence and 6K4.Z   is the target mean of the jth 

transformed random variable.  
The following flow chart summarizes the methodology and 

the implementation process: 

 

 
Fig. 2 Flow chart summarizing the methodology 

  

III. RESULT AND DISCUSSION 

Simulations of 100,000 runs were carried out to compare 

the performance of the three proposed methods. Shifts in the 

parameters were introduced in a multiplicative way, i.e., the 

out-of-control parameter �
∗ = \�
 . The shifts values used are \ =  0.2, 0.5,0.8,1.2, 1.5, and 2.  Models with a different 

number of variables were examined: three, five, and eight 

variables. Different simulation scenarios were considered 

based on changing the number of variables p (p=3,5,8), 

changing the sample size (n=5,10,15), and changing the shape 

of the Dirichlet distribution (�
s less than one, equal to one, 

and greater than one). The upper control limit h was chosen to 

ensure that the three methods have the same in-control ARL 

of 370. The three competing methods are compared based on 

the out-of-control ARL performance in the first subsection, 

and afterward, the probability of correctly detecting the source 

of the out-of-control signal is compared for methods 2 and 3 

in the following subsection. The probability of correct 

detection was computed by dividing the number of runs when 

the chart -monitoring the variable with the shifted parameter 

gives an out-of-control signal solely without any signal from 

the remaining charts- by the total number of runs. For 
example, referring to equations 9 and 10 and using method 2, 

if a shift occurred for Dirichlet random variable �;, then the 

probability of correct detection =  ]^.  ^_  `a]Bbc9bdℎ ,]e  ,ffbc�g9bhℎi^i,f ]ajkl` ^_ `a]B . 

A. Comparing the out-of-control ARL performance of the 

three proposed methods 

In the first part of this section, the simulations of the three 

proposed methods at p=3 with different sample sizes and 

different values of the Dirichlet parameters are presented in 

detail. Tables I, II, and III show the out-of-control ARL values 

for the competing methods at different shift sizes.  

TABLE I 

COMPARISON OF THE OUT-OF-CONTROL ARL FOR ��=10, �"=12, �G=20 FOR 

THE 3 METHODS WITH SAMPLE SIZES 5,10 &15 

ᵟ Method 1 Method 2 Method 3 

  

n=5, h=54.5 n=5, h=1.03 n=5, h=1.03 

  �� �" �G �� �" �G �� �" �G 

0.2 1.1 1 1 1 1 1 1.1 1 1 

0.5 2.2 2 1.7 2.1 2 1.6 2.1 2 1.7 

0.8 7.4 6.6 5.4 7.6 6.9 5.2 7.2 6.8 5.7 

1.2 8.9 8.1 7.4 9.6 8.8 7.8 8.4 8.7 8.8 

1.5 2.8 2.7 2.6 2.9 2.8 2.8 2.7 2.8 3.1 

2 1.7 1.6 1.7 1.8 1.8 1.9 1.5 1.8 1.9 

  n=10, h=109.5 n=10, h=1.03 n=10, h=1.03 

  �� �" �G �� �" �G �� �" �G 

0.2 1 1 1 1 1 1 1 1 1 

0.5 1.7 1.5 1.1 1.5 1.4 1.1 1.5 1.4 1.1 

0.8 4.5 4.1 3.5 4.5 4.1 3.4 4.3 4.2 3.7 

1.2 5.2 4.9 4.4 5.5 5.1 4.7 4.9 5.1 5.2 

1.5 2.1 2 1.8 2 2 2.1 1.9 2 2.2 

2 1.1 1 1 1.1 1.1 1.2 1 1.1 1.3 

  n=15, h=164.5 n=15, h=1.03 n=15, h=1.03 

  �� �" �G �� �" �G �� �" �G 

0.2 1 1 1 1 1 1 1 1 1 

0.5 1.2 1.1 1 1.1 1.1 1 1.1 1.1 1 

0.8 3.4 3.2 2.8 3.5 3.2 2.7 3.3 3.2 2.9 

1.2 3.9 3.7 3.5 4.2 3.9 3.6 3.8 3.9 3.9 

1 1.7 1.7 1.6 1.8 1.7 1.9 1.6 1 1.9 

2 1 1 1 1 1 1 1 1 1 
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TABLE II 

