
Vol.11 (2021) No. 6

ISSN: 2088-5334

An Automated Statechart Diagram Assessment using Semantic and

Structural Similarities

Reza Fauzan a,*, Daniel Siahaan b, Siti Rochimah b, Evi Triandini c

a Department of Electrical Engineering, Politeknik Negeri Banjarmasin, Banjarmasin, 70124, Indonesia
b Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

c Department of Information Systems, Institut Teknologi dan Bisnis STIKOM Bali, Denpasar, 80234, Indonesia

Corresponding author: *reza.fauzan@poliban.ac.id

Abstract—The statechart diagram is a behavior diagram in the unified modeling language (UML) diagram. Numerous state chart

diagrams are taught in computer science majors. In teaching and learning activities, the assessment process is essential. A teacher is

required to be objective in assessing. However, objectivity can be affected by inconsistency and fatigue. Thus, an automatic assessment

is very important. Automatic assessments can help teachers save time while assessing answers given by multiple students. By combining

semantic and structural similarities, we propose a method to evaluate statechart diagrams automatically. Semantic comparison is

conducted based on the lexical information from the states and transitions between the two diagrams. We then use a combination of

cosine similarity, Wu palmer, and WordNet to assess the semantic similarity between the two diagrams. The structural assessment is

conducted on the basis of the structure of the two diagrams using the greedy graph edit distance. The diagram structure is obtained by

translating the diagram into several graphs. The graph is divided into two types of subgraphs, namely intraSim subgraph and interSim

subgraph. Further, our results demonstrate that the proposed method agrees well with the state chart diagram assessed by the teacher.

The agreement value between the teacher and our proposed method is an almost perfect agreement. In the assessment process, we

observe that teachers see the structure of the statechart diagram instead of the lexical of the statechart diagram.

Keywords—Automatic assessment; semantic assessment; statechart diagram; structural assessment; UML assessment.

Manuscript received 3 Oct. 2020; revised 22 Apr. 2021; accepted 28 May 2021. Date of publication 31 Dec. 2021.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The statechart diagram is a diagram in the unified modeling

language (UML) diagram. Statechart diagrams describe the

behavior of objects and representations of the life cycle of

objects in software [1]. They can act as tools for testing

functional software [2], [3]. Moreover, the notation on the

statechart diagram is the design language used to describe the

major software modules [4]. Statechart diagrams are generally

taught in tertiary institutions, especially in the field of computer

science. In the learning process, assessment is a problem

complained about by teachers.

Additionally, the main cause of the teachers’ complaints

arises from the number of answers that must be assessed [5],

[6]. Another cause is that teachers often become inconsistent

while assessing student answers [7]. Therefore, an automatic

assessment concept can be used to solve this problem. An

automatic assessment method can help teachers to correctly

evaluate their students’ answers with a fixed assessment

standard.

Statechart diagrams can be automatically assessed by

measuring the similarity between any two statechart diagrams.

Previously, automatic assessment has been applied to use case

diagrams. Automatic assessment of a use-case diagram can be

conducted by comparing its lexical information [8]. The

statechart diagram similarity was only measured for reuse and

clone detection and not for assessment. Similarity

measurements were separately performed. First, the

measurement uses lexical information syntactically. Second,

the measurement uses state and transition flow structures.

Herein, we combined these two pieces of information and

detailed the contents of the information in our similarity

measurement. Therefore, similarity assessment becomes

comprehensive.

In UML diagrams, similarity measurement has been

extensively studied [9], [10]. In addition, Storrle [11]

syntactically measured the similarity between two statechart

2436

diagrams based on their lexical properties. He aimed to detect

clones from software designs. The lexical information of a

statechart diagram is based on the names of the components

[12]. The similarity in terms of lexical information can be

semantically calculated using natural language processing

(NLP) [13]–[15]. Semantic similarities are divided into three

categories: knowledge-based, corpus-based, and string-based

[16], [17]. In the case of knowledge-based semantic

similarities, WordNet [18], [19] is generally used as a

knowledge base. WordNet-based similarity calculations are

performed using additional methods such as Wu Palmer [20],

[21]. In the case of corpus-based semantic similarities, a large

data corpus and complex data-training process are required.

Finally, in the case of string-based semantic similarities, only

those strings that are owned are considered irrespective of the

meaning of the word.

Some other previously conducted studies [22]–[24]

measured the similarity between two statechart diagrams in

terms of another perspective, namely, the statechart diagram

structure. The statechart diagram was converted into a graph.

Moreover, the converted graph comprised states as vertices and

transitions as edges. Their study aimed to reuse the software

design. The graph similarity could be measured using the graph

edit distance (GED) [25]–[27]. The concept of GED is to

convert the first graph to the second graph. However, GED

suffers from weakness, i.e., high processing time. Therefore,

Riesen proposed the approximate GED [28] and greedy GED

[29] to expedite the process.

Assessment problems in the computer science course might

occur for several reasons. First, how to assess the answers by

students without imposing additional burdens on the teacher

[30]. Teachers need not spend a significant amount of time to

conduct assessments. Second, we need to consider the

objectivity of the assessment [31]. Objectivity can be affected

by the fatigue and inconsistency of the teacher. Third, many

students pose a problem in conducting assessments [32], [33].

