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Abstract—Numerous information system applications produce a huge amount of non-stationary streaming data that demand real-time 

analytics. Classification of data streams engages supervised models to learn from a continuous infinite flow of labeled observations. The 

critical issue of such learning models is to handle dynamicity in data streams where the data instances undergo distributional change 

called concept drift. The online learning approach is essential to cater to learning in the streaming environment as the learning model 

is built and functional without the complete data for training in the beginning. Also, the ensemble learning method has proven to be 

successful in responding to evolving data streams. A multiple learner scheme boosts a single learner's prediction by integrating multiple 

base learners that outperform each independent learner. The proposed algorithm EoE (Ensemble of Ensembles) is an integration of ten 

seminal ensembles. It employs online learning with the majority voting to deal with the binary classification of non-stationary data 

streams. Utilizing the learning capabilities of individual sub ensembles and overcoming their limitations as an individual learner, the 

EoE makes a better prediction than that of its sub ensembles. The current communication empirically and statistically analyses the 

performance of the EoE on different figures of merits like accuracy, sensitivity, specificity, G-mean, precision, F1-measure, balanced 

accuracy, and overall performance measure when tested on a variety of real and synthetic datasets. The experimental results claim that 

the EoE algorithm outperforms its state-of-the-art independent sub ensembles in classifying non-stationary data streams. 
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I. INTRODUCTION

Recent developments in computational intelligence have 
focused on solving challenging environmental dynamicity-
related issues. A wide variety of real-world applications like 
network intrusion detection [1],  analysis of social media [2], 
[3], analysis of time-series data [4], condition-based 
maintenance [5], client credit analysis [6], financial risk 
prediction [7] need to process dynamic data received as 
streams. Non-stationary data streams characterize significant 
volumes of rapidly flowing boundless data [8], [9]. Such 
dynamic data streams may have uneven data samples referred 
to as class imbalance [10], [11] and changing data distribution 
referred to as concept drift [12], [13]. Thus, learning in a non-
stationary environment is becoming an interesting and 
challenging research topic, and rich literature is available for 
the same [9], [12], [14]–[17].The streaming environment 
produces a quantum of data in sequence. Hence, the whole 
training data is not present in the beginning. The evolving 

nature of dynamic data streams demands online learning that 
builds and updates the learning model incrementally [18]. 
Ensemble learning is also an appropriate approach to learn in 
a non-stationary environment as the combination of different 
single learning models in an ensemble builds a superior 
learner by compensating for the weaknesses of its single 
learners [19].  

Better generalization capability made ensembles more 
popular than a single classifier. A variety of ensemble 
learning algorithms for data stream mining have been 
published [17], [20]. Most of them like Weighted Majority 
Algorithm (WM) [21], Accuracy Weighted Ensemble (AWE) 
[22], Dynamic Weighted Majority (DWM) [23], Dynamic 
Classifier Selection (DCS) [24], Gradual Resampling 
Ensemble (GRE) [25], an ensemble based on Dynamic 
Classifier Selection (DCS) [24], Sample-based Online 
Learning Ensemble (SOLE) [6], and an ensemble for 
Handling Imbalanced Data with Concept Drift (HIDC) [10]. 
The HIDC handles the dynamicity in the data streams by 
including a new learner (and possibly removing an old one or 
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the worst performing one) to develop an ensemble 
incrementally with each incoming data sample. These 
ensemble algorithms follow the passive detection of concept 
drifts. There is a variety of active drift detecting ensembles 
like BagADWIN [26], Adaptive Random Forest (ARF) [27], 
Wilcoxon Rank Sum Test Drift Detector (WSTD) [28], 
Dynamic AdaBoost.NC with Multiple Sub classifiers for 
Imbalance and Drifts (DAMSID) [5], Kappa Updated 
Ensemble (KUE) [29] that update the learning model on 
detection of a change in the data distribution. The SAM-kNN 
model [30] combines the concept of self-adjusting memory 
with the k-nearest-neighbor algorithm that creates ensemble 
members for the current and old knowledge base.  A 
comprehensive study on ensemble learning for drifted skewed 
data is available in Priya and Uthra [31]. Various drift 
detection methods in data stream learning are categorized by 
Barros and Santos [19] and Hu et al. [32]. 

In a typical batch processing algorithm, all data instances 
for a learner’s training are present at the start. In contrast, the 
incremental learner does not wait for all data instances for 
training to be received, and hence it is suitable for the 
streaming environment [18]. Online learning is incremental 
learning that uses each newly arrived example to test the 
learning and train the next model [18]. Oza [33] has 
introduced online bagging and boosting algorithms to learn in 
streaming data. Learn++.NSE [34], Online Accuracy Updated 
Ensemble (OAUE) [35], Reactive Drift Detection Method 
(RDDM) [36], Knowledge-Maximized Ensemble (KME) 
[37], Diversified Dynamic Weighted Majority (DDWM) 
[38],concept drift detection based on Online Sequential 
Extreme Learning Machine(OS-ELM) [39], Adaptive Chunk-
based Dynamic Weighted Majority (ACDWM) [40],  
Dynamic Updated Ensemble (DUE) [41] are some of the 
examples of incremental learners. 

This research aims to build an online ensemble learning 
model with the test and then train method to classify non-
stationary data streams. This research employed ten seminal 
ensemble learning approaches for streaming data 
classification. Using these ensembles, we developed a 
majority voting-based ensemble of ensembles that follows 
online learning as described in Oza[33].  This empirical study 
follows the test-then-train approach to compare the proposed 
algorithm EoE (Ensemble of Ensembles) with state-of-the-art 
ensemble learning algorithms on different performance 
metrics. Also, the empirical analysis in this research is 
supported by statistical tests. 

II. MATERIALS AND METHOD 

The current section presents the problem description, the 
proposed methodology, and the experimental framework of 
the reported empirical study. 

A. Problem Description 

The problem being addressed in this research work is 
supervised binary classification on non-stationary streaming 
data. Formally, a data stream provides boundless data 
instances {d1, d2, d3…} where dt ∈D = ℝk is a data instance in 
k-dimensional feature space received at time step t = 1, 2, … . 
An input data instance dt is initially unlabelled and its class 
label ct∈C = {c1, c2, …,cL} where L is the number of classes 
received at a constant amount of time t’∈ ℝ+ after dt. A 

framework of our problem considers ct∈C = {0, 1} where the 
class label ‘0’ represents a negative class, and a class label ‘1’ 
represents a positive class. Also, it considers class imbalance 
where the instances of a negative class, say D0 are in the 
majority and the instances of a positive class, say D1 are in the 
minority i.e., |D0| >> |D1|.  Let a joint distribution Pt(D, C) 
define a concept that produces a tuple (dt, ct) at step t. This 
framework allows non-stationary data where the concept may 
change at time t i.e., Pt-1(D, C) ≠ Pt(D, C) [12].  

The current work aims to design an online classifier f : 
D→C to predict a class label ct is associated with an input data 
instance dt. In the streaming environment, data is received 
sequentially so an online learning model gets evolved with the 
latest incoming data instances [12], [18]. 

B. Proposed Methodology 

To cater to the classification of non-stationary data streams, 
this research contributes to the following ways: 

 Bagging using ten seminal ensembles as base learners 
with the test-then-train approach for dynamic data 
stream classification.   

 Online ensemble learning builds the model on every 
incoming sample without waiting for the whole set of 
training samples.  