COMPARISON OF THE OUT-OF-CONTROL ARL FOR ��=1, �"=1, �G=1 FOR THE 3
METHODS WITH SAMPLE SIZES 5,10 &15 

ᵟ Method 1 Method 2 Method 3 

n=5, h=54.5 n=5, h=1.01  n=5, h=1.02 �� �" �G �� �" �G �� �" �G
0.2 3 3 3.3 2.8 2.8 2.6 3.2 2.8 2.8 

0.5 7.5 7.3 7.5 7 7 5.8 7.4 6.7 6.6 

0.8 55 55 55 56 56 38 66 46 46 

1.2 83 83 83 102 102 66 68 100 100 

1.5 15 15 15 19 19 13 13 18 18 

2 5.8 5.8 5.8 7.2 7.2 5.9 5.4 6.9 7 

n=10, h=109.5 n=10, h=1.02 n=10, h=1.02 

�� �" �G �� �" �G �� �" �G
0.2 2.2 2.3 2.2 2.1 2 2 2.2 2.1 2.1 

0.5 4.6 4.6 4.5 4.3 4.3 3.7 4.5 4.2 4.2 

0.8 28 28 27 29 29 20 28 25 24 

1.2 40 40 40 51 51 33 35 45 45 

1.5 8.1 8 7.9 9.7 9.7 7.5 7.4 9.2 9.1 

2 3.6 3.6 3.6 4.3 4.3 3.7 3.4 4.2 4.3 

n=15, h=164.5 n=15, h=1.02 n=15, h=1.02 �� �" �G �� �" �G �� �" �G
0.2 2 2 2 1.8 1.8 1.7 1.9 1.8 1.8 

0.5 3.6 3.6 3.6 3.4 3.4 3 3.5 3.3 3.2 

0.8 18 18 18 19 19 14 18 17 16 

1.2 26 26 26 32 32 21 24 29 29 

1.5 5.8 5.8 5.8 6.9 6.9 5.6 5.5 6.6 6.5 

2 2.9 2.9 2.9 3.4 3.4 2.9 2.7 3.3 3.1 

TABLE III 

COMPARISON OF THE OUT-OF-CONTROL ARL FOR ��=0.2, �"=0.3, �G=0.4 FOR 

THE 3 METHODS WITH SAMPLE SIZES 5,10 &15 

ᵟ Method 1 Method 2 Method 3 

n=5, h=54.5 n=5, h=1.03 n=5, h=1.03 �� �" �G �� �" �G �� �" �G
0.2 8 5.3 4.1 5.9 4.5 2.9 7.9 4.4 3.5 

0.5 26 14 11.1 18.6 12.9 7.9 30.4 12.7 9.8 

0.8 206 113 80.4 186 117 55.1 340 100 70.4 

1.2 132 151 199 127 139 177 114 166 256 

1.5 33 33.1 383 32.3 33.2 35.3 29.8 35.8 50 

2 11 11 11.8 11 11 12 10.2 11.5 14.8 

n=10, h=109.5 n=10, h=1.03 n=10, h=1.03 �� �" �G �� �" �G �� �" �G
0.2 4.6 3.4 2.8 3.7 2.9 2.1 4.5 2.9 2.4 

0.5 11.7 8 6.5 9.2 7.2 3.3 11.6 6.9 5.9 

0.8 102 61.7 46.3 87.1 60.7 17.1 131 53.2 41.4 

1.2 84.7 84.4 95.3 81.5 81.3 28.9 75.6 86.6 109 

1.5 17.2 15.8 16.5 16.8 15.9 6.6 16 16.2 18.9 

2 6.3 6 6.3 6.3 6.2 3.3 6 6.2 7.2 

n=15, h=164.5 n=15, h=1.03 n=15, h=1.03 �� �" �G �� �" �G �� �" �G
0.2 3.6 2.7 2.3 2.9 2.3 1.9 3.5 2.3 2.1 