Therefore, in the software engineering course, we need an

automatic assessment method, the statechart diagram

assessment.
This study aims to develop a new method for semantically

and structurally assessing the similarity between two-

statechart diagrams. Semantic similarity is assessed based on

the lexical of statechart diagram. Lexical of statechart

diagrams can be semantically compared. Moreover, the

structural similarity is assessed based on the structure of the

statechart diagram. The statechart diagram structure is

translated into a graph. We compared the two graphs from the

two-statechart diagrams by utilizing the greedy graph edit

distance (GED). Our contribution is to obtain the level of

importance of the assessment component so that our proposed
method can function as reliably as experts.

II. MATERIALS AND METHOD

A. Statechart Diagram Similarity Assessment Characteristic

The characteristics of the statechart diagram similarity can

be analyzed in terms of two types of diagrams, namely, lexical

and structural diagrams. For example, Fig. 1 (a) illustrates a

pair of diagrams with the same structures and lexically similar.

Fig. 1 (b) shows another pair of diagrams with different

structures but lexically similar, as shown in. In addition, we

have observed that there are lexically similar cases but have a

low number of states or transitions.

Fig. 1 Example of diagram similarity assessment characteristic (a) Example

1 and (b) Example 2

Furthermore, the answers provided by the students are not

necessarily the same as the answer keys provided. Therefore,

the answer diagrams may differ on the basis of how different

students understand the description of the question. The

extent of the vocabulary of the students may also influence

the answers by the students.

B. Statechart Diagram Assessment

Statechart diagram similarity (stdSim) between statechart

diagram d1 and statechart diagram d2 is assessed based on the

results of semantic similarity (semStd) and structural

similarity (strucStd). Both have their level of importance

depending on the way an expert performs the assessment.

Moreover, the level of importance is denoted by ρ. The value

of ρ is greater than zero or less than equal to one. Statechart

diagram similarity can be obtained using Equation 1.

���������, �
� = �1 − �� × ���������, �
� + � × �����������, �
� (1)

Equation 1 is the main equation used to assess the similarity

between two statechart diagrams. The flow of the statechart

diagram assessment is shown in Fig. 2. The process begins with

two statechart diagrams in the XMI (XML Metadata

Interchange) format as input, namely, the answer key diagram

and the student answer diagram. The extraction results of each

diagram are divided into four main parts: a lexical collection of

states, a lexical collection of transitions, a collection of

subgraphs based on states and transitions (intra graphs), and a

graph that shows the flow between states (inter graphs). The

lexical collection is the input to assess the semantic similarity.

The collection of subgraphs becomes an input to assess

structural similarity. A more detailed explanation of semantic

and structural assessment is described in the next section.

2437

Fig. 2 Flow of state chart diagram assessment

C. Semantic Similarity Assessment

The comparison of the semantic similarity is based on the

meaning of the statechart diagram. NLP [34] can be used to

compare the meaning of each statechart diagram component.

We performed a basic NLP on our process based on some

previously conducted studies [35]–[40]. Besides, the NLP
process applied is tokenization, point of sale (POS) tagging,

stopwords removal, lemmatization, and cosine similarity.

First, we perform tokenization if the component has a lexical

that may comprise more than one word. Second, POS tagging

is useful for providing part of speech information from these

words. Third, meaningless words are removed. Fourth, the

words are transformed into essential words using

lemmatization. Fifth, by applying cosine similarity [41], the

words of the first diagram component are compared with

those in the second diagram component. In cosine similarity,

assessment of the similarity between two words is calculated
using WordNet and Wu Palmer.

Based on the type of lexical information in the diagram, the

semantic similarity assessment on the statechart diagram is

calculated. Lexical information is divided into two types:

property and transition information. This information sharing

can be observed in Fig. 3. Property information comprises entry

activity, do an activity, exit activity, and state. Additionally,

transition information comprises source state, target state,

trigger event, and guard.

Fig. 3 Lexical information on the state chart diagram

Fig. 4 Example of a state chart diagram

For instance, the lexical information obtained from the

statechart diagram in Fig. 4 can be described as follows:

2438

Property
Property-1

State: Opened
Entry Activity: greenLight
Exit Activity: switchLightOff

…
Property-3

State: Locked
Entry Activity: redLight
Do Activity: startMonitoring

Exit Activity: switchLightOff
Transition

Transition-1
Source State: opened
Target State: closed
Trigger Event: closeButtonPressed
Guard: doorClosing

…

Transition-4
Source State: locked

Target State: closed
Trigger Event: lockButtonPressed

Guard: buttonIsPressed.

As illustrated in Fig. 3, the semantic similarity between

statechart diagrams d1 and d2 (semStd) is calculated using
Equation 2.

��������� , �
� = �1 − ����� × ����������, �
� + ���� ×
���������� ,�
� (2)

The semantic similarity between statechart diagrams d1 and

d2 comprises property similarity (propSim) and transition

similarity (tranSim). Each similarity has a different level of

importance based on an expert's viewpoint. In Equation 2, the

level of importance of the similarity is distinguished from ρsem.

