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Abstract—The conventional decision-tree algorithm, such as ID3 and C5.0, executes rapidly and can easily be translated into if-then-
else rules. This paper introduces popular classifier C4.5 for dealing with water resources engineering problem. The proposed 
approach was applied to the Shihmen Reservoir, which is one of the largest reservoirs, located upstream of the Tahan River Basin of 
northern Taiwan. The existing rules, namely M5-C rules, include two main flood stages: the peak-flow-preceding stage and the peak-
flow-proceeding stage. The findings show superior performance of the C4.5 rules in contrast to M5-C rules. Accordingly, C4.5 rules 
can be used to improve the engineering problem. 
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I. INTRODUCTION 
Decision tree algorithms are widely used in the fields of 

machine learning and data mining ([1]-[4]). In principle, 
there are exponentially many decision trees that can be 
constructed from a given set of attributes. While some of the 
trees are more accurate than others, finding the optimal tree 
is computationally infeasible because of the exponential size 
of the search space [5]. Some well-known decision trees 
include CART [1], ID3 [5], C4.5 and C5.0 [2], and CHAID 
[7], which are greed local search algorithms with trees 
constructed top-down ([8]-[10]). 

This paper introduces popular classifier, namely C4.5, for 
dealing with the reservoir release problem during typhoons. 
The proposed approach was applied to the Shihmen 
Reservoir, which is one of the largest reservoirs, located 
upstream of the Tahan River Basin of northern Taiwan. To 
derive release rules, steps of the proposed methodology 
involve: (1) generating the optimal input-output patterns 
obtained by the flood-control optimization model, (2) 
deriving the tree-based rules by C4.5, and (3) selecting 
optimal tree-based rules determined by comparing current 
rules and tree-based rules. 

II. DECISION TREE ALGORITHM 
Decision-tree algorithm identifies nuggets of information 

in bodies of data and extracts information in such a way that 
it can be used in areas such as decision support, prediction, 
forecasts, and estimation [11]. C4.5 uses a divide-and-
conquer approach to growing decision trees that was 
pioneered by Hunt and his co-workers [12]. Only a brief 
description of the method is given here; see Quinlan [2] for a 
more complete treatment. 

The default splitting criterion used by C4.5 is gain ratio, 
an information-based measure that takes into account 
different numbers (and different probabilities) of test 
outcomes. Let C denote the number of classes and p(D, j) the 
proportion of cases in a set D of cases that belong to the jth 
class. Some test T with mutually exclusive outcomes T1, 
T2,…, Tk is used to partition D into subsets D1, D2,…, Dk, 
where Di contains those cases that have outcome Ti. The tree 
for D has test T as its root with one subtree for each outcome 
Ti that is constructed by applying the same procedure 
recursively to the cases in Di  [13]. 

The residual uncertainty about the class to which a case in 
D belongs can be expressed as 

664



( )2
1

( ) ( , ) lo g ( , )
C

j
Info D p D j p D j

=

= − ×∑                   (1) 

and the corresponding information gained by a test T with k 
outcomes as 

1
( , ) ( ) ( )

k
i

i
i

D
Gain D T Info D Info D

D=

= − ×∑               (2) 

The information gained by a test is strongly affected by 
the number of outcomes and is maximal when there is one 
case in each subset Di. On the other hand, the potential 
information obtained by partitioning a set of cases is based 
on knowing the subset Di into which a case falls; this split 
information 
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tends to increase with the number of outcomes of a test. The 
gain ratio criterion assesses the desirability of a test as the 
ratio of its information gain to its split information, as below 
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Gain D TGainRatio D T
Split D T

=                          (4) 

The gain ratio of every possible test is determined and, 
among those with at least average gain, the split with 
maximum gain ratio is selected. In other words the gain ratio 
expresses the number of bits gained divided by the number 
of bits consumed by using a certain input variable for 
partitioning. The variable having the highest gain ratio is 
considered to be best. 

III. EXPERIMENT 

A. Study site 
Shihmen Reservoir, located upstream of the Tahan River 

(see Fig. 1), is a multipurpose reservoir for irrigation, 
hydroelectric energy generation, public water supply, flood 
control, and tourism. In Taiwan, the major operation 
objective of the Shihmen Reservoir is to mitigate hazard 
during typhoon invasion. 