0.5 8 5.8 4.9 6.4 5.2 3.9 7.9 5.2 4.5 

0.8 64.5 40.9 31.9 52.3 38.7 22.5 73.8 35.6 28.8 

1.2 60.5 56.4 59.9 57.4 55.9 47.4 55.4 56.9 65.9 

1.5 11.9 10.7 10.8 11.3 10.8 10.2 11.2 10.8 12 

2 4.7 4.5 4.7 4.7 4.6 4.8 4.5 4.7 5.2 

As shown in the tables, the performance of the competing 

methods is nearly the same when the parameters' values are 

greater than one. Method 1 maintains the same good 

performance when monitoring any of the parameters 

compared to the other two methods, as shown in Table II. 

However, they all perform worse when the parameters' values 
are less than one. This can be explained as the shifts are 

represented as multiple of the parameters. Increasing the 

sample size enhances the performance of the three methods, as 

shown in Tables I, II, and III. However, in this case, Method 2 

is slightly better than the other two methods, as shown in Table 

III. Simulations showed that the three methods show slightly

higher out-of-control ARL when increasing the number of the

variables monitored for different values of the Dirichlet

Parameters. However, increasing the sample size improves the

performance of the three methods.

B. Detecting the Source of Out-of-control Signal

In this section, an assessment of the ability of Methods 2

and 3 to correctly detect the source of the out-of-control signal 

is presented under different scenarios. Method 2 has a higher 

power of detecting the source of the out-of-control signal than 

Method 3, for monitoring three Dirichlet random variables, as 

shown in Tables IV, V and VI. This can be explained as, in 

method 2 each variable has a beta distribution with its 

parameter �4  and the pth variable's parameter ��  only.

However, for Method 3, although the variables are 

independent, the first variable has the parameters of the latter 

variables defining its distribution. Therefore, shifts in the 

parameters of the latter variables may appear as well in the 

charts of the previous variables as an out-of-control signal. 

The percentage of correct detection for Method 2 is always 

99% in all cases except for the case where the parameters take 

values equal or less than one for shifts \ =0.8 and 1.2.

This can be justified as follows: since shifts are defined as 

multiples of the parameters, then a shift of size 0.8 where �
=
0.1, results in a shifted parameter of size 0.08, which is very 

close to the in-control parameter. However, this could be 

resolved by increasing the sample size. As shown in Table IV, 

increasing the sample size from n= 5 to n=10 then to n=15 

increased the probability of detecting a shift of size 0.8 in �3=0.1 from 0.76 to 0.88 then to 0.93.

Moreover, increasing the sample size enhances the 

performance of detection of both methods under any values of 

the Dirichlet parameters. If small shifts need to be correctly 
detected, a larger sample size is recommended. The same 

conclusions apply when increasing the numbers of variables p 

to 5 or 8; tables can be sent upon request. 