In addition, the value of ρsem is from zero to one.

 ����������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ �(+%���(,,�(-�

|/01|
-23

|/03|
,23 �45,6�|/03|,|/01|�

723 4
|+83|9|+81|

 (3)

The property similarity between statechart diagrams d1 and

d2 is calculated by employing Equation 3. All states in d1 are

semantically compared with those of d2. ST1 and ST2 comprise

all states in d1 and d2, respectively. Equation 2 describes the

greedy algorithm for obtaining the optimal state similarity

value of d1 and d2. In the greedy algorithm, the changePivot is

utilized to eliminate the similarity value of state pairs.

Algorithm 1 demonstrates the flow of changePivot

Algorithm 1. changePivot

Input: two dimension matrix and pivot/coordinate maximum

value (x,y)

Output: changed matrix

1. Select pivot

2. M(x, :) = 0

3. M(:, y) = 0.

Line 1 obtains the coordinates of the maximum similarity

value from the matrix as x and y. Line 2 turns the value in row

x into zero. Furthermore, line 3 turns the value in column y into

zero. As shown in Fig. 3, the property of a state comprises

several components. Therefore, a detailed calculation between

two states (stSim) is required. The stSim is given in Equation 4.

 ���������, ��
� = :'�+%���"3,�"1�9:'�+%��;'3,;'1�9:'�+%���*3,�*1�9:'�+%���3,�1�
)!*�|�"3|,|�"1|�9)!*�|;'3|,|;'1|�9)!*�|�*3|,|�*1|�9)!*�|�3|,|�1|�

 (4)

Depending on the information established in states st1 and

st2, state similarity (stSim) between them is calculated. Besides,

the information is entry activity (en), do activity (do), exit

activity (ex), and state (s). The semantic similarity of each

information is calculated by applying NLP, which was

explained at the beginning of Section II.B. Thus, the total

similarities of all the information are divided by the number of

components that are only available in the two states. For

example, if both states only have a do entry and state, then the

divisor value is two.

����������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ (+%��(,,(-�

|01|
-23

|03|
,23 �45,6�|03|,|01|�

723 4
|83|9|81|

 (5)

By applying Equation 5, the transition similarity between

two statechart diagrams d1 and d2 is calculated. All transitions

in d1 are semantically compared with those in d2. Further, T1

and T2 comprise all the transitions in d1 and d2, respectively.

Equation 5 describes the greedy algorithm for finding the

optimal transition similarity values of d1 and d2. As depicted in

Algorithm 1, the changePivot is utilized to eliminate the

similarity value of transition pairs in the greedy algorithm.

Based on Fig. 3, the transition of a statechart diagram comprises

several components. Therefore, a detailed calculation between

two transitions (tSim) is required. The tSim is presented as

Equation 6.

 �������, �
� = :'�+%���<�3,�<�1�9:'�+%��(#(3,(#(1�9:'�+%��(<#3 ,(<#1�9:'�+%��#;3,#;1�
)!*�|�<�3|,|�<�1|�9)!*�|(#(3|,|(#(1|�9)!*�|(<#3|,|(<#1|�9)!*�|#;3|,|#;1|�

 (6)

Based on information observed in transitions t1 and t2, the

transition similarity (tSim) between them is calculated. The

information is a source state (src), target state (tgt), trigger (trg),

and guard (gd). The semantic similarity of each information is

calculated using the NLP, which was explained at the beginning

of section II.B. Moreover, the total similarities of all the

information are divided by the number of components that are

only available in the two transitions. For example, if both

2439

transitions only have source state, target state, and trigger, then

the divisor value is three.

D. Structural Similarity Assessment

By representing the existence diagram into a graph, the

structural similarity between two statechart diagrams is

calculated. The proposed graph is a directed graph. Unlike the

semantic similarity that uses the lexical of the statechart

diagram component, structural similarity ignores the lexical in

the statechart diagram. Therefore, the structural similarity only

considers the structure and type of the statechart diagram

component. The element of the proposed graph can be observed

as presented in Table I. Each element in the graph has its name

and tag. There are two types of elements: vertex and edge.

There are thirteen elements used in the graphs from statechart

diagrams. Graph vertices comprise vs, vt, ven, vdo, vex, vtr, and

vgr, while graph edge comprises et, een, edo, eex, etr, and egr. All

vertices are connected using the edge.

TABLE I

GRAPH ELEMENTS OF THE STATECHART DIAGRAM

No Element Type Name Tag

1 Vertex State vertex vs

2 Vertex Transition vertex vt

3 Vertex Entry activity vertex ven

4 Vertex Do activity vertex vdo

5 Vertex Exit activity vertex vex

6 Vertex Trigger vertex vtr

7 Vertex Guard vertex vgr

8 Edge Transition edge et

9 Edge Entry activity edge een

10 Edge Do activity edge edo

11 Edge Exit activity edge eex

12 Edge Trigger edge etr

13 Edge Guard edge egr

Based on Table I, a statechart diagram can be translated into

a directed graph. Fig. 5 depicts the translation results of a

statechart diagram in Fig.4 into a proposed graph.