 Empirical and statistical analysis for comparing the 
performance of the proposed ensemble with other state-
of-the-art ensembles. 

As ensemble integrates reasonably well-performing but a 
variety of base learners, we build the proposed bagging model 
EoE (Ensemble of Ensembles) using the following ten 
seminal ensembles as base learners: 

ADWIN Bagging (BagADWIN) [26]extends the online 
bagging algorithm [33] by incorporating the ADWIN 
(ADaptive sliding WINdowing) algorithm [42]. In 
BagADWIN, the ADWIN algorithm detects the change and 
estimates the learner’s weightage. Accordingly, the worst 
performer in an ensemble of learners is deleted, and a new 
learner is included in an ensemble. 

ADWIN Boosting (BoostADWIN) [26] combines the 
online boosting algorithm [33] with ADWIN (ADaptive 
sliding WINdowing) algorithm [42] for the detection of a 
concept change. 

Weighted Majority Algorithm (WM) [21] is an ensemble 
of weighted experts. Depending on the weights of the base 
learners that have accurate classification results and the 
weights of the base learners that misclassify, it computes the 
weighted majority and accordingly produces the final 
classification result of the ensemble. 

Dynamic Weighted Majority (DWM) [23] is a revised 
version of WM [21]. Irrespective of the prediction result of an 
ensemble, the weight of an individual base learner is reduced 
by a fixed value if it misclassifies. Considering the global 
prediction result an ensemble is updated continuously. It 
removes a base learner with weight below a threshold. 

Anticipative Dynamic Adaptation to Concept Change 
(ADACC) [43] maintains a pool of incremental learning 
models. It evaluates the prediction performance of each of the 
base learners in a pool for every τ time step. Out of the worst 
half base learners of a pool, it randomly selects the one worst 
performer and substitutes it with a new base learner. It 
protects the newly inserted base learner from removal for a 
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certain time slot. The latest best-performing base learner in a 
pool provides the final prediction.  

Hoeffding Tree (HT) [44] provides an incrementally 
developed tree that processes each instance with constant time 
and memory. It employs Hoeffding bound to define the count 
of necessary samples at each node of a tree.  

Leveraging Bagging (LevBag) [45] modifies BagADWIN 
[26] by setting the higher value of diversity factor (λ=6) in 
Poisson approximation for detecting the probability of 
training samples. It also applies ensemble output 
randomization. Using majority voting LevBag determines the 
final classification result of an ensemble. 

Accuracy Weighted Ensemble (AWE) [22]trains a new 
learner on each incoming batch of data instances and tests all 
existing learners on that batch. The weightage to the base 
learner’s vote is based on its prediction accuracy. The most 
accurate k learners form a new ensemble. 

Accuracy Updated Ensemble (AUE) [46] builds an 
ensemble using chunk-based incremental weighted learners. 
Applying weighted voting on classification results of all base 
learners on the recent data chunk AUE computes the final 
prediction of an ensemble. A new learner built on each new 
block of data replaces the worst performer in the ensemble. 

Online Accuracy Updated Ensemble (OAUE) [35] follows 
an online learning approach in which it evaluates every base 
learner and computes its accuracy-based weight after every 
observation. It periodically deletes the least accurate learner 
from the ensemble. 

Bagging works better with unstable learners [33], so we 
implemented  EoE bagging using Hoeffding decision trees [44] 
as base learners in all its sub ensembles. Thus, the proposed 
EoE gives better performance as verified under Section III. 
We apply maximum voting for the final prediction. 

We follow the online learning approach by Oza [33] that 
simulates the idea of bootstrapping for streaming data. 
Generally, bagging demands the whole set of n training 
samples to have bootstrapping with replacement. Accordingly, 
bootstrapped samples follow a binomial distribution where X 
is the number of copies of each data sample. It is given by 
equation 1. However, the whole set of training samples is 
initially unavailable in the streaming environment, and the 
flow of incoming samples continues boundlessly. The online 
learning strategy in [33] approximates the binomial 
distribution of replicated training instances by Poisson(1) 
distribution when the training data size n→∞. It is defined by 
equation 2.  

 ��� � �� � �	
�
 �1 	⁄ ��1 � �1 	⁄ ����

 (1) 

 ��� � �� � ��� ��!�⁄  (2) 

 In streaming data, as we cannot get all data samples 
initially, we initially do not have data size n. Hence, we prefer 
the evaluation of EoE through the test-then-train approach 
instead of the holdout or cross-validation method. 
Accordingly, the EoE model first employs testing on a newly 
arrived sample before using it for the model's training. Thus, 
the EoE maximally utilizes the available data samples and 
evaluates the model incrementally through the test-then-train 
approach. The proposed algorithm Ensemble of Ensembles 
(EoE) is described below. 

Fig. 1 presents the flowchart of the EoE algorithm. On the 
arrival of each new data sample, the EoE model always gets 
being tested on that unseen sample. The evaluation phase 
compares the prediction result with the actual class label of 
the data sample. It empirically and statistically analyses the 
performance of the EoE on different metrics. After the testing 
phase, the same data sample is used to train the EoE model. It 
follows bootstrapping by Poisson approximation. This trained 
model is then used to test the next incoming new sample. 

 
Fig. 1 The flowchart of the EoEalgorithm 

TABLE I 
SUMMARY OF DATASETS USED 

Dataset # Instances # Features # Classes Positive % Negative % Type 

SEA 50000 3 2 37.16 62.84 Synthetic 
Agrawal 100000 9 2 32.66 67.34 Synthetic 
Rotating Hyperplane 200000 10 2 49.97 50.03 Synthetic 
Rotating Checkerboard-CDR 409600 2 2 49.99 50.01 Synthetic 
Weather 18159 8 2 31.38 68.62 Real 
Electricity  45312 8 2 42.45 57.55 Real 
Airlines 539383 7 2 44.54 55.46 Real 
KDD Cup 10 percent 494000 41 2 23.14 76.86 Real 

Algorithm EoE: 
Input: (dt, ct) is an incoming data instance at time t = {1, 2, …} of data 

stream D, S ={s ∈{1,2,.., E}} is an ensemble of ensembles, E is 
the number of sub ensembles working as base learners in S. 

Output: A composite hypothesis 

     


E

s ttt
ct

t cdhIdH
1}1,0{

maxarg
 

1. Initialize: E=10 
2. Do for each incoming instance (dt, ct)  
3.  for s = 1 to E do 
4.   Let r ~Poisson(1) 
5.   By the test-then-train approach repeat r times      

      training of the base learner s;   cdh ttt  ; 

6.  end for 
7. End 
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C. Dataset Description 

There are publicly available numerous real and synthetic 
datasets widely used for concept drift and imbalance learning, 
as listed in Lu et al.[13]. The experimentation is carried out 
on eight popular benchmark datasets, out of which four are 
synthetic, and four are real datasets. The selected data sets 
differ in sample size, class distribution, and imbalance ratio to 
ensure a detailed evaluation of results. Many of these datasets 
like Agrawal, Rotating Hyperplane, Electricity pricing, 
Airlines are available with MOA (Massive Online Analysis) 
framework [47]. SEA, Weather, KDD Cup 10 percent, and 
Rotating Checker Board with Constant Drift Rate (Rotating 
Checker Board-CDR) datasets are taken from the repository 
[34]. Table I presents the summary of these datasets employed 
for the experimentation. 