1872



TABLE IV 

COMPARISON OF PROBABILITY OF CORRECT DETECTION FOR ��=10, �"=12, �G=20 FOR METHODS 2 AND 3 WITH SAMPLE SIZES 5,10 &15 

Method 2 

n=5 n=10 n=15 

Shift �� �" �� �" �� �"
0.2 1 1 1 1 1 1 

0.5 1 1 0.99 1 1 1 

0.8 0.99 0.99 0.99 0.99 0.99 0.99 

1.2 0.99 0.99 0.99 0.99 0.99 0.99 

1.5 0.99 0.99 1 0.99 1 1 

2 0.99 0.99 1 1 1 1 

Method 3 

n=5 n=10 n=15 

Shift �� �" �� �" �� �"
0.2 1 0.98 1 1 0.98 1 

0.5 1 0.96 1 1 0.96 1 

0.8 0.99 0.94 0.99 0.99 0.94 0.99 

1.2 0.99 0.95 0.99 0.99 0.95 0.99 

1.5 0.99 0.98 1 0.99 0.98 1 

2 1 0.98 1 1 0.98 1 

TABLE V 

COMPARISON OF PROBABILITY OF CORRECT DETECTION FOR ��=1, �"=1, �G=1 FOR METHODS 2 AND 3 WITH SAMPLE SIZES 5,10 &15 

Method 2 

n=5 n=10 n=15 

Shift �� �" �� �" �� �"
0.2 0.99 0.99 1 0.99 1 1 

0.5 0.99 0.99 0.99 0.99 0.99 0.99 

0.8 0.93 0.93 0.96 0.97 0.98 0.98 

1.2 0.87 0.87 0.94 0.94 0.96 0.96 

1.5 0.98 0.98 0.99 0.99 0.99 0.99 

2 0.99 0.99 0.99 0.99 0.99 0.99 

Method 3 

n=5 n=10 n=15 

Shift �� �" �� �" �� �"
0.2 0.99 0.91 1 0.9 1 0.88 

0.5 0.99 0.85 0.99 0.87 0.99 0.88 

0.8 0.92 0.72 0.97 0.8 0.98 0.82 

1.2 0.92 0.81 0.96 0.82 0.97 0.83 

1.5 0.98 0.87 0.99 0.87 0.99 0.87 

2 0.99 0.88 0.99 0.87 0.99 0.87 

TABLE VI 

COMPARISON OF PROBABILITY OF CORRECT DETECTION FOR ��=0.2, �"=0.3, �G=0.4 FOR METHODS 2 AND 3 WITH SAMPLE SIZES 5,10 &15 

Method 2 

n=5 n=10 n=15 

Shift �� �" �� �" �� �"
0.2 0.99 0.99 0.99 0.99 0.99 1 

0.5 0.98 0.98 0.99 0.99 0.99 0.99 

0.8 0.76 0.83 0.88 0.92 0.93 0.95 

1.2 0.85 0.89 0.9 0.9 0.93 0.94 

1.5 0.97 0.97 0.98 0.99 0.99 0.99 

2 0.99 0.99 0.99 0.99 0.99 0.99 

Method 3 

n=5 n=10 n=15 

Shift �� �" �� �" �� �"
0.2 0.99 0.93 0.99 0.95 0.99 0.96 

0.5 0.97 0.86 0.99 0.92 0.99 0.93 

0.8 0.6 0.61 0.84 0.76 0.91 0.82 

1.2 0.87 0.89 0.91 0.92 0.93 0.92 

1.5 0.97 0.98 0.99 0.97 0.99 0.97 

2 0.99 0.99 0.99 0.98 0.99 0.98 

The effect of increasing the number of random values 

monitored is shown in Table VII. Method 2 performs better 

than method 3 in the three cases for p=3,5, and 8. The 

performance of Method 2 remains the same with increasing 

the number of variables except for shifts \=0.8 and 1.2, as its
performance gets worse. Method 3 performs nearly the same 

at shifts \=0.2, 1.5, and 2 when increasing the number of

variables being monitored. However, its performance gets 

worse with the other shifts. The same conclusion is reached 

when the dirichlet parameters take values less and greater than 

one. Tables can be available upon request. 

TABLE VII 

COMPARISON OF PROBABILITY OF CORRECT DETECTION FOR N=10, BETWEEN METHODS 2 AND 3 FOR �� = �" =. . . = �m = 1 AND P=3,5 & 8

Method 2 

p=3 p=5 p=8 �� �" �G �� �" �G �n �o �� �" �G �n �o �p �q �m
0.2 1 0.99 - 1 1 1 1 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99 - 

0.5 0.99 0.99 - 0.99 0.99 0.99 0.99 - 0.98 0.98 0.99 0.95 0.99 0.99 0.98 - 

0.8 0.96 0.97 - 0.94 0.94 0.94 0.94 - 0.65 0.76 0.81 0.4 0.84 0.86 0.76 - 

1.2 0.94 0.94 - 0.88 0.88 0.88 0.88 - 0.71 0.70 0.66 0.72 0.64 0.61 0.70 - 

1.5 0.99 0.99 - 0.98 0.98 0.98 0.98 - 0.96 0.96 0.97 0.95 0.96 0.96 0.96 - 

2 0.99 0.99 0.99 0.99 0.99 0.99 - 0.99 0.99 0.99 0.99 0.99 0.99 0.99 - 

Method 3 

p=3 p=5 p=8 
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�� �" �G �� �" �G �n �o �� �" �G �n �o �p �q �m
0.2 1 0.90 - 0.99 0.99 0.97 0.91 - 0.99 0.98 0.98 0.62 0.97 0.94 0.96 - 