Fig. 5 Statechart diagram translated into a graph

The example statechart diagram comprises four states: start,

opened, closed, and locked states; in the proposed graph, the

states become vs1, vs2, vs3, and vs4, respectively. In addition,

state vs2 has an entry vertex ven2 and an exit vertex vex2. State

vs3 has an entry vertex ven3 and an exit vertex vex3. State vs4

has an entry vertex ven4, a do activity vertex vdo4, and an exit

vertex vex4. The diagram also has five vertex transitions: vt1,

vt2, vt3, vt4, and vt5. Transition vt1 connects the start state to the

opened state, while transition vt2 connects opened state to

closed state. It has a trigger event vertex vtr2 and a guard vertex

vgr2. Transition vt3 connects closed states to opened states. It

has a trigger event vertex vtr3 and a guard vertex vgr3.

Transition vt4 connects the locked state to the closed state. It has

a trigger event vertex vtr4 and a guard vertex vgr4. Transition

vt5 connects closed state to locked state. It has a trigger event

vertex vtr5 and a guard vertex vgr5.

In the structural assessment of the statechart diagram

(strucStd), we differentiate between two similarities: intra

similarity (intraSim) and inter similarity (interSim). Therefore,

structural similarity can be obtained using Equation 7. Intra and

inter similarities differ in importance based on the value of ρstr.

Thus, the value of ρstr ranges from zero to one. It can be

obtained based on an expert’s perspective of assessment.

�����������, �
� = �1 − ��(<� × �����������, �
� +
��(< × �����������, �
� (7)

Based on the contents of the state and transition vertices, the

intra similarity is calculated by considering the subgraphs of

graphs that have been built. Fig. 6 (a) illustrates the subgraphs

used to assess the similarity of each state. There are four

subgraphs used to assess the state of similarity. Fig. 6 (b)

demonstrates the subgraphs applied to assess the similarity of

transitions. There are five subgraphs employed to assess the

similarity of transitions.

Intra similarity, which can be written as Equation 8,

considers the subgraphs of states and transitions.

 �����������, �
� = &�+%��;3,;1�9&(+%��;3,;1�

 (8)

The similarity of state and transition vertices is separately

calculated and then equally shared. The similarity of state

vertex (vsSim) can be obtained by utilizing Equation 9.

Furthermore, the similarity of transition vertex (vtSim) can be

calculated by applying Equation 10. The similarity of state

vertices is calculated based on a collection of state vertex

subgraphs statechart diagrams d1 and d2. The collection of the

subgraphs of state vertex diagrams d1 and d2 is SGS1 and SGS2,

Fig. 6 Subgraphs to assess intraSim: (a) state and (b) transition

2440

respectively. All the subgraphs are compared to obtain an

optimal similarity value. Moreover, the optimal value search

utilizes the greedy algorithm. In Equation 8, changePivot plays

an important role in eliminating non-optimal values in the

greedy algorithm. The flow of changePivot can be observed in

Algorithm 1. Thus, the similarity assessment between two

subgraphs employs a greedy GED. To calculate the cost of the

initial state vertex subgraph (sgsi) to give the final state vertex

subgraph (sgsj), the concept of GED is applied.

 =�������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ >?@��#�,,�#�-�

|/A/1|
-23

|/A/3|
,23 �45,6�|/A/3|,|/A/1|�

723 4
|+>+3|9|+>+1|

 (9)

 =�������, �
� =

×�∑ � !"#�$%&'(�)!*�∑ ∑ >?@��#(,,�#(-�

|/A01|
-23

|/A03|
,23 �45,6�|/A03|,|/A01|�

723 4
|+>+3|9|+>+1|

 (10)

Based on a collection of transition vertex subgraphs

statechart diagrams d1 and d2, the similarity of transition vertex

is calculated in Equation 9. The collection of subgraphs of

transition vertex diagrams d1 and d2 is SGT1 and SGT2 in

Equation 10, respectively. All the subgraphs are compared to

obtain an optimal similarity value. Using changePivot in

Algorithm 1, the optimal value search applies the greedy

algorithm. Then, the similarity assessment between two

subgraphs also utilizes a greedy GED. To transform the cost of

the initial transition vertex subgraph (sgti) to give the final

transition vertex subgraph (sgtj), the concept of GED is

employed.

Inter similarity differs from intra similarity. Inter similarity

is only taken from the main vertex information. Besides, the

main vertex comprises interconnected state and transition

vertices. Therefore, as demonstrated in Fig. 5, we do not use all

the information obtained from the graph. This is because it only

takes the main vertex information, and the resulting subgraphs

only have one subgraph. The main vertex comprises state and

transition vertices. Fig. 7 depicts a form of the subgraph

obtained from the initial graph. Take subgraphs that only

contain state and transition vertices.

As demonstrated in Fig. 7, interSim can be directly assessed

using other diagrams. Equation 11 shows how to determine the

similarity between subgraphs sg1 and sg2 from statechart

diagrams d1 and d2, respectively. Using the greedy GED, this

direct assessment compares the two subgraphs.