D. Evaluation Metrics 

The confusion matrix showed in Table II illustrates the 
result of binary classification. Let ‘0’ define a negative class 
and ‘1’ define a positive class. 

TABLE II 
CONFUSION MATRIX FOR BINARY CLASSIFICATION 

 Actual ‘0’ Actual ‘1’ 

Predicted ‘0’ TN (True Negative) FN (False Negative) 
Predicted ‘1’ FP (False Positive) TP (True Positive) 
 
Non-stationary data streams may possess concept drifts and 

skewness in it. If data possess skewness, then accuracy 
measurement will not evaluate a learner’s performance 
correctly. It may reflect the better accuracy due to correct 
classification of the majority samples hiding the poor 
performance of the learner in classifying the minority samples 
[11], [12]. Therefore, the current empirical study employs 
different figures of merits to thoroughly evaluate the 
performance of the algorithms mentioned above in classifying 
non-stationary data streams. There are other different popular 
evaluation metrics like sensitivity, specificity, G-mean, 
precision, F1-measure, and balanced accuracy. A learner’s 
classification performance for both majority and minority 
samples are assessed through metrics such as sensitivity, 
specificity, G-mean, and balanced accuracy. 

Additionally, this study presents a combination of 
evaluation metrics as “Overall Performance Measure” (OPM), 
which computes a single value to reflect how well an 
algorithm performs on a specific dataset. It is a convex 
function of accuracy, G-mean, and F1-measure. In OPM 
computation, we have considered G-mean and not sensitivity, 
specificity, and balanced accuracy as G-mean considers 
sensitivity and specificity. Also, instead of precision, we have 
considered only F1-measure in OPM calculation as it also 
reflects precision. The following equations 3 to 10 define 
different evaluation metrics. 

 �������� � ���� + ��� ��� + �� + �� + ���⁄ � (3) 
 !�	"#$#%#$� � ��� ��� + ���⁄ � (4) 

 !&��#'#�#$� � ��� ��� + ���⁄ � (5) 
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� B
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E. Experimental Setup 

The proposed algorithm EoE is compared with ten state-of-
the-art algorithms. We have used the Java-based MOA 
framework for the empirical study and refer to state-of-the-art 
ensembles implemented in it with default settings. All data 
instances are initially unavailable for training in a streaming 
environment, so the current online learning experiments 
follow the test-then-train approach. In online learning, the 
order of incoming data instances affects a learner’s 
performance[33], so we test all the algorithms independently 
on ten different orderings of each dataset. We average the 
results of such ten experiments per dataset using all eleven 
algorithms. The study compares the performances of 
algorithms by ranking these averages from (1) to (11). The 
lower the value of the rank, the better is the performance of 
the algorithm. Thus, a rank (1) indicates the best, and a rank 
(11) indicates the worst performer among eleven algorithms. 

III. RESULTS AND DISCUSSION 

This section investigates the empirical and statistical tests 
to evaluate the performance of EoE. 

A. Empirical Results 

The empirical study of online learning of non-stationary 
data streams using an ensemble of ensembles employs eight 
figures of merits: - 1) Accuracy (Acc), 2) Sensitivity (Se), 3) 
Specificity (Sp), 4) G-mean, 5) Precision (Prec), 6) F1-
Measure (F1), 7) Balanced Accuracy (Bal Acc), and 8) 
Overall Performance Measure (OPM). All empirical results of 
performance measurement are presented in percentages. 
Tables III-VI present the average results of the figures of 
merits on four synthetic datasets, and tables VII-X present 
those results on four real datasets. 

The experimental results on the SEA dataset are recorded 
in Table III. LevBag has the best sensitivity, G-mean, F1-
measure, balanced accuracy, and OPM when tested on the 
SEA dataset. However, EoE is the best performer because of 
the overall average ranking. Table IV presents the 
experimental results on the Agrawal dataset. The results show 
that EoE is the best performer based on accuracy, G-mean, 
F1-measure, balanced accuracy, OPM, and overall average 
ranking, while ADACC is the worst performer on the Agrawal 
dataset. 
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TABLE III 
SEA DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 Bag 
ADWIN 

Boost 
ADWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 85.46 ± 
0.54 (4) 

81.08 ± 
0.92 (11) 

85.43 ± 
0.86 (5) 

82.35 ± 
0.86 (10) 

85.2 ± 
0.07 (8) 

85.74 ± 
0.59 (2) 

85.15 ± 
0.56 (9) 

85.34 ± 
0.09 (6) 

85.34 ± 
0.49 (7) 

85.49 ± 
0.72 (3) 

85.74 ± 
0.63 (1) 

Se 75.52 ± 
0.53 (4) 

71.63 ± 
0.93 (10) 

73.1 ± 
1.24 (8) 

70.05 ± 
1.16 (11) 

75.32 ± 
0.58 (5) 

77.44 ± 
0.58 (1) 

72.5 ± 
0.58 (9) 

73.95 ± 
0.45 (7) 

75.02 ± 
0.31 (6) 

75.61 ± 
0.62 (3) 

75.81 ± 
0.49 (2) 

Sp 91.34 ± 
0.63 (6) 

86.67 ± 
0.94 (11) 

92.72 ± 
0.64 (1) 

89.63 ± 
0.71 (10) 

91.05 ± 
0.34 (8) 

90.65 ± 
0.64 (9) 

92.63 ± 
0.58 (2) 

92.09 ± 
0.28 (3) 

91.45 ± 
0.61 (5) 

91.33 ± 
0.79 (7) 

91.62 ± 
0.72 (4) 

G-mean 83.06 ± 
0.53 (4) 

78.79 ± 
0.92 (11) 

82.33 ± 
0.97 (8) 

79.24 ± 
0.95 (10) 

82.81 ± 
0.18 (6) 

83.78 ± 
0.58 (1) 

81.95 ± 
0.56 (9) 

82.52 ± 
0.15 (7) 

82.83 ± 
0.43 (5) 

83.1 ± 
0.69 (3) 

83.34 ± 
0.59 (2) 

Prec 83.77 ± 
1.06 (6) 

76.07 ± 
1.52 (11) 

85.58 ± 
1.29 (1) 

79.98 ± 
1.34 (10) 

83.27 ± 
0.43 (8) 

83.05 ± 
1.06 (9) 

85.34 ± 
1.08 (2) 

84.68 ± 
0.4 (3) 

83.85 ± 
1.03 (5) 

83.77 ± 
1.38 (7) 

84.26 ± 
1.25 (4) 

F1 79.43 ± 
0.72 (4) 

73.78 ± 
1.19 (11) 

78.85 ± 
1.26 (8) 

74.69 ± 
1.22 (10) 

79.09 ± 
0.16 (6) 

80.14 ± 
0.78 (1) 

78.4 ± 
0.77 (9) 

78.95 ± 
0.15 (7) 

79.19 ± 
0.62 (5) 

79.48 ± 
0.95 (3) 

79.81 ± 
0.83 (2) 

Bal Acc 83.43 ± 
0.53 (4) 

79.15 ± 
0.91 (11) 

82.91 ± 
0.93 (8) 

79.84 ± 
0.91 (10) 

83.18 ± 
0.14 (6) 

84.04 ± 
0.58 (1) 

82.56 ± 
0.56 (9) 

83.02 ± 
0.12 (7) 

83.24 ± 
0.45 (5) 

