Integrated Battery Energy Storage into an Optimal Low Voltage Distribution System with PV Production for an Urban Village

Vannak Vaia, Long Buna, Hideaki Ohgakib

aDepartment of Electrical and Energy Engineering, Institute of Technology of Cambodia, Phnom Penh 12150, Cambodia
E-mail: vannak.vai@itc.edu.kh; bunlong@itc.edu.kh

bInstitute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
E-mail: ohgaki.hideaki.2w@kyoto-u.ac.jp

Abstract—The feed-in tariff for rooftop photovoltaic (PV) systems has not yet been adopted in Cambodia. Thus, it does not purchase excess power by reverse power flows from PV production. One solution is to size the PV system so that the peak generation from PV is below the baseload. However, this concept does not work well for small load households. The power distribution systems are expanded in recent years due to load demand increase, and this issue makes the distribution system designers perform the planning. The design of a low voltage distribution system and suitable solutions are proposed to handle these issues. This paper purposes of designing an optimal low voltage distribution topology with the integration of PV and three different proposed solutions of reverse power relay (RPR), solar hybrid inverter (SHI), and battery energy storage (BES) in an urban village, which consists of improving a balanced load and existing PV production usage. Firstly, the repeated phase ABC is applied to minimize the power loss and unbalanced load in the three-phase distribution system. Next, the integration of RPR, SHI, and BES into household grid-connected PV production systems have been proposed as solutions. The urban village in Phnom Penh, Borey Mungkul Phnom Penh, Sangkat Veal Spov, is chosen and modeled for a case study to confirm a proposed method. Simulation results allow concluding that the integrated battery energy storage into the optimal low voltage distribution topology provides the best solution to design the grid connection PV system.

Keywords—energy storage; load balancing; repeated phase abc; reverse power relay; solar hybrid inverter.

I. INTRODUCTION

The Feed-In tariff for rooftop PV systems has not yet been adopted in Cambodia. The utility thus does not purchase excess power by reverse power flows from PV production. Only unidirectional energy meters are used even in the capital. One solution is to size the PV system so that the peak generation from PV is below the baseload. However, this concept does not work well for small load households. The power distribution systems are expanded in recent years due to the load demand increase; these points compel the distribution operators to perform planning. The design of a low voltage distribution system and suitable solutions are proposed to handle these issues. This paper purposes of designing an optimal low voltage distribution topology with the integration of PV and three different proposed solutions of reverse power relay (RPR), solar hybrid inverter (SHI), and battery energy storage (BES) in an urban village, which consists of improving a balanced load and existing PV production usage. Firstly, the repeated phase ABC is applied to minimize the power loss and unbalanced load in the three-phase distribution system. Next, the integration of RPR, SHI, and BES into household grid-connected PV production systems have been proposed as solutions. The urban village in Phnom Penh, Borey Mungkul Phnom Penh, Sangkat Veal Spov, is chosen and modeled for a case study to confirm a proposed method. Simulation results allow concluding that the integrated battery energy storage into the optimal low voltage distribution topology provides the best solution to design the grid connection PV system.

Keywords—energy storage; load balancing; repeated phase abc; reverse power relay; solar hybrid inverter.
automation algorithm is developed to figure an economy of storage compared to a traditional reinforcement concept. The voltage unbalance analysis by single-phase rooftop PV [10], its mitigation [11], and voltage rise impact in the LV distribution system have been studied. The utilization of energy storage with the highest PV penetration has been considered [12], [13]; these energy storages are installed at households to avoid voltage issues in the network. However, these authors had almost addressed optimal radial low voltage distribution topologies considering the conductor length to minimize and load balancing improvement and voltage problems. Therefore, this paper proposed the optimal radial distribution system topology and reversed power flow solutions in an urban village.

This paper aims at designing a radial distribution topology considering load balancing improvement. It reverses the power flow solution of the grid-connected PV system by using repeated phase ABC (RPABC) and reverse power relay (RPR), solar hybrid inverter (SHI), and battery energy storage (BES) for mitigating the reverse power flows. The rest of this paper is structured as follows. Section II describes the materials and proposed method of designing the radial topology and integrated RPR-SHI-BES. The pilot of the selected site and numerical simulation results, including discussion, is provided in section. Section IV gives conclusions and future work of the paper.