�����������, �
� = BCD��E�, �E
� (11)

III. RESULT AND DISCUSSION

A. Dataset

The General Description dataset used can be seen in Table

II. The assembled statechart diagram is a collection of the

students' answers to the questions by the teacher, and the

students had directly answered the questions. The questions
contained the name of an object and a description of the

lifeline of the object. A description regarding the flow of the

object was provided so that all the students could have the

same mindset toward the object. However, the limitation of

this study is that it uses a simple statechart diagram, and we

are yet to consider the nested state case.

For the evaluation process, we set a gold standard for each

student's answer. This gold standard is obtained from the

average of experts’ answers in assessing the similarity of

students' answers based on the answer key. Experts are

computer science lecturers in the area of software engineering.

Furthermore, they must also have taught courses involving

UML diagrams. Twenty-four experts contributed to this study.

Moreover, based on the validity of using Pearson [42]–[44]

and the reliability of using Cronbach's alpha, the answers from

these experts were statistically tested [45], [46]. Fig. 8 shows

the correlation results of all expert answers to each assessment

made. Of the twenty-nine assessments, eleven assessments had

no correlation that met the critical value at the 0.05 level (2-

tailed). The critical value is 0.349 based on Pearson's

correlation table. Final statistical test results produce eighteen

pairs of assessments on the students' answers and answer keys

from the eighteen experts. The reliability value of the gold

standard used is 0.947. The agreement's value between experts

was also tested with inter-rater reliability [47]–[49]. In addition,

the average inter-rater reliability value is 0.89.

Fig. 7 Subgraphs for assessing interSim

TABLE II

DATASET INFORMATION

Project Number of

Answers

Total State Total

Transition

Door 10 45 52

AC Remote 9 54 74

Counter 10 42 52

Fig. 8 Pearson correlation on expert assessment based on pairs of student

answers and answer keys

2441

B. Evaluation

We conducted experiments and compared the experimental

results of the proposed assessment method with those given

by experts. If both results significantly agree, then the

proposed method is more reliable. Moreover, based on the
given answer key, both the expert and our proposed method

assess the answer from Table II The agreement value is

calculated by employing Gwet's first‐order agreement

coefficient (AC1) [50]–[52]. To facilitate the assessment of

the agreement between our proposed method and the teacher,

the similarity value generated by both the proposed method

and the teacher is converted to a scale of one to five. One, two,

three, four, and five comprise zero to less than twenty, twenty

to less than forty, forty to less than sixty, sixty to less than

eighty, and eighty to one hundred, respectively. We

conducted experiments by combining ρ, ρsem, and ρstr values
between 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The

term ρ is used to calculate Equation 1 to determine the level

of importance between semantic and structural similarity

components. The term ρsem is used to calculate Equation 2 to

determine the level of importance between semantic

similarity components. The term ρstr is used to calculate

Equation 7 to determine the level of importance between

structural similarity components. In addition, the experiment

was repeated 1331 times with different combinations of ρ, ρsem,

and ρstr. Fig. 9 shows the highest agreement results obtained

from each ρ from zero to one. Therefore, the highest

agreement value obtained is 0.921 with ρ = 0.9, ρsem = 0.8, and
ρstr = 0.6.

Based on the results of the conducted studies, the

maximum value of the agreement of the proposed method

with an expert is 0.897. According to Landis and Koch [53],

this value is included in the almost perfect agreement.
Therefore, our proposed method is as reliable as a teacher

when assessing statechart diagrams. The maximum

agreement value is ρ = 0.9. In assessing two-statechart

diagrams, this implies that a teacher tends to look more at the

structure of the statechart diagram than the lexical of the

statechart diagram. The best ρsem values obtained are 0. In

assessing the lexical of a statechart diagram, a teacher pays

more attention to the transition than the state. The best ρstr

value found is 0.6; that is, the teacher tends to see the flow

structure of the statechart diagram instead of the structure in

the state and transition.

Furthermore, we also conducted comparative experiments

between semantic use only, structural use, and a combination

of both. Fig. 10 depicts the results of the comparison

performed. Moreover, it can be observed that the highest

agreement value is while combining semantic and structural
similarities. The highest agreement values of the semantic and

structural similarities are 0.59 and 0.767, respectively.

Therefore, the use of one component of similarity alone is

insufficient to produce a reliable automated assessment

method. From Fig. 8, we can also observe that the structural

similarity assessment gives a higher agreement value than that

of the semantic similarity. Following the results of this study,

the teachers tend to judge the structure of statechart diagrams

instead of the lexical of statechart diagrams.

Thus, in assessing statechart diagrams, our proposed

method is reliable as an expert. Our investigation shows that
similarity measurements of statechart diagrams can also be

utilized in clone detection and the reuse of software designs.

Our proposed method can be applied to more objectives other

than the statechart diagram assessment. Additionally, this

study might be used for clone detection and software reuse.

The weighting settings for the importance of each

combination proposed herein are flexible. Weight values can

be changed based on their needs.