 
Fig. 1 Map of Tahan River Basin and Shihmen Reservoir 

In order to mitigate flood damage, WRA [14] stipulated 
flood-control operation rules for the Shihmen Reservoir. The 
existing rules, namely M5-C rules, include two main flood 
stages: the peak-flow-preceding stage and the peak-flow-
proceeding stage. The flood control operation rules adopt the 
release look-up tables to standardize the water releases 
during flood periods. These types of release rules are graded 
by total forecast rainfall, the observed storage level, and the 
reservoir inflow during flood periods. The details can be 
seen in WRA [14]. 

B.  Reservoir operation optimization model 
In order to generate the input-output patterns, the 

reservoir operation optimization model for flood control, 
built by Hsu and Wei [15], is applied to Shihmen reservoir 
system. This optimization model can identify the best 
amount of water released at each flood period. 

The objectives of this model include: (1) maximizing the 
peak flow reduction at selected downstream control points; 
and (2) meeting reservoir storage at the end of the flood. 
This model follows the reservoir release policies, which 
present the general flood operation norms for two flood 
stages. The constraints include continuity equations, release 
policies, and capacity limitations. The model is summarized 
as below: 
• Objective function 

( ){ }max
1 2Minimize Q normal S

TC x C S x⋅ + ⋅ −                (5) 

where C1 is the coefficient of the peak flow at the 
downstream control point; C2 is the coefficient of the storage 
at the end of the flood; maxQx  is the peak runoff at the 

selected control point during flood period; normalS  is the 
reservoir maximum storage volume for normal 
operation; S

Tx  is the reservoir storage at the end of the flood; 
and T is flood periods. 
• Constraints 
1. Reservoir continuity equations 
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2. Downstream flow touting equations 
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3. Reservoir release policies 
(1) Peak-flow-preceding stage 

1R
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(2) Peak-flow-proceeding stage 
{ }max , 1, ,R
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where t is the time-step (hour) index; It is the reservoir 
inflow at time t; R

tx is the reservoir release variable at 

time t; and S
tx is the reservoir storage variable at time 

t; Q
tx is the downstream runoff at selected control points 

at time t; c0, c1, and c2 are channel routing coefficients; 
tα is the end time of peak-flow-preceding stage; tβ is the 

starting of peak-flow-proceeding stage; 
il

S  is the linear 

interval boundary of reservoir storage volume;
1l

S  is the 

volume of dead storage ( deadS );
( 1)VlS

+
is the volume of 

full storage ( maxS ); and ,i tη  is the variable that lies 
between 0 and 1, and is associated with a proportion 
factor between adjacent bound values of storage at time 
period t. 

C. Data and analysis 
Data of 36 typhoons (1987–2004) are available. The 

reservoir flood control problem is formulated as a mixed-
integer linear programming (MILP) model and also carried 
out by the optimization solver LINGO. The generated input-
output patterns of the total 1,438 hourly data, including 335 
records of the peak-flow-preceding stage and 1,103 records 
of the peak-flow-proceeding stage, can then serve as the 
training and testing datasets of C4.5. The patterns are split 
into two halves. The first half was used for training and the 
remaining data was for testing. 

The attributes Level, Inflow, Storage, and Time were 
selected; meanwhile, Release was as the target. The class 
level was discretized into 10% steps, corresponding to the 
ratio of release (= Release / Peak inflow). Because the flood 
duration (T) per typhoon is quite various, generally ranging 
from 12 hours to 5 days, thus the time periods need to be 
dimensionless. The dimensionless formulas of the attribute 
Time are as follows: 

Time(%) 100 1
2
t t t
t α
α

= × ≤ ≤                       (15) 

Time(%) 0.5 100
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t t t t T
T t

α
α

α

 −
= + × < ≤ − 
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where tα is the end time of the peak-flow-preceding stage. 
From Eqs. (15) and (16), the two stages of peak-flow-

preceding and peak-flow-proceeding are bounded in the 
range of [0, 0.5] and [0.5, 1], respectively. Table 1 
demonstrates a typical typhoon for the Shihmen Reservoir 
under optimized flood control operation. 

D. Results 
The C4.5 algorithm analyzed is performed using the 

Clementine software [11]. Results show that in the peak-
flow-preceding stage the accuracy is 84.71% and 71.51% for 
the training and testing phases, respectively; and in the peak-
flow-proceeding stage the accuracy is 83.72% and 72.73% 
for the training and testing phases, respectively. 