83.47 ± 
0.69 (3) 

83.71 ± 
0.6 (2) 

OPM 82.65 ± 
0.6 (4) 

77.89 ± 
1.01 (11) 

82.2 ± 
1.03 (8) 

78.76 ± 
1.01 (10) 

82.37 ± 
0.14 (6) 

83.22 ± 
0.65 (1) 

81.83 ± 
0.63 (9) 

82.27 ± 
0.13 (7) 

82.45 ± 
0.51 (5) 

82.69 ± 
0.78 (3) 

82.96 ± 
0.68 (2) 

AvgRank (4.5) (10.88) (5.88) (10.13) (6.63) (3.13) (7.25) (5.88) (5.38) (4) (2.38) 

TABLE IV 
AGRAWAL DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 BagAD
WIN 

Boost 
ADWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 94.74 ± 
0.08 (3) 

92.76 ± 
1.63 (9) 

88.02 ± 
0.19 (10) 

85.46 ± 
0.97 (11) 

94.45 ± 
0.21 (7) 

94.76 ± 
0.26 (2) 

93.82 ± 
0.84 (8) 

94.49 ± 
0.19 (6) 

94.65 ± 
0.11 (5) 

94.68 ± 
0.08 (4) 

94.9 ± 
0.05 (1) 

Se 92.74 ± 
0.38 (3) 

88.29 ± 
3.57 (9) 

63.84 ± 
0.46 (10) 

62.91 ± 
2.36 (11) 

92.68 ± 
0.92 (4) 

92.4 ± 
0.65 (8) 

93.02 ± 
1.94 (1) 

92.48 ± 
0.95 (6) 

92.53 ± 
0.34 (5) 

92.45 ± 
0.57 (7) 

92.75 ± 
0.29 (2) 

Sp 95.71 ± 
0.25 (6) 

94.92 ± 
0.75 (10) 

99.74 ± 
0.08 (1) 

96.39 ± 
0.39 (2) 

95.3 ± 
0.62 (9) 

95.9 ± 
0.67 (4) 

94.22 ± 
0.65 (11) 

95.46 ± 
0.61 (8) 

95.67 ± 
0.32 (7) 

95.76 ± 
0.38 (5) 

95.94 ± 
0.2 (3) 

G-mean 94.21 ± 
0.09 (2) 

91.53 ± 
2.21 (9) 

79.8 ± 
0.31 (10) 

77.86 ± 
1.6 (11) 

93.98 ± 
0.24 (6) 

94.13 ± 
0.1 (3) 

93.61 ± 
1.1 (8) 

93.96 ± 
0.25 (7) 

94.09 ± 
0.05 (5) 

94.09 ± 
0.11 (4) 

94.33 ± 
0.06 (1) 

Prec 91.29 ± 
0.44 (5) 

89.36 ± 
1.83 (10) 

99.16 ± 
0.25 (1) 

89.41 ± 
1.34 (9) 

90.56 ± 
1.06 (8) 

91.63 ± 
1.15 (3) 

88.64 ± 
1.19 (11) 

90.83 ± 
1.04 (7) 

91.21 ± 
0.56 (6) 

91.38 ± 
0.65 (4) 

91.73 ± 
0.36 (2) 

F1 92.01 ± 
0.1 (2) 

88.81 ± 
2.7 (9) 

77.68 ± 
0.4 (10) 

73.84 ± 
2.04 (11) 

91.6 ± 
0.27 (7) 

92.01 ± 
0.31 (3) 

90.77 ± 
1.31 (8) 

91.64 ± 
0.25 (6) 

91.86 ± 
0.13 (5) 

91.91 ± 
0.07 (4) 

92.23 ± 
0.06 (1) 

Bal Acc 94.23 ± 
0.09 (2) 

91.61 ± 
2.12 (9) 

81.79 ± 
0.26 (10) 

79.65 ± 
1.32 (11) 

93.99 ± 
0.23 (6) 

94.15 ± 
0.1 (3) 

93.62 ± 
1.08 (8) 

93.97 ± 
0.24 (7) 

94.1 ± 
0.04 (5) 

94.11 ± 
0.1 (4) 

94.35 ± 
0.05 (1) 

OPM 93.65 ± 
0.09 (2) 

91.03 ± 
2.18 (9) 

81.83 ± 
0.3 (10) 

79.05 ± 
1.53 (11) 

93.34 ± 
0.24 (7) 

93.63 ± 
0.22 (3) 

92.73 ± 
1.08 (8) 

93.36 ± 
0.23 (6) 

93.53 ± 
0.1 (5) 

93.56 ± 
0.09 (4) 

93.82 ± 
0.06 (1) 

AvgRank (3.13) (9.25) (7.75) (9.63) (6.75) (3.63) (7.88) (6.63) (5.38) (4.5) (1.5) 

TABLE V 
ROTATING HYPERPLANE DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 BagAD
WIN 

Boost 
ADWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 81.07 ± 
2.44 (5) 

71.33 ± 
2.01 (11) 

81.5 ± 
2.94 (3) 

73.29 ± 
3.33 (10) 

80.4 ± 
1.3 (9) 

80.72 ± 
2.16 (8) 

81.64 ± 
2.53 (1) 

81.35 ± 
1.16 (4) 

80.89 ± 
2.45 (7) 

80.93 ± 
2.52 (6) 

81.55 ± 
2.5 (2) 

Se 80.96 ± 
2.42 (5) 

70.66 ± 
2.25 (11) 

81.5 ± 
2.95 (3) 

73.24 ± 
3.3 (10) 

80.33 ± 
1.5 (9) 

80.58 ± 
2.13 (8) 

81.5 ± 
2.49 (2) 

81.35 ± 
1.33 (4) 

80.64 ± 
2.49 (7) 

80.68 ± 
2.55 (6) 

82.31 ± 
2.68 (1) 

Sp 81.19 ± 
2.46 (4) 

71.99 ± 
1.92 (11) 

81.5 ± 
2.93 (2) 

73.33 ± 
3.37 (10) 

80.47 ± 
1.1 (9) 

80.86 ± 
2.19 (7) 

81.78 ± 
2.57 (1) 

81.34 ± 
1 (3) 

81.13 ± 
2.42 (6) 

81.19 ± 
2.5 (5) 

80.78 ± 
2.33 (8) 

G-mean 81.07 ± 
2.44 (5) 

71.32 ± 
2.02 (11) 

81.5 ± 
2.94 (3) 

73.29 ± 
3.33 (10) 

80.4 ± 
1.3 (9) 

80.72 ± 
2.16 (8) 

81.64 ± 
2.53 (1) 

81.35 ± 
1.16 (4) 

80.88 ± 
2.45 (7) 

80.93 ± 
2.52 (6) 

81.54 ± 
2.5 (2) 

Prec 81.13 ± 
2.46 (4) 

71.58 ± 
1.96 (11) 

81.48 ± 
2.93 (2) 

73.28 ± 
3.36 (10) 

80.41 ± 
1.17 (9) 

80.78 ± 
2.19 (8) 

81.71 ± 
2.57 (1) 

81.32 ± 
1.05 (3) 

81.01 ± 
2.44 (7) 

81.07 ± 
2.52 (5) 

81.04 ± 
2.34 (6) 

F1 81.13 ± 
2.46 (5) 

71.58 ± 
1.96 (11) 

81.48 ± 
2.93 (3) 