IV. CONCLUSIONS

This study proposed an automatic assessment method that

performed as reliable as a teacher in assessing the similarity

of student answer and answer keys. Since semantic and

structural similarities can assess the lexical and structural

diagrams, they are appropriate components for evaluating the

similarity of statechart diagrams. Semantic similarity

assessment can compare the lexical based on letters and that

based on the meaning of words. Structural similarity

assessment can demonstrate the flow statechart diagram and

the shape of each component in the statechart diagram. In the
assessment process, a teacher sees the structure of the

statechart diagram instead of the lexical statechart diagram.

The concept of semantic and structural similarities may also

be used in other UML diagrams. However, the statechart

diagram used herein is simple. In the future research direction,

it is necessary to develop an assessment of nested statechart

diagrams. It is required to find the best combination of ρ, ρsem,

and ρstr to clone detection and software reuse by involving

experts working in the industry.

Fig. 9 The maximum agreement value of the proposed method and the
expert

Fig. 10 Comparative experiment among semantic similarity, structural

similarity, and combination

2442

ACKNOWLEDGMENT

This research was funded by the Ministry of Research and

Technology/National Research and Innovation Agency of the

Republic of Indonesia. This research is a collaboration

amongst Institut Teknologi Sepuluh Nopember, Politeknik

Negeri Banjarmasin, and Institut Teknologi dan Bisnis

STIKOM Bali.

REFERENCES

[1] B. Rumpe, Agile modeling with UML: Code generation, testing,

refactoring. 2017.

[2] H. Kaur and A. Sharma, “ANOVA Based Significance Testing of Non-

functional Requirements in Software Engineering,” Int. J. Inf. Technol.

Proj. Manag., vol. 10, no. 4, pp. 100–117, 2019, doi:

10.4018/IJITPM.2019100104.

[3] I. Salman, B. Turhan, and S. Vegas, A controlled experiment on time

pressure and confirmation bias in functional software testing, vol. 24,

no. 4. Empirical Software Engineering, 2019.

[4] P. Chung and B. Gaiman, “Use of State Diagrams to Engineer

Communications Software,” in Conference of International

Conference on Software Engineering, 2017, pp. 215–221.

[5] A. Ramadhan and B. Susetyo, “Classification Modelling of Random

Forest to Identify the Important Factors in Improving the Quality of

Education,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 2, pp. 501–

507, 2021.

[6] Agusriandi, I. S. Sitanggang, and S. H. Wijaya, “Student Performance

Based on Activity Log on Social Network and e-Learning,” Int. J. Adv.

Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2276–2281, 2020, doi:

10.18517/ijaseit.10.6.8753.

[7] J. R. Rico-Juan, A. J. Gallego, and J. Calvo-Zaragoza, “Automatic

detection of inconsistencies between numerical scores and textual

feedback in peer-assessment processes with machine learning,”

Comput. Educ., vol. 140, no. February, p. 103609, 2019, doi:

10.1016/j.compedu.2019.103609.

[8] V. Vachharajani and J. Pareek, “Framework to approximate label

matching for automatic assessment of use-case diagram,” Int. J.

Distance Educ. Technol., vol. 17, no. 3, pp. 75–95, 2019, doi:

10.4018/IJDET.2019070105.

[9] R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “Use case

diagram similarity measurement: A new approach,” in International

Conference on Information and Communication Technology and

Systems, 2019, pp. 3–7.

[10] Z. Yuan, L. Yan, and Z. Ma, “Structural similarity measure between

UML class diagrams based on UCG ,” Requir. Eng., no. 0123456789,

pp. 1–17, 2019.

[11] H. Storrle, “Towards Clone Detection in UML Domain Models,”

Softw. Syst. Model., vol. 12, no. 2, pp. 307–329, 2013.

[12] S. Van Mierlo and H. Vangheluwe, “Introduction to Statecharts

Modelling, Simulation, Testing, and Deployment,” in Proceedings of

the 2018 Winter Simulation Conference, 2018, pp. 306–320, doi:

10.1017/CBO9781107415324.004.

[13] C. Li, L. Huang, J. Ge, B. Luo, and V. Ng, “Automatically classifying

user requests in crowdsourcing requirements engineering,” J. Syst.

Softw., vol. 138, pp. 108–123, 2018, doi: 10.1016/j.jss.2017.12.028.

[14] S. Al Tahat and K. Ahmad, “Lexical Disambiguation (CKBD): A tool

to identify and resolve semantic conflicts using Context Knowledge,”

Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9, no. 1, pp. 213–219, 2019,

doi: 10.18517/ijaseit.9.1.6387.

[15] G. Mediamer, A. Adiwijaya, and S. Al Faraby, “Development of rule-

based feature extraction in multi-label text classification,” Int. J. Adv.

Sci. Eng. Inf. Technol., vol. 9, no. 4, pp. 1460–1465, 2019, doi:

10.18517/ijaseit.9.4.8894.

[16] P. Sunilkumar and A. P. Shaji, “A Survey on Semantic Similarity,” in

2019 6th IEEE International Conference on Advances in Computing,

Communication and Control, ICAC3 2019, 2019, pp. 1–8.