0.5 0.99 0.9 - 0.96 0.97 0.94 0.85 - 0.85 0.94 0.95 0.4 0.92 0.87 0.89 - 

0.8 0.97 0.8 - 0.92 0.86 0.78 0.67 - 0.4 0.42 0.43 0.35 0.48 0.52 0.46 - 

1.2 0.96 0.92 - 0.94 0.93 0.92 0.77 - 0.73 0.75 0.79 0.73 0.83 0.76 0.6 - 

1.5 0.99 0.97 - 0.99 0.99 0.98 0.85 - 0.95 0.97 0.98 0.95 0.99 0.97 0.89 - 

2 0.99 0.97 - 0.99 0.99 0.99 0.88 - 0.99 0.99 0.99 0.99 0.99 0.97 0.91 - 

IV. CONCLUSION

In this paper, three easily applicable methods were 

proposed to monitor Dirichlet data. Two of which are used to 

detect the source of the out-of-control signal. The first method 

is based on a MEWMA control chart. The second method is 

based on transforming the Dirichlet random variables to beta 

random variables and then monitoring them using multiple 

EWMA control charts. The third method uses multiple 

EWMA control charts for transformed independent random 

variables. To assess the performance of the three methods, 

different simulation scenarios were used to represent various 

cases.  

The three methods performed well and were nearly the 
same except for values of the Dirichlet parameters less than 

one. However, increasing the sample size enhanced the 

performance of the suggested methods.  Method 2 performed 

better than the other two methods for a Dirichlet distribution 

with parameters less than one. Increasing the number of 

variables to be monitored increases the out-of-control ARL 

for the three methods, which can be overcome by increasing 

the sample size.  

When the process is out-of-control, the source of the out-

of-control signal can be detected using Method 2 and Method 

3. Method 2 maintained its good performance with a
probability 0.99 of correctly detecting the source of the signal.

Method 3 performed well except for the case of parameter

values less than one. However, it maintained almost a

probability of correct detection of at least 90% in most cases,

unlike Vive, which [14] approach had a percentage of correct

detection not exceeding 50%. For future work, a comparison

might need to be held to compare the performance of the

proposed methods to the ilr Hotelling �" control chart used
by Vives-Mestres et al [14], [15]
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APPENDIX 

p INDEPENDENT GAMMA RANDOM VARIABLE 

Let a set of p independent Gamma random variables be: 

	
~ 
amma��
 , 1�� = 1,2, . . . . . . . �
The (p-1) random variables ��, �".�, . . . . . ���)��.�,",...��)"�

can be written as functions of the gamma random variables as 

shown later. 

The joint distribution of the p independent Gamma random 

variables is given by: '�r�, r", . . . . , r��= 1s��. . . . . s�� r�,�)�. . . . . . . r�,!)�t)�u��...�u!�, r
 ≥ 0∀�= 1, . . . . �
A transformation of variables will be done, so a pth variable 

need to be introduced � = r�+. . . . +r�
For the sake of simplifying the equations, �4∗ will be used

to represent the jth transformed Dirichlet random variable (4.�,....�4)��.r� = (�∗E r" = ("∗�E − r�� = ("∗�E − (�∗E� = ("∗E�1 − (�∗� rG = (G∗�E − r� − r"� = (G∗�E − (�∗E − ("∗E�1 − (�∗��= (G∗E�1 − (�∗��1 − ("∗� ⋮ ⋮ r4 = (4∗E�1 − (�∗�. . . . . . �1 − (4)�∗ � ⋮ ⋮ r� = E�1 − (�∗�. . . . . . �1 − (�)�∗ �
Define the Jacobian as 

|z| = {{
|r� |(�∗} ⋯ |r� |(�)�∗} |r� |E�⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮|r� |(�∗} ⋯ |r] |(�)�∗} |r� |E� {{