73.28 ± 
3.36 (10) 

80.41 ± 
1.17 (9) 

80.78 ± 
2.19 (8) 

81.71 ± 
2.57 (2) 

81.32 ± 
1.05 (4) 

81.01 ± 
2.44 (7) 

81.07 ± 
2.52 (6) 

81.04 ± 
2.34 (1) 

Bal Acc 81.04 ± 
2.44 (5) 

71.12 ± 
2.07 (11) 

81.49 ± 
2.94 (3) 

73.26 ± 
3.33 (10) 

80.37 ± 
1.33 (9) 

80.68 ± 
2.16 (8) 

81.6 ± 
2.53 (1) 

81.34 ± 
1.19 (4) 

80.83 ± 
2.46 (7) 

80.87 ± 
2.53 (6) 

81.67 ± 
2.5 (2) 

OPM 81.07 ± 
2.44 (5) 

71.33 ± 
2.02 (11) 

81.5 ± 
2.94 (3) 

73.29 ± 
3.33 (10) 

80.4 ± 
1.3 (9) 

80.72 ± 
2.16 (8) 

81.64 ± 
2.53 (1) 

81.35 ± 
1.16 (4) 

80.89 ± 
2.45 (7) 

80.93 ± 
2.52 (6) 

81.55 ± 
2.5 (2) 

AvgRank (4.75) (11) (2.75) (10) (9) (7.88) (1.25) (3.75) (6.88) (5.75) (3) 
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TABLE VI 
ROTATING CHECKERBOARD-CDR DATASET EMPIRICAL RESULTS AND RANKING SUMMARY  

 BagAD
WIN 

Boost 
ADWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 85.46 ± 
0.16 (6) 

94.25 ± 
0.19 (1) 

71.95 ± 
0.01 (8) 

80.15 ± 
0.11 (7) 

60.38 ± 
0.78 (10) 

93.64 ± 
0.03 (2) 

52.65 ± 
0.26 (11) 

62.36 ± 
1.11 (9) 

86.58 ± 
0.19 (5) 

91.43 ± 
0.1 (3) 

90.33 ± 
0.19 (4) 

Se 85.83 ± 
0.23 (6) 

94.06 ± 
0.26 (1) 

71.67 ± 
0.02 (8) 

79.78 ± 
0.29 (7) 

59.77 ± 
4.07 (10) 

93.64 ± 
0.05 (2) 

53.27 ± 
0.75 (11) 

61.5 ± 
2.71 (9) 

86.42 ± 
0.36 (5) 

91.44 ± 
0.13 (4) 

92.27 ± 
0.28 (3) 

Sp 85.09 ± 
0.26 (6) 

94.43 ± 
0.14 (1) 

72.23 ± 
0.02 (8) 

80.52 ± 
0.33 (7) 

60.98 ± 
4.65 (10) 

93.64 ± 
0.05 (2) 

52.04 ± 
0.65 (11) 

63.22 ± 
3.78 (9) 

86.74 ± 
0.26 (5) 

91.42 ± 
0.15 (3) 

88.4 ± 
0.37 (4) 

G-mean 85.46 ± 
0.16 (6) 

94.25 ± 
0.19 (1) 

71.95 ± 
0.01 (8) 

80.14 ± 
0.11 (7) 

60.24 ± 
0.74 (10) 

93.64 ± 
0.03 (2) 

52.65 ± 
0.26 (11) 

62.28 ± 
1.08 (9) 

86.58 ± 
0.19 (5) 

91.43 ± 
0.1 (3) 

90.31 ± 
0.19 (4) 

Prec 85.19 ± 
0.22 (6) 

94.41 ± 
0.15 (1) 

72.06 ± 
0.01 (8) 

80.37 ± 
0.23 (7) 

60.59 ± 
1.46 (10) 

93.63 ± 
0.04 (2) 

52.61 ± 
0.25 (11) 

62.64 ± 
1.72 (9) 

86.69 ± 
0.22 (5) 

91.42 ± 
0.14 (3) 

88.83 ± 
0.31 (4) 

F1 85.51 ± 
0.15 (6) 

94.23 ± 
0.2 (1) 

71.86 ± 
0.01 (8) 

80.07 ± 
0.11 (7) 

60.08 ± 
1.59 (10) 

93.64 ± 
0.03 (2) 

52.94 ± 
0.44 (11) 

62.01 ± 
1.15 (9) 

86.56 ± 
0.2 (5) 

91.43 ± 
0.1 (3) 

90.51 ± 
0.18 (4) 

Bal Acc 85.46 ± 
0.16 (6) 

94.25 ± 
0.19 (1) 

71.95 ± 
0.01 (8) 

80.15 ± 
0.11 (7) 

60.38 ± 
0.77 (10) 

93.64 ± 
0.03 (2) 

52.65 ± 
0.26 (11) 

62.36 ± 
1.11 (9) 

86.58 ± 
0.19 (5) 

91.43 ± 
0.1 (3) 

90.33 ± 
0.19 (4) 

OPM 85.48 ± 
0.15 (6) 

94.24 ± 
0.19 (1) 

71.92 ± 
0.01 (8) 

80.12 ± 
0.11 (7) 

60.23 ± 
1.03 (10) 

93.64 ± 
0.03 (2) 

52.75 ± 
0.32 (11) 

62.22 ± 
1.11 (9) 

86.57 ± 
0.19 (5) 

91.43 ± 
0.1 (3) 

90.38 ± 
0.19 (4) 

AvgRank (6) (1) (8) (7) (10) (2) (11) (9) (5) (3.13) (3.88) 

TABLE VII 
WEATHER DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 BagAD
WIN 

BoostA
DWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 73.84 ± 
0.66 (5) 

72.67 ± 
0.75 (7) 

67.42 ± 
1.08 (11) 

67.64 ± 
2.1 (9) 

72.66 ± 
0.76 (8) 

77.11 ± 
0.58 (1) 

67.57 ± 
1 (10) 

72.7 ± 
0.73 (6) 

75.1 ± 0.5 
(4) 

75.89 ± 
0.62 (3) 

76 ± 
0.93 (2) 

Se 37.16 ± 
3.68 (11) 

53.36 ± 
2.12 (5) 

63.37 ± 
5.67 (2) 

54.85 ± 
0.71 (4) 

38.8 ± 
5.72 (9) 

48.42 ± 
2.57 (6) 

66.11 ± 
0.47 (1) 

39.18 ± 
5.36 (8) 

38.33 ± 
3.86 (10) 

42.82 ± 
2.76 (7) 

56.05 ± 
1.72 (3) 

Sp 90.61 ± 
1.36 (3) 

81.5 ± 
1.19 (8) 

69.27 ± 
2.83 (10) 

73.48 ± 
2.79 (9) 

88.15 ± 
2.89 (5) 

90.23 ± 
0.69 (4) 

68.24 ± 
1.55 
(11) 

88.02 ± 
2.76 (6) 

91.91 ± 
1.68 (1) 

91 ± 
0.86 (2) 

85.12 ± 
1.44 (7) 

G-
mean 

57.94 ± 
2.48 (11) 

65.92 ± 
1.15 (5) 

66.13 ± 
2.1 (3) 

63.48 ± 
1.55 (6) 

58.27 ± 
3.53 (10) 

66.07 ± 
1.58 (4) 

67.16 ± 
0.67 (2) 