II. MATERIAL AND METHOD

The proposed method aims to study a radial distribution topology of grid-connected PV system with different proposed solution (i.e., reverse power relay, solar hybrid inverter, and battery energy storage in the urban village, Phnom Penh. To achieve the purpose of the paper, several steps will be proposed as follows: 1) Insert the system data, i.e., peak load demand, location (X, Y) and line impedance (Z), 2) Getting an optimal topology by applying the repeated phase ABC, and 3) Impact study of deployment of the reverse power relay, solar hybrid inverter deployments and sizing battery energy storage with PV production. The flowchart of the proposed method of the paper is shown in Fig.1.

A. Repeated Phase ABC

To cope with load balancing, the 1st algorithm of the proposed method to balance the loads is RPS-ABC. This algorithm is applied for the sum of demand at each electrical pole. The ABC phase sequence is repeated for every three connected poles to get the load balancing. Fig. 2 illustrates the RPS-ABC algorithm for this paper.

Fig. 2 Repeated phase ABC concept

The selected conductor process of radial topology design is provided in Fig. 3. The load flow is implemented at a time of 8 PM (i.e., peak load); the conductor size will be increase if there is voltage or current constraint.

Fig. 3 Process of selected conductor size of the system

B. Deployment of Reverse Power Relay

Fig. 4 Process of reverse power relay deployment

A reverse power relay is proposed to set up a household PV connection. This relay will trip the PV system from the
grid if the net power (i.e., \(P_{\text{net}}(t) = P_{\text{load}}(t) - P_{\text{PV}}(t) \)) is a negative value, and it will not trip the PV otherwise. The strategy of the reverse power relay is provided in Fig. 4.

C. Deployment of Solar Hybrid Inverter

A solar hybrid inverter is proposed to replace the existing grid connection solar inverter. With this proposed system, the rooftop PV panels will not be able to inject the excess power into the grid, which is called zero export. This inverter is proposed to set up a household PV connection. This system will regulate the power injection from the PV according to load consumption. The process of deployment of a solar hybrid inverter is provided in Fig. 5.

D. Deployment of Battery Energy Storage

Battery storage is proposed to install at a household grid connection PV system. This storage is to charge the energy when reverse power (i.e., \(P_{\text{load}}(t) - P_{\text{PV}}(t) < 0 \)) flows to the grid and to discharge when the grid is required to supply (i.e., \(P_{\text{load}}(t) - P_{\text{PV}}(t) > 0 \)) and state of charge (SoC) is higher than a minimum state of charge (SoCmin). Fig. 6 provides an algorithm for the sizing of energy storage, and we assume that these normalized curves are repeated over a year as a preliminary study.

III. RESULTS AND DISCUSSION

A. The Pilot of the Selected Site and Optimal Topology

The low residential voltage distribution system has been selected, and the model of the system has been developed based on the specification of the pilot of the selected site, where is situated in Borey Mungkul Phnom Penh, Sangkat Veal Sbov, Phnom Penh as shown in Fig.7. Due to only one household’s power consumption has been measured, the normal distribution for energy meter (i.e. five households) with a mean of 7 kW and STD of 0.5 KW has been applied. The system's total active power is about 250 kW, with a power factor of 0.9 pf. The households are supplied by a 400 V main source from the 1st bus to 41st buses. Classical conductor size is 4x70 mm² from mainline and 4 mm² from energy meter to households. Fig. 8 provides a site with existing PV production and optimal radial topology by using repeated phase ABC.
Also, the system's performance is computed by backward/forward load flow over a year with MATLAB software. The system's voltage profile is the most important to identify that the system is operated within the voltage regulation (i.e. $0.9 \, \text{pu} \leq V_{m} \leq 1.06 \, \text{pu}$) in Cambodia. Fig. 9 shows a voltage profile of the system at 8 PM; according to that figure, the system has no voltage problems even if the PV system does not support the system.

B. PV Production and Load Consumption

In this paper, three 1ph households' grid-connected PVs with 1.5 kWp located at bus 32, 40, and 41. The load curve is from local measurement at the selected site and is used as the normalized curve, and the NASA source is used for solar radiation at the site, as shown in Fig. 11. The load measurement set-up and normalized daily PV and load curves are provided in Fig. 10, and Fig. 12. As we have seen in the figure, the peak leak appeared at a different time with peak solar radiation. Thus, the PV system's power supply is not available for households' peak consumption, and it is almost available at the lowest power consumption (i.e. worst case).