= {
{ E 0 0 ⋯ ⋯ ⋯ (�∗−("∗E �1 − (�∗�E 0 ⋯ ⋯ ⋯ ("∗�1 − (�∗�−(G∗�1 − ("∗�E −(G∗�1 − (�∗�E �1 − (�∗��1 − ("∗�E 0 ⋯ ⋯ (G∗�1 − (�∗��1 − ("∗�⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮−(4∗�1 − ("∗�. . . �1 − (4)�∗ �E ⋯ ⋯ ⋯ ⋯ 0 (4∗�1 − (�∗�. . . �1 − (4)�∗ �⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮−�1 − ("∗�. . . �1 − (�)�∗ �E ⋯ ⋯ ⋯ ⋯ ⋯ �1 − (�∗�. . . �1 − (�)�∗ � {

{

Now S will be taken as common factor from p-1 columns, �1 − (�∗� from p-2 columns,. �1 − (4∗� from (p-1-j) columns,

and the jacobian will be 

|z| =sp-1�1 − (�∗��)". . . . . �1 − (4∗��)�)4 . . . . . �1 − (�)"∗ � 

{
{ 1 0 0 ⋯ ⋯ ⋯ (�∗−("∗ 1 0 ⋯ ⋯ ⋯ ("∗�1 − (�∗�−(G∗�1 − ("∗� −(G∗ 1 0 ⋯ ⋯ (G∗�1 − (�∗��1 − ("∗�⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮−(4∗�1 − ("∗�. . . �1 − (4)�∗ � ⋯ ⋯ ⋯ ⋯ 0 (4∗�1 − (�∗�. . . �1 − (4)�∗ �⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮−�1 − ("∗�. . . �1 − (�)�∗ � ⋯ ⋯ ⋯ ⋯ ⋯ �1 − (�∗�. . . �1 − (�)�∗ � {

{

After doing some operations on the determinant, as 

multiplying the first column by �1 − (�∗� and adding it to the

last column, resulting in a column whose first element is 1 and 

the rest is zeros. Then multiplying column j by −�1 − (4∗� and

adding the jth column to the (j-1)th column resulting into a 

column starting with 1, then -1 and then zeros for all 

j=2,.....,(p-1) 

|z| =sp-1�1 − (�∗��)". . . . . �1 − (4∗��)�)4 . . . . . �1 − (�)"∗ � 

{
{ 1 0 0 ⋯ ⋯ ⋯ 1−1 1 0 ⋯ ⋯ ⋯ 00 −1 1 0 ⋯ ⋯ 0⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮0 ⋯ ⋯ ⋯ ⋯ 0 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮0 ⋯ ⋯ ⋯ ⋯ −1 0{

{

Solving this determinant will give a solution of 1, so the 

joint distribution of the transformed variables is given by 

'�(�∗, ("∗, . . . . , (�)�∗ , E�= '�(�∗E, ("∗�1 − (�∗�E, . . . . . . , (�)�∗ �1− (�∗�. . . �1 − (�)"∗ �E, �1 − (�∗�. . . �1− (�)�∗ �E� ∗ |z|
= 1s��. . . . . s�� �(�∗E�,�)�. . . . . . . ��1 − (�∗�. . . . . �1
− (�)�∗ �E�,!)�t)BEp-1�1 − (�∗��)". . . . . �1 − (4∗��)�)4 . . . . . �1− (�)"∗ �= 1s��+. . +�� E,��..�,!)�t)B s��+. . +��s��. s�"+. . +�� (�∗,�)��1
− (�∗�, �..�,!)�. . . . s�4 + �4��+. . . +��s�4 . s�4��+. . +�� (4∗,9)��1− (4∗�,9���..�,!)�

s��)� + ��s��)�. s�� (�)�∗,!W�)��1 − (�)�∗ �,!)�, E ≥ 0,0 ≤ (4∗ ≤ 1∀;= 1, . . . . � − 1
Since the P.d.fs of the transformed variables can be 

separated, then they are independent random variables. S 

follows Gamma distribution with parameters (��+. . +��,1),

and (4∗   follows Beta distribution with parameters

(�4 ,�4��+. . +��).
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