58.54 ± 
3.27 (9) 

59.27 ± 
2.36 (8) 

62.39 ± 
1.78 (7) 

69.06 ± 
1 (1) 

Prec 64.5 ± 
1.89 (4) 

56.89 ± 
1.36 (8) 

48.54 ± 
1.24 (11) 

48.75 ± 
3.31 (10) 

60.34 ± 
2.87 (6) 

69.4 ± 
1.09 (1) 

48.79 ± 
1.21 (9) 

60.28 ± 
2.76 (7) 

68.64 ± 
2.41 (2) 

68.55 ± 
1.46 (3) 

63.34 ± 
2.04 (5) 

F1 47.03 ± 
2.83 (10) 

55.04 ± 
1.39 (4) 

54.87 ± 
2.56 (5) 

51.59 ± 
2.03 (7) 

46.88 ± 
3.81 (11) 

57 ± 
1.83 (2) 

56.13 ± 
0.73 (3) 

47.19 ± 
3.52 (9) 

49.03 ± 
2.55 (8) 

52.67 ± 
2.08 (6) 

59.44 ± 
1.3 (1) 

Bal 
Acc 

63.88 ± 
1.34 (9) 

67.43 ± 
0.92 (3) 

66.32 ± 
1.83 (6) 

64.17 ± 
1.7 (8) 

63.47 ± 
1.62 (11) 

69.33 ± 
1.07 (2) 

67.17 ± 
0.69 (4) 

63.6 ± 
1.51 (10) 

65.12 ± 
1.22 (7) 

66.91 ± 
1.12 (5) 

70.59 ± 
0.89 (1) 

OPM 59.61 ± 
1.99 (9) 

64.54 ± 
1.1 (3) 

62.81 ± 
1.91 (6) 

60.9 ± 
1.89 (8) 

59.27 ± 
2.7 (11) 

66.73 ± 
1.33 (2) 

63.62 ± 
0.8 (5) 

59.47 ± 
2.51 (10) 

61.13 ± 
1.8 (7) 

63.65 ± 
1.49 (4) 

68.17 ± 
1.08 (1) 

AvgR
ank 

(7.75) (5.38) (6.75) (7.63) (8.88) (2.75) (5.63) (8.13) (5.88) (4.63) (2.63) 

TABLE VIII 
ELECTRICITY DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 BagAD
WIN 

Boost 
ADWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 77.39 ± 
2.21 (4) 

77.18 ± 
3.93 (5) 

74.28 ± 
1.68 (10) 

73.26 ± 
5.76 (11) 

76.22 ± 
1.49 (8) 

80.35 ± 
3.18 (1) 

74.91 ± 
1.05 (9) 

76.33 ± 
1.7 (7) 

76.39 ± 
0.32 (6) 

78 ± 
3.34 (3) 

78.42 ± 
2.78 (2) 

Se 63.8 ± 
4.51 (5) 

72.66 ± 
4.59 (1) 

53.95 ± 
5.34 (11) 

60.59 ± 
9.3 (8) 

63.47 ± 
5.61 (6) 

70.69 ± 
5.62 (2) 

56.63 ± 
1.28 (10) 

63.15 ± 
4.6 (7) 

60.15 ± 
3.32 (9) 

63.88 ± 
6.87 (4) 

64.63 ± 
6.1 (3) 

Sp 87.41 ± 
0.96 (7) 

80.52 ± 
3.51 (11) 

89.27 ± 
1.29 (1) 

82.61 ± 
3.16 (10) 

85.63 ± 
1.86 (9) 

87.48 ± 
1.44 (6) 

88.4 ± 
2.48 (4) 

86.05 ± 
1.2 (8) 

88.37 ± 
1.95 (5) 

88.42 ± 
0.82 (3) 

88.6 ± 
0.5 (2) 

G-mean 74.65 ± 
2.76 (5) 

76.48 ± 
4.04 (2) 

69.31 ± 
2.79 (11) 

70.66 ± 
6.55 (10) 

73.63 ± 
2.38 (7) 

78.6 ± 
3.65 (1) 

70.73 ± 
0.64 (9) 

73.66 ± 
2.38 (6) 

72.86 ± 
1.09 (8) 

75.08 ± 
4.15 (4) 

75.61 ± 
3.54 (3) 

Prec 78.85 ± 
1.88 (5) 

73.36 ± 
4.74 (10) 

78.79 ± 
1.08 (6) 

71.68 ± 
5.89 (11) 

76.57 ± 
1.15 (9) 

80.55 ± 
2.71 (2) 

78.43 ± 
2.96 (7) 

76.95 ± 
1.33 (8) 

79.35 ± 
1.59 (4) 

80.13 ± 
2.33 (3) 

80.6 ± 
1.7 (1) 

F1 70.49 ± 
3.32 (5) 

73 ± 4.64 
(2) 

63.92 ± 
3.43 (11) 

65.61 ± 
7.77 (10) 

69.27 ± 
2.94 (7) 

75.26 ± 
4.27 (1) 

65.72 ± 
0.76 (9) 

69.3 ± 
2.89 (6) 

68.34 ± 
1.36 (8) 

71 ± 
4.92 (4) 

71.66 ± 
4.19 (3) 

Bal Acc 75.61 ± 
2.5 (5) 

76.59 ± 
4.01 (3) 

71.61 ± 
2.15 (10) 

71.6 ± 
6.23 (11) 

74.55 ± 
2 (7) 

79.08 ± 
3.49 (1) 

72.51 ± 
0.83 (9) 

74.6 ± 
2.06 (6) 

74.26 ± 
0.7 (8) 

76.15 ± 
3.8 (4) 

76.61 ± 
3.21 (2) 

OPM 74.18 ± 
2.76 (5) 

75.56 ± 
4.2 (2) 

69.17 ± 
2.64 (11) 

69.84 ± 
6.69 (10) 

73.04 ± 
2.27 (7) 

78.07 ± 
3.7 (1) 

70.46 ± 
0.82 (9) 

73.1 ± 
2.33 (6) 

72.53 ± 
0.92 (8) 

74.7 ± 
4.14 (4) 

75.23 ± 
3.5 (3) 

AvgRank (5.13) (4.5) (8.88) (10.13) (7.5) (1.88) (8.25) (6.75) (7) (3.63) (2.38) 
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The experimental results on the rotating hyperplane dataset 
are summarized in Table V. It is observed that AWE gives the 
best accuracy, specificity, G-mean, precision, balanced 
accuracy, OPM, and thus has the best overall rank for rotating 
hyperplane dataset. However, EoE has the best sensitivity and 
F1-measure. Table VI gives the summary of empirical results 
on the rotating checkerboard with a constant drift rate dataset. 
It claims that BoostADWIN beats all other algorithms in all 
performance measurements on the rotating checkerboard with 
a constant drift rate dataset, whereas EoE stands fourth and 
AWE stands the last in the average ranking. 

The performance measurement results on the weather 
dataset presented in Table VII show that though LevBag gives 
the best accuracy and precision, EoE has the best G-mean, F1-

measure, balanced accuracy, and OPM. Hence it is the best 
performer on the weather dataset. The experimental results on 
the electricity pricing dataset are noted in Table VIII. It is 
observed that LevBag gives the best accuracy, G-mean, F1-
measure, balanced accuracy, OPM, and thus has the best 
overall rank for the electricity pricing dataset. However, EoE 
has the best precision. 