Figs. 2 and 3 compare the target and prediction in the 
testing phase. As can be seen, the C4.5 solution can make 
good classification. Moreover, Figs. 4 and 5 depict the 

scattered plots of desired target values vs. predicted values 
for Stages I and II in the testing phase.  

 
 
 

TABLE I 
EXAMPLE OF TYPICAL TYPHOON FOR FLOOD CONTROL 

Flood 
stage 

Time 
period  
(hour) 

Attributes Release 
(mcm/hr) 

Release 
Ratio 

(%) 

Target 
(Class) Time 

(%) 
Inflow 
(106 m3) 

Storage 
(106 m3) 

Level 
(m) 

Peak- 
flow- 

preceding 

1 7.1  2.4  275.2  247.4  2.4  10  1 
2 14.3  3.8  275.2  247.4  3.8  16  2 
3 21.4  6.2  275.2  247.4  6.2  27  3 
4 28.6  11.2  275.2  247.4  11.2  49  5 
5 35.7  17.9  275.2  247.4  17.9  78  8 
6 42.9  20.1  275.7  247.5  19.0  83  9 
7 50.0  22.9  278.2  247.7  19.0  83  9 

Peak- 
flow- 

proceeding 

8 54.2  20.3  280.8  248.0  19.0  83  9 
9 58.3  16.6  280.3  247.9  19.0  83  9 

10 62.5  11.1  276.7  247.6  16.0  70  7 
11 66.7  8.2  272.3  247.1  12.0  52  6 
12 70.8  4.3  267.5  246.5  10.0  44  5 
13 75.0  3.6  262.5  246.0  8.0  35  4 
14 79.2  2.8  258.7  245.5  6.0  26  3 
15 83.3  2.3  256.3  245.3  4.0  17  2 
16 87.5  2.0  255.0  245.1  3.0  13  2 
17 91.7  1.8  254.4  245.0  1.9  8  1 
18 95.8  1.4  254.2  245.0  1.6  7  1 
19 100  1.3  254.0  245.0  1.5  7  1 

 
 
 

 
Fig. 2  Comparisons of target values vs. predicted values deducted in peak-
flow-preceding stage of testing phase 

 
 

 
Fig. 3  Comparisons of target values vs. predicted values deducted in peak-
flow-proceeding stage of testing phase 

 
 
For comparison C4.5 rules with M5-C rules, the criteria 

used was Relative Mean Square Error (RMSE), defined as 
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where ( )jypredict  is the predicted value deducted from tree-

based rules at record j, ( )jy target  is the target value at record 
j, and n denotes the number of hourly records. 

 

 
Fig. 4 Scattered plots of target values vs. predicted values in peak-flow-
proceeding stage of testing phase 
 

 
Fig. 5 Scattered plots of target values vs. predicted values in peak-flow-

proceeding stage of testing phase 
 
Results show that in the peak-flow-preceding stage the 

RMSE value is 1.777 mcm/hr and 2.876 mcm/hr for the 
testing by C4.5 and M5-C rules, respectively; and in the 
peak-flow-proceeding stage the RMSE value is 1.908 
mcm/hr and 3.253 mcm/hr for the testing by C4.5 and M5-C 
rules, respectively. The findings show superior performance 
of the C4.5 rules in contrast to M5-C rules. Accordingly, 
C4.5 rules can be used to improve the engineering problem. 

IV. CONCLUSIONS 

Decision-tree algorithm identifies nuggets of information 
in bodies of data and extracts information in such a way that 
it can be used in areas such as decision support, prediction, 
forecasts, and estimation. This study aimed to develop the 
operation rules (decision trees) with respect to flood control 
during typhoons using classical, popular C4.5 algorithm. 

The proposed approach was applied to the Shihmen 
Reservoir. The existing rules, namely M5-C rules, were used 
to compare with C4.5. The findings show superior 
performance of the C4.5 rules in contrast to M5-C rules in 
two main flood stages: the peak-flow-preceding stage and 
the peak-flow-proceeding stage. This study has successfully 
developed a methodology incorporated with the C5.0 
algorithm for extracting the tree-based rules for flood control 
in Shihmen Reservoir system. 
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