[17] B. Sathiya and T. V. Geetha, “A review on semantic similarity

measures for ontology,” J. Intell. Fuzzy Syst., vol. 36, no. 4, pp. 3045–

3059, 2019, doi: 10.3233/JIFS-18120.

[18] Y. Y. Lee, H. Ke, T. Y. Yen, H. H. Huang, and H. H. Chen,

“Combining and learning word embedding with WordNet for semantic

relatedness and similarity measurement,” J. Assoc. Inf. Sci. Technol.,

vol. 71, no. 6, pp. 657–670, 2020, doi: 10.1002/asi.24289.

[19] X. Zhang, S. Sun, and K. Zhang, “A new hybrid improved method for

measuring concept semantic similarity in wordnet,” Int. Arab J. Inf.

Technol., vol. 17, no. 4, pp. 433–439, 2020, doi: 10.34028/iajit/17/4/1.

[20] D. D. Prasetya, A. P. Wibawa, and T. Hirashima, “The performance of

text similarity algorithms,” Int. J. Adv. Intell. Informatics, vol. 4, no.

1, pp. 63–69, 2018, doi: 10.26555/ijain.v4i1.152.

[21] S. Likavec, I. Lombardi, and F. Cena, “Sigmoid similarity - a new

feature-based similarity measure,” Inf. Sci. (Ny)., vol. 481, pp. 203–

218, 2019, doi: 10.1016/j.ins.2018.12.018.

[22] W. J. Park and D. H. Bae, “A two-stage framework for UML

specification matching,” Inf. Softw. Technol., vol. 53, no. 3, pp. 230–

244, 2011.

[23] H. O. Salami and M. Ahmed, “A framework for reuse of multi-view

UML artifacts,” Int. J. Soft Comput. Softw. Eng. [JSCSE], vol. 3, no.

3, pp. 156–162, 2013.

[24] A. Adamu, W. Mohd, and N. Wan, “Matching and Retrieval of State

Machine Diagrams from Software Repositories Using Cuckoo Search

Algorithm,” in 8th International Conference on Information

Technology (ICIT), 2017, pp. 187–192.

[25] D. B. Blumenthal and J. Gamper, “On the exact computation of the

graph edit distance,” Pattern Recognit. Lett., vol. 134, pp. 46–57, 2020,

doi: 10.1016/j.patrec.2018.05.002.

[26] D. B. Blumenthal, N. Boria, J. Gamper, S. Bougleux, and L. Brun,

“Comparing heuristics for graph edit distance computation,” VLDB J.,

vol. 29, no. 1, pp. 419–458, 2020, doi: 10.1007/s00778-019-00544-1.

[27] D. A. Rachkovskij, “Fast Similarity Search for Graphs by Edit

Distance,” Cybern. Syst. Anal., vol. 55, no. 6, pp. 1039–1051, 2019,

doi: 10.1007/s10559-019-00213-9.

[28] K. Riesen, M. Ferrer, and H. Bunke, “Approximate Graph Edit

Distance in Quadratic Time,” IEEE/ACM Trans. Comput. Biol.

Bioinforma., vol. 13, no. 9, 2015, doi: 10.1109/TCBB.2015.2478463.

[29] K. Riesen, M. Ferrer, R. Dornberger, and H. Bunke, “Greedy Graph

Edit Distance,” in Machine Learning and Data Mining in Pattern

Recognition, 2015, vol. 9166, pp. 3–16, doi: 10.1007/978-3-319-

21024-7.

[30] S. Ferrán, A. Beghelli, G. Huerta-Cánepa, and F. Jensen, “Correctness

assessment of a crowdcoding project in a computer programming

introductory course,” Comput. Appl. Eng. Educ., vol. 26, no. 1, pp.

162–170, 2018, doi: 10.1002/cae.21868.

[31] F. Restrepo-Calle, J. J. Ramírez Echeverry, and F. A. González,

“Continuous assessment in a computer programming course supported

by a software tool,” Comput. Appl. Eng. Educ., vol. 27, no. 1, pp. 80–

89, 2019, doi: 10.1002/cae.22058.

[32] M. Aleyaasin, “Digital assessment of individual engineering

assignments in mass courses,” Comput. Appl. Eng. Educ., vol. 26, no.

5, pp. 1888–1893, 2018, doi: 10.1002/cae.22014.

[33] D. Galan, R. Heradio, H. Vargas, I. Abad, and J. A. Cerrada,

“Automated Assessment of Computer Programming Practices: The 8-

Years UNED Experience,” IEEE Access, vol. 7, pp. 130113–130119,

2019, doi: 10.1109/ACCESS.2019.2938391.

[34] S. Nurhayati and J. Purwanto, “Chatbot Based Applications on Smart

Home Use Natural Language Processing,” Int. J. Adv. Sci. Eng. Inf.

Technol., vol. 11, no. 2, pp. 581–588, 2021.

[35] R. Fauzan, “Use Case Diagram Similarity Measurement : A New,” in

2019 12th International Conference on Information & Communication

Technology and System (ICTS), 2019, pp. 3–7.