Table IX presents the experimental results on the airline's 
dataset. The results show that EoE has the best G-mean, F1-
measure, and OPM, whereas WM gives the best accuracy, 
precision, and balanced accuracy. However, considering the 
overall average ranking WM and OAUE are the best and 
LevBag is the worst performer on the airline's dataset. 

TABLE IX 
AIRLINES DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 BagAD
WIN 

Boost 
ADWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 62.02 ± 
1.42 (5) 

58.2 ± 
1.19 (9) 

61.15 ± 
2.11 (6) 

56.13 ± 
1.75 (11) 

64.22 ± 
0.3 (3) 

57.96 ± 
1.82 (10) 

59.26 ± 
0.92 (8) 

64.55 ± 
0.38 (1) 

60.5 ± 
2.25 (7) 

64.46 ± 
1.09 (2) 

63.49 ± 
1.63 (4) 

Se 48.49 ± 
1.88 (6) 

56.1 ± 
0.86 (1) 

49.99 ± 
2.43 (4) 

53.34 ± 
0.61 (2) 

47.48 ± 
2.1 (9) 

46.98 ± 
0.62 (10) 

47.89 ± 
0.28 (8) 

48.4 ± 
2.12 (7) 

46.53 ± 
1.84 
(11) 

48.81 ± 
0.57 (5) 

53.31 ± 
0.73 (3) 

Sp 72.89 ± 
1.09 (4) 

59.89 ± 
1.85 (10) 

70.12 ± 
1.87 (7) 

58.36 ± 
2.7 (11) 

77.67 ± 
2.23 (1) 

66.79 ± 
2.79 (9) 

68.39 ± 
1.52 (8) 

77.52 ± 
2.38 (2) 

71.71 ± 
2.61 (5) 

77.03 ± 
1.54 (3) 

71.67 ± 
2.38 (6) 

G-mean 59.45 ± 
1.57 (5) 

57.96 ± 
1.1 (7) 

59.2 ± 
2.21 (6) 

55.79 ± 
1.57 (11) 

60.69 ± 
0.58 (4) 

56.01 ± 
1.52 (10) 

57.23 ± 
0.74 (9) 

61.21 ± 
0.51 (3) 

57.77 ± 
2.17 (8) 

61.31 ± 
0.95 (2) 

61.81 ± 
1.43 (1) 

Prec 58.95 ± 
1.85 (5) 

52.93 ± 
1.34 (10) 

57.33 ± 
2.7 (6) 

50.76 ± 
2.03 (11) 

63.17 ± 
1.54 (2) 

53.27 ± 
2.63 (9) 

54.92 ± 
1.35 (8) 

63.46 ± 
1.74 (1) 

56.97 ± 
3.32 (7) 

63.08 ± 
1.9 (3) 

60.24 ± 
2.49 (4) 

F1 53.21 ± 
1.88 (7) 

54.46 ± 
0.98 (4) 

53.41 ± 
2.55 (6) 

52.01 ± 
1.32 (8) 

54.15 ± 
0.96 (5) 

49.91 ± 
1.46 (11) 

51.16 ± 
0.69 (10) 

54.86 ± 
0.89 (3) 

51.22 ± 
2.44 (9) 

55.03 ± 
1.06 (2) 

56.55 ± 
1.47 (1) 

Bal Acc 60.69 ± 
1.47 (5) 

57.99 ± 
1.12 (9) 

60.05 ± 
2.14 (6) 

55.85 ± 
1.64 (11) 

62.58 ± 
0.08 (3) 

56.88 ± 
1.7 (10) 

58.14 ± 
0.85 (8) 

62.96 ± 
0.14 (1) 

59.12 ± 
2.21 (7) 

62.92 ± 
1.04 (2) 

62.49 ± 
1.54 (4) 

OPM 58.23 ± 
1.62 (5) 

56.87 ± 
1.09 (7) 

57.92 ± 
2.29 (6) 

54.64 ± 
1.55 (10) 

59.69 ± 
0.61 (4) 

54.63 ± 
1.6 (11) 

55.88 ± 
0.79 (9) 

60.21 ± 
0.59 (3) 

56.49 ± 
2.29 (8) 

60.27 ± 
1.04 (2) 

60.62 ± 
1.51 (1) 

AvgRank (5.25) (7.13) (5.88) (9.38) (3.88) (10) (8.5) (2.63) (7.75) (2.63) (3) 

TABLE X 
KDD CUP 10 PERCENT DATASET EMPIRICAL RESULTS AND RANKING SUMMARY 

 BagAD
WIN 

BoostA
DWIN 

DWM ADACC HT LevBag AWE WM AUE OAUE EoE 

Acc 99.95 ± 
0.01 (4) 

99.95 ± 
0.01 (3) 

99.16 ± 
0.26 (8) 

99.24 ± 
0.26 (7) 

99.93 ± 
0.01 (6) 

99.96 ± 
0.01 (2) 

97.3 ± 
6.97 (11) 

99.93 ± 
0.01 (5) 

97.69 ± 
7.07 
(10) 

97.69 ± 
7.04 (9) 

99.97 ± 
0 (1) 

Se 99.86 ± 
0.02 (4) 

99.86 ± 
0.05 (3) 

98.2 ± 
0.55 (7) 

98.18 ± 
0.62 (8) 

99.79 ± 
0.03 (6) 

99.89 ± 
0.03 (2) 

88.6 ± 
30.19 (11) 

99.84 ± 
0.03 (5) 

90.07 ± 
30.53 
(10) 

90.12 ± 
30.42 

(9) 

99.91 ± 
0.02 (1) 

Sp 99.98 ± 
0.01 (5) 

99.98 ± 
0 (4) 

99.45 ± 
0.17 (11) 

99.56 ± 
0.15 (10) 

99.97 ± 
0.01 (7) 

99.98 ± 
0 (2) 

99.92 ± 
0.03 (9) 

99.96 ± 
0.01 (8) 

99.98 ± 
0 (3) 

99.98 ± 
0.01 (6) 

99.99 ± 
0 (1) 

G-mean 99.92 ± 
0.01 (4) 

99.92 ± 
0.03 (3) 

98.82 ± 
0.36 (8) 

98.87 ± 
0.39 (7) 

99.88 ± 
0.02 (6) 

99.94 ± 
0.01 (2) 

90.76 ± 
26.14 (11) 

99.9 ± 
0.02 (5) 

91.66 ± 
25.92 
(10) 

91.76 ± 
25.61 

(9) 

99.95 ± 
0.01 (1) 

Prec 99.92 ± 
0.02 (4) 

99.93 ± 
0.01 (3) 

98.17 ± 
0.57 (11) 

98.54 ± 
0.51 (10) 

99.92 ± 
0.02 (5) 

99.95 ± 
0.01 (2) 

99.72 ± 
0.07 (8) 

99.87 ± 
0.03 (6) 

99.7 ± 
0.74 (9) 

99.83 ± 
0.26 (7) 

99.96 ± 
0.01 (1) 

F1 99.89 ± 
0.02 (4) 

99.89 ± 
0.03 (3) 

98.19 ± 
0.56 (8) 

98.36 ± 
0.56 (7) 

99.85 ± 
0.02 (6) 

99.92 ± 
0.01 (2) 

89.55 ± 
29.63 (11) 

99.86 ± 
0.02 (5) 

90.47 ± 
29.61 
(10) 

