photoacoustic image (Fig. 12). The noise in the photoacoustic image could be triggered by an unstable laser or by noise from the environmental condition around the device.

IV. CONCLUSION

This study confirmed that a photoacoustic imaging system based on a diode laser and a condenser microphone can generate a photoacoustic image of a dental anatomical structure characterized by enamel, dentin, and pulp. A diode laser combined with a condenser microphone can construct a photoacoustic system controlled by the LabView program and the Arduino IDE via a computer. Further study needs to be developed to investigate the application of photoacoustic imaging for other dental problems.

References

- W. W. Liu and P. C. Li, "Photoacoustic imaging of cells in a threedimensional microenvironment," *J. Biomed. Sci.*, vol. 27, no. 1, p. 3, 2020.
- [2] M. A. Lediju Bell, "Photoacoustic imaging for surgical guidance: Principles, applications, and outlook," J. Appl. Phys., vol. 128, no. 6, 2020.
- [3] I. Steinberg, D. M. Huland, O. Vermesh, H. E. Frostig, W. S. Tummers, and S. S. Gambhir, "Photoacoustic clinical imaging," *Photoacoustics*, vol. 14, no. September 2018, pp. 77–98, 2019.
- [4] P. K. Upputuri and M. Pramanik, "Recent advances in photoacoustic contrast agents for in vivo imaging," *Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology*, vol. 12, no. 4, pp. 1–23, 2020.
- [5] L. Lim *et al.*, "A feasibility study of photoacoustic imaging of ex vivo endoscopic mucosal resection tissues from Barrett's esophagus patients," *Endosc. Int. Open*, vol. 05, no. 08, pp. E775–E783, 2017.
- [6] A. Setiawan, G. B. Suparta, Mitrayana, and W. Nugroho, "Subsurface corrosion imaging system based on LASER generated acoustic (LGA)," *Int. J. Adv. Sci. Eng. Inf. Technol.*, vol. 7, no. 6, pp. 2189–2195, 2017.
- [7] A. Setiawan, G. B. Suparta, Mitrayana, and W. Nugroho, "Surface crack detection with low-cost photoacoustic imaging system," *Int. J. Technol.*, vol. 1, pp. 159–169, 2018.
- [8] V. Periyasamy, M. Rangaraj, and M. Pramanik, "Photoacoustic imaging of teeth for dentine imaging and enamel characterization," p. 8, 2018.

- [9] A. T. Stan *et al.*, "Original Research. Photoacoustic Microscopy in Dental Medicine," *J. Interdiscip. Med.*, vol. 2, no. s1, pp. 53–56, 2017.
- [10] N. Lukac, B. T. Muc, M. Jezersek, and M. Lukac, "Photoacoustic Endodontics Using the Novel SWEEPS Er:YAG Laser modality," J. Laser Heal. Accademy, vol. 2017, no. 1, pp. 1–7, 2017.
- [11] C. Y. Lin *et al.*, "Photoacoustic Imaging for Noninvasive Periodontal Probing Depth Measurements," *J. Dent. Res.*, vol. 97, no. 1, pp. 23– 30, 2018.
- [12] R. Widyaningrum, Mitrayana, R. S. Gracea, D. Agustina, M. Mudjosemedr, and H. M. Silalahi, "The Influence of Diode Laser Intensity Modulation on Photoacoustic Image Quality for Oral Soft Tissue Imaging," *J. Lasers Med. Sci.*, vol. 11, no. 4, pp. S92–S100, 2020.
- [13] R. Widyaningrum, D. Agustina, M. Mudjosemedi, and Mitrayana, "Photoacoustic for oral soft tissue imaging based on intensity modulated continuous-wave diode laser," *Int. J. Adv. Sci. Eng. Inf. Technol.*, vol. 8, no. 2, pp. 622–627, 2018.
- [14] A. Alifkalaila, "Characterization of Photoacoustic Imaging System Based on Diode Laser and Microfon Condenser for Dental Anatomy Structure," Universitas Gadjah Mada, 2020.
- [15] B. Shanthala, Wilson B, Joppan S, Srihari, "Current Uses of Diode Lasers in Dentistry," *Otolaryngology*, vol. 07, no. 02, pp. 2–5, 2017.
- [16] M. Zunic et al., "Design of a micro-opto-mechanical ultrasound sensor for photoacoustic imaging," 2020 21st Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, EuroSimE 2020, pp. 0–7, 2020.
- [17] E. Kurniawan, R. Widyaningrum, Mitrayana, "Sistem Fotoakustik Sederhana Berbasis Laser Dioda dan Mikrofon Condenser untuk Pengukuran Konsentrasi Darah," *Risal. Fis.*, vol. 1, no. 2, pp. 47–51, 2017.
- [18] T. Koyama, S. Kakino, and Y. Matsuura, "A feasibility study of photoacoustic detection of hidden dental caries using a fiber-based imaging system," *Appl. Sci.*, vol. 8, no. 4, 2018.
- [19] S. Mithun, and Wenfeng Xia, "Portable and Affordable Light Source-Based Photoacoustic Tomography," 2020.
- [20] T. Suwandi, "Diode laser in periodontal treatment," vol. 1, no. 2, pp. 46–51, 2019.
- [21] R. S. Lacruz, S. Habelitz, J. T. Wright, and M. L. Paine, "Dental enamel formation and implications for oral health and disease," *Physiol. Rev.*, vol. 97, no. 3, pp. 939–993, 2017.
- [22] G. S. Sangha, N. J. Hale, and C. J. Goergen, "Adjustable photoacoustic tomography probe improves light delivery and image quality," *Photoacoustics*, vol. 12, no. August, pp. 6–13, 2018.
- [23] F. Krause *et al.*, "Visualization of the pulp chamber roof and residual dentin thickness by spectral-domain optical coherence tomography in vitro," *Lasers Med. Sci.*, vol. 34, no. 5, pp. 973–980, 2019.