[36] E. Triandini, R. Fauzan, D. O. Siahaan, and S. Rochimah, “Sequence

Diagram Similarity Measurement: A Different Approach,” in JCSSE

2019 - 16th International Joint Conference on Computer Science and

Software Engineering: Knowledge Evolution Towards Singularity of

Man-Machine Intelligence, 2019, pp. 348–351.

[37] R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “Activity

diagram similarity measurement: A different approach,” in 2018

International Seminar on Research of Information Technology and

Intelligent Systems, ISRITI 2018, 2018, pp. 601–605.

[38] R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “Automated

Class Diagram Assessment using Semantic and Structural Similarities,”

Int. J. Intell. Eng. Syst., vol. 14, no. 2, 2021.

[39] R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “A Different

Approach on Automated Use Case Diagram Semantic Assessment,”

Int. J. Intell. Eng. Syst., vol. 14, no. 1, pp. 496–505, Feb. 2021, doi:

10.22266/ijies2021.0228.46.

[40] R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “A Novel

Approach to Automated Behavioral Diagram Assessment using Label

Similarity and Subgraph Edit Distance,” Comput. Sci., vol. 22, no. 2,

2021.

[41] N. A. Rakhmawati, A. A. Firmansyah, P. M. Effendi, R. Abdillah, and

T. A. Cahyono, “Auto Halal detection products based on euclidian

2443

distance and cosine similarity,” Int. J. Adv. Sci. Eng. Inf. Technol., vol.

8, no. 4–2, pp. 1706–1711, 2018, doi: 10.18517/ijaseit.8.4-2.7083.

[42] C. Jebarathinam, D. Home, and U. Sinha, “Pearson correlation

coefficient as a measure for certifying and quantifying high-

dimensional entanglement,” Phys. Rev. A, vol. 101, no. 2, pp. 1–18,

2020, doi: 10.1103/PhysRevA.101.022112.

[43] D. Edelmann, T. F. Móri, and G. J. Székely, “On relationships between

the Pearson and the distance correlation coefficients,” Stat. Probab.

Lett., vol. 169, p. 108960, 2021, doi: 10.1016/j.spl.2020.108960.

[44] J. P. B. Mapetu, L. Kong, and Z. Chen, A dynamic VM consolidation

approach based on load balancing using Pearson correlation in cloud

computing, no. 0123456789. Springer US, 2020.

[45] S. Lisawadi, S. E. Ahmed, O. Reangsephet, and M. K. A. Shah,

“Simultaneous estimation of Cronbach’s alpha coefficients,” Commun.

Stat. - Theory Methods, vol. 48, no. 13, pp. 3236–3257, 2019, doi:

10.1080/03610926.2018.1473882.

[46] K. S. Taber, “The Use of Cronbach’s Alpha When Developing and

Reporting Research Instruments in Science Education,” Res. Sci.

Educ., vol. 48, no. 6, pp. 1273–1296, 2018, doi: 10.1007/s11165-016-

9602-2.

[47] F. Garcia-Loro, S. Martin, J. A. Ruipérez-Valiente, E. Sancristobal,

and M. Castro, “Reviewing and analyzing peer review Inter-Rater

Reliability in a MOOC platform,” Comput. Educ., vol. 154, no.

September 2019, 2020, doi: 10.1016/j.compedu.2020.103894.

[48] J. Jirschitzka, A. Oeberst, R. Göllner, and U. Cress, “Inter-rater

reliability and validity of peer reviews in an interdisciplinary field,”

Scientometrics, vol. 113, no. 2, pp. 1059–1092, 2017, doi:

10.1007/s11192-017-2516-6.

[49] K. N. Bromm, I. M. Lang, E. E. Twardzik, C. L. Antonakos, T.

Dubowitz, and N. Colabianchi, “Virtual audits of the urban streetscape:

Comparing the inter-rater reliability of GigaPan® to Google Street

View,” Int. J. Health Geogr., vol. 19, no. 1, pp. 1–15, 2020, doi:

10.1186/s12942-020-00226-0.

[50] A. M. Jimenez and S. J. Zepeda, “A Comparison of Gwet’s AC1 and

Kappa When Calculating Inter-Rater Reliability Coefficients in a

Teacher Evaluation Context,” J. Educ. Hum. Resour., p. e20190001,

2020, doi: https://doi.org/10.3138/jehr-2019-0001.

[51] T. Ohyama, “Statistical inference of Gwet’s AC1 coefficient for

multiple raters and binary outcomes,” Commun. Stat. - Theory

Methods, vol. 0, no. 0, pp. 1–9, 2020, doi:

10.1080/03610926.2019.1708397.

[52] A. Karthikayen and S. Selvakumar Raja, “Gwet kappa reliability

factor-based selfish node detection technique for ensuring reliable data

delivery in mobile adhoc networks,” J. Comput. Theor. Nanosci., vol.

16, no. 2, pp. 489–495, 2019, doi: 10.1166/jctn.2019.7756.

[53] J. R. R. Landis and G. G. Koch, “The Measurement of Observer

Agreement for Categorical Data,” Biometrics, vol. 33, no. 1, p. 159,

1977, doi: 10.2307/2529310

2444