90.53 ± 
29.39 

(9) 

99.93 ± 
0.01 (1) 

Bal Acc 99.92 ± 
0.01 (4) 

99.92 ± 
0.03 (3) 

98.82 ± 
0.36 (8) 

98.87 ± 
0.38 (7) 

99.88 ± 
0.02 (6) 

99.94 ± 
0.01 (2) 

94.26 ± 
15.08 (11) 

99.9 ± 
0.02 (5) 

95.03 ± 
15.26 
(10) 

95.05 ± 
15.21 

(9) 

99.95 ± 
0.01 (1) 

OPM 99.92 ± 
0.01 
(3.5) 

99.92 ± 
0.02 
(3.5) 

98.72 ± 
0.39 (8) 

98.82 ± 
0.4 (7) 

99.89 ± 
0.02 (6) 

99.94 ± 
0.01 (2) 

92.54 ± 
20.91 (11) 

99.9 ± 
0.02 (5) 

93.27 ± 
20.87 
(10) 

93.33 ± 
20.68 

(9) 

99.95 ± 
0.01 (1) 

AvgRank (4.06) (3.19) (8.63) (7.88) (6) (2) (10.38) (5.5) (9) (8.38) (1) 
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TABLE XI 
OPM RANKS SUMMARY OF ALL THE ALGORITHMS ON ALL THE DATASETS 

 SEA Agrawal Rotating 
Hyperplane 

RotChecker 
Board-CDR 

Weather Electricity Airlines KDD1
0 % 

Avg Final 
Rank 

BagADWIN 4 2 5 6 9 5 5 3.5 4.94 4 
BoostADWIN 11 9 11 1 3 2 7 3.5 5.94 5 

DWM 8 10 3 8 6 11 6 8 7.5 8 
ADACC 10 11 10 7 8 10 10 7 9.13 10 

HT 6 7 9 10 11 7 4 6 7.5 8 
LevBag 1 3 8 2 2 1 11 2 3.75 2 
AWE 9 8 1 11 5 9 9 11 7.88 9 
WM 7 6 4 9 10 6 3 5 6.25 6 
AUE 5 5 7 5 7 8 8 10 6.88 7 

OAUE 3 4 6 3 4 4 2 9 4.38 3 
EoE 2 1 2 4 1 3 1 1 1.88 1 

TABLE XII 
IMAN-DAVENPORT TEST RESULTS (=0.05) ON ALL PERFORMANCE METRICS 

Metric Acc Se Sp G-mean Prec F1 BalAcc OPM 
p-value 0.000002 0.03613 0.03929 0.000408 0.002423 0.000077 0.000095 0.000035 
Remark Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 

TABLE XIII 
PAIRWISE FRIEDMAN TEST RESULTS (=0.05) ON ALL PERFORMANCE METRICS TO COMPARE EOE 

 BagADWIN BoostADWIN DWM ADACC HT LevBag AWE WM AUE OAUE 
Acc 0.2 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.2 
Se 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Sp 0.8 0.1 0.8 0.1 0.3 0.7 0.4 0.7 0.8 0.8 

G-mean 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 
Prec 0.4 0.0 0.3 0.0 0.1 0.5 0.1 0.3 0.3 0.6 
F1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 

Bal Acc 0.1 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 
OPM 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 

The empirical results on the KDD Cup 10 percent dataset 
are mentioned in Table X. It is observed that EoE outperforms 
in all performance metrics, and AWE is the worst performer 
on the KDD Cup 10 percent dataset. 

We also used an overall performance and average rank as 
a compound evaluation metric. Table XI summarizes the 
OPM-based ranking of all algorithms on all datasets. 
Considering the average of all OPM ranks on all datasets, we 
defined the final rank of each algorithm. Fig. 2 depicts the 
average OPM ranks of all algorithms. It is observed that EoE 
with the least average OPM rank beats all other algorithms. It 
is the best performer, and ADACC is the worst performer 
based on OPM rank average.  

 
Fig. 2  Average OPM ranks of all algorithms 

 
The EoE implements a bagging model of good performing 

sub ensembles with decision trees as base learners. With the 
integration of unstable base learners and the final prediction 

based on the plurality of the prediction results of sub 
ensembles, the EoE gives better performance than each of the 
sub ensembles. Also, the online learning and test-then-train 
approach employed by the EoE algorithm help to effectively 
handle streaming data and build an incremental model. 

B. Statistical Results 

To allow formal statistical distinctions among eleven 
algorithms over multiple data sets, we conduct the 
nonparametric statistical tests as recommended in García et 

al.[48]. Table XII provides the resultant p-values at a 
significant level α=0.05 of the Iman-Davenport test applied 
on all evaluation metrics of all the algorithms. Rejecting a null 
hypothesis (H0: All algorithms show similar performance) 
underpins that at least one algorithm performs better than the 
other algorithms on all metrics and data sets. Since Table XI 
mentions EoE as the top-ranking algorithm, we apply the 
pairwise Friedman posthoc test with Li’s correction to analyze 
whether EoE performs better among all algorithms on all 
metrics[48]. The results of the posthoc test at a significant 
level α=0.05 are recorded in Table XIII, with the bold-faced 
values indicating the significant performance increase of EoE 
compared to other state-of-the-art algorithms. 

IV. CONCLUSION 

The current communication addresses online ensemble 
learning in non-stationary data streams. These non-stationary 
data streams can have skewness in data samples and drifts in 
concepts. Numerous algorithms are proposed to deal with 
such non-stationary data. We have selected ten seminal 
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ensemble learning approaches to build our ensembles to 
classify non-stationary binary data streams by reviewing the 
relevant literature. The proposed EoE bagging algorithm 
utilizes the learning capacity of each of these ten sub 
ensembles and results in the final prediction by the majority 
voting. Thus, mitigating limitations of an independent sub 
ensemble, the EoE gives better prediction results than that of 
an individual sub ensemble in classifying data streams with 
dynamicity.  

In streaming data, as all the data samples are not arrived 
initially for training the model, the EoE provides an online 
learning model to classify data streams. To employ online 
learning in streaming data, we follow the test-then-train 
approach and Poisson parameter λ to approximate training 
samples. The Poisson approximation facilitates bootstrapping 
in streaming data samples.  

The EoE and its state-of-the-art independent sub ensembles 
are empirically and statistically tested on a variety of figures 
of merits such as accuracy, sensitivity, specificity, G-mean, 
precision, F1-measure, balanced accuracy, and overall 
performance measure using different synthetic and real 
datasets. In the presented empirical study, none of the 
algorithms shows absolute superiority over all others. 
However, far more often, the proposed EoE algorithm 
outperforms other state-of-the-art algorithms with 
significance. The significant performance of EoE among the 
studied algorithms is verified through statistical tests like the 
Iman-Davenport test and the pairwise Friedman post hoc test 
with Li’s correction.  

Referring to the reported empirical work, we would like to 
work on some aspects in the future. Since this study 
demonstrates the empirical proof-of-concept of the EoE 
algorithm, we will explore its theoretical performance 
guarantees in the future. The performance gains of the EoE 
algorithm over the others do come at the cost of computational 
complexity. It is obvious because of sub ensembles built at 
each time step. We will experiment with different ensemble 
approaches to reduce computations. Also, adaptive online 
learning to effectively handle class imbalance and drifting 
concepts in non-stationary data streams will describe our 
future scope. 
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