C. Impact of Proposed Solutions in the System

A net load profile for each household (i.e., 32, 40, and 41) without/with photovoltaic (PV) and integration of reverse power relay (RPR), solar hybrid inverter (SHI), and battery energy storage (BES) are provided in Fig. 13 to Fig. 15. As given in the figures, a reverse power flow has occurred at the
time the PV system is connected to the grid. Without a bi-
directional energy meter and feed-in-tariff, that reverse power
means that each household’s power consumption has
increased with excess PV production. However, these unused
power consumptions (i.e., bill of electricity) have been
completely removed from the household with the deployment
of reverse power relay as the first solution. Those relays have
tripped the PVs from the grid. Also, the solar hybrid
inverter’s deployment as the second solution can remove the
reverse power flow with PV power curtailment means, which
operates as zero export to the grid.

Moreover, each household’s power consumption has
decreased notably, thanks to battery energy storage used as
the third solution. Besides, the indicators of the impacts in the
system over a year are given in Table 1. With these three
proposed solutions, integrating BES into the household grid-
connected PV is more interesting in terms of energy losses
and energy used in the whole system.

Fig. 11 Annual solar irradiance by NASA in Cambodia

Fig. 12 Set-up of load measurement with Fluke 435 series II

Fig. 13 Load profiles of household (at bus 32) at lowest solar radiation

Fig. 14 Load profiles of household (at bus 40) at lowest solar radiation
Moreover, the daily active power at MV/LV substation and active power losses with/without PV and three proposed solutions are provided in Fig. 16 and Fig. 17. As seen in the figures, the peak power at MV/LV has appeared at 8 PM during the peak load without PV production. Also, there is no reverse power flow at the substation level and slightly different between these scenarios due to only three single-phase PVs with RPR, SHI, and BES connected into the system. However, that reverse power flow has occurred at the household as described in the previous section.

Fig. 15 Load profiles of household (at bus 41) at lowest solar radiation

IV. CONCLUSION

The optimal and modelling of low voltage distribution with different proposed solutions. It is coped with reverse power flow. Without feed-in-tariff in the pilot of the selected site, Borey Mungkul Phnom Penh, Sangkat Veal Sbov has been developed, not only for simulation but also for visualization in MATLAB software. Three proposed solutions are using reverse power relay (RPR), solar hybrid inverter (SHI). The battery energy storage (BES) has been submitted to solve household grid-connected PV, which is currently faced with a one-directional energy meter and non-feed-in-tariff of the system. These devices are proposed to be installed at households to avoid the reverse power flow from the PV system. Also, the deployment of RPR has reduced not much energy consumption for household compared with SHI and BES used. Moreover, BES's integration is more appealing compared to the other two proposed solutions (i.e., RPR and SHI) in terms of energy usage, energy losses, and electricity bill of each household. However, to be a more concrete result, forecasting PV and load profiles, including economic analysis, will be investigated to get more indicators for the system design decisions.

Fig. 16 Daily active power at MV/LV substation

Fig. 17 Daily active power loss of the system

TABLE I

<table>
<thead>
<tr>
<th>Items</th>
<th>Without PV</th>
<th>With PV</th>
<th>PV-RPR</th>
<th>PV-SHI</th>
<th>PV-BES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizing of PV [32,40,41] (kWp)</td>
<td>0</td>
<td>[1.5, 1.5, 1.5]</td>
<td>[1.5, 1.5, 1.5]</td>
<td>[1.5, 1.5, 1.5]</td>
<td>[1.5, 1.5, 1.5]</td>
</tr>
<tr>
<td>Sizing of BES [32, 40, 41] (kWh)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[8.25, 8.92, 9.15]</td>
</tr>
<tr>
<td>Energy used (MWh/year)</td>
<td>1125.55</td>
<td>1114.53</td>
<td>1124.55</td>
<td>1120.58</td>
<td>1110.78</td>
</tr>
<tr>
<td>Energy losses (MWh/year)</td>
<td>107.59</td>
<td>106.79</td>
<td>107.49</td>
<td>107.16</td>
<td>105.05</td>
</tr>
<tr>
<td>Energy bill [32,40,41] (MWh/year)</td>
<td>[6.37, 5.47, 5.14]</td>
<td>[7.18, 6.66, 6.48]</td>
<td>[6.14, 5.23, 4.90]</td>
<td>[4.77, 4.06, 3.80]</td>
<td>[2.36, 1.45, 1.13]</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT

The authors would like to express appreciation of the Joint Usage/Research Center for Zero Emission Energy Research, Institute Advanced Energy, Kyoto University, and Department of Electrical and Energy Engineering, Institute of Technology of Cambodia, for providing financial support for this research.

REFERENCES

