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Abstract—This study aims to investigate the performance of a lab-made electronic nose coupled with chemometric tools for detecting 

Escherichia coli (E. coli) and Salmonella Typhimurium (S. Typhimurium) inoculated in media. The pathogenic E. coli and S. Typhimurium 

play a significant role as the agent causing food-borne diseases, posing a threat to human health worldwide. Some advanced analytical 

instruments like RT-PCR and GC-MS are often used for detecting such pathogenic bacteria. Unfortunately, they are not suitable for 

rapid and routine measurements because of time-consuming, require experts, and complicated sample preparation. Otherwise, 

electronic nose (e-nose) has been reported to be successful for profiling volatile compounds released by various biological materials. 

The e-nose comprised eight types of metal oxide gas sensors connected with a data acquisition system and chemometric tools. For this 

purpose, Fast Fourier Transform (FFT) was applied for signal pre-processing and feature extraction to all datasets collected by the 

sensor array in the e-nose. Furthermore, chemometric tools are used for classification models of all extracted features, including linear 

and quadratic discriminant analysis (LDA and QDA) and support vector machine (SVM). As a result, SVM showed the highest 

performance, enabling identifying E. coli and S. Typhimurium inoculated TSB with an accuracy of 99% and 98%, respectively. Among 

the chemometric tools, the e-nose-SVM also resulted in the highest accuracy in differentiating E. coli from S. Typhimurium of 84%. 

These results motivated e-nose to have a high prospect to rapidly detect such bacteria for food safety and quality control inspection, 

particularly potential quarantine products. 
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I. INTRODUCTION

Contaminated food by pathogenic bacteria has been posing 

a crucial issue due to the threat to human health and life 

worldwide. Millions of people suffered, and thousands died 

every year due to these food-borne disease outbreaks, even 

though certain bacteria such as Bacillus subtilis natto can 

degrade insoluble fibrin fibers of thrombosis [1]. Food is one 

of the media that facilitates the growth of pathogenic 

microorganisms to become an agent of food-borne diseases. 

More than 90% of food contamination cases in developing 

countries are caused by bacteria, such as S. Typhimurium and 

E. coli [2]–[4]. E. coli produces verotoxigenic, the primary

source of food-borne diseases in humans. Meanwhile, S.

Typhimurium is classified as a nontyphoidal serovar

Salmonella (NTS) which can cause fever, nausea, cramps,
headaches, diarrhea, and vomiting in humans [3], [5]. Also,

food changes its taste and aroma when it is contaminated with

bacterial like E. coli, decreasing its quality [6].

Contamination of Salmonella sp. in food is prohibited by 

the Indonesian standard of food safety (SNI), while E. coli 

contamination in food is allowed up to a maximum of 10 

CFU/g. Conventional methods such as bacterial count 

calculations, growing on selective media, and simple 

biochemistry analysis methods are usually used to identify 
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bacteria and other pathogenic microorganisms in food 

samples. Unfortunately, these conventional methods are not 

suitable for rapid testing because of taking a long time to grow 

microorganisms on selective media. Moreover, the 

biochemistry analysis requires various media and reagents 

and takes about overnight to complete the procedure. 

Polymerase Chain Reaction (PCR), on the other hand, has 

been employed to overcome the limitation; but it takes about 

18 hours of pre-enrichment step to obtain high accuracy. 

Furthermore, both methods require experts and have not 

provided a real-time result yet [6], [7].  
Gas chromatography-mass spectrometry (GC-MS) can 

detect and identify the forming gas from microorganisms 

through sample headspace gas analysis. Here, a 

microorganism produces metabolic volatile organic 

compounds (MVOCs). These volatile compounds serve as a 

unique biomarker for the presence of each pathogenic 

microorganism in the media. In addition, MVOCs produced 

depend on the media for growing the microorganism [6]–[10]. 

However, GC-MS analysis is limited by a long time for 

sample extraction and analysis [11]. 

Consequently, an alternative tool capable of detecting 
disease agents from various samples, responding rapidly and 

inexpensively, such as an electronic nose, is needed [12]. The 

electronic nose device has a multisensorial system that 

promises to carry out such diagnoses non-invasive. 

Furthermore, various non-specific sensors and statistical 

approaches can be used in data processing, which are 

important steps for assembling functional devices in 

multisensorial systems [13]. 

The working principle of the electronic nose (e-nose) is 

inspired to mimic the olfactory system of a mammal, which 

was developed to identify the specific aroma of a sample [14]. 
The e-nose is capable to correctly analyze, identify, and 

recognize a blend of aroma and MVOCs since it is built from 

a gas sensor array with global sensitivity [12]. The e-nose is a 

much faster characterization system compared to GC-MS in 

detecting aroma. Besides providing results in real-time, the 

electronic nose can also operate at room temperature and use 

air as a carrier gas. The electronic nose comprises various 

chemical sensors, where each sensor can widely detect 

different gases or vapors. When complex samples are 

presented to a chemical sensor array, because each sensor is 

different, the response of each sensor to the sample is unique. 

However, the response of all sensors can be put together to 
make a fingerprint on the sample [15]. Some researchers have 

reported the success of e-nose in identifying or differentiating 

the types of bacteria employing various gas sensors, bacteria 

growth mediums such as L monocytogenes and B cereus [16], 

and type of analysis [17]–[19]. They use microbial detection 

in various fields such as medicine and the food industry. Some 

groups have used different electronic noses to classify and 

quantify bacteria and fungi to get an accurate medical 

diagnosis and control of food quality. So far, the detection and 

identification of volatile bacteria and fungi have been 

achieved using e-nose, which offers a different percentage of 
correct classification [20]. The satisfying performance of the 

e-nose device for analyzing pathogenic microorganisms has 

motivated this work. 

This study aims to investigate the performance of a lab-

made electronic nose coupled with chemometric tools for E. 

coli and S. Typhimurium inoculated in media. Here, the lab-

made e-nose comprised an array of eight metal oxide gas 

sensors. Before the analysis using chemometric tools, the pre-

processing method of Fast Fourier Transform (FFT) was 

applied to all the raw data (time-domain) to convert them to a 

frequency domain. The fast Fourier Transform (FFT) method 

is commonly used to extract features of an e-nose application 

[21]. The main purpose of FFT is to reduce dimension and 

electrochemical marker complexity by maintaining relevant 

information. Besides, FFT also provides an advantage during 

training, avoids data input redundancies, and acquires the 
correct general model [22], [23]. Tian et al. [11]also 

employed the FFT method to extract features of e-nose for 

grouping seven types of bacteria. The detection of such 

bacteria was carried out employing classifying the datasets 

into the respective class using supervised multivariate 

classification models (linear discriminant analysis, LDA; 

quadratic discriminant analysis, QDA; and Support Vector 

Machine, SVM). 

II. MATERIAL AND METHOD 

A.  E. coli and S. Typhimurium Stock 

Escherichia coli (ATCC 25922) and Salmonella enterica 

subsp enterica serovar typhimurium (ATCC 14028) were 

obtained from MBRIO Food Laboratory, Indonesia. Both 

types of bacteria were then grown in Tryptic Soy Broth (TSB) 

(CM1029, OxoidⓇ) at 37 °C for 24 h, followed by storing in 

30% glycerol at -20 °C before analysis. 

B.  Identification of Bacteria 

Identification of bacteria was performed by Gram staining 
to identify cell morphology. For this purpose, E. coli was 

cultured in selective media of Brilliant Green (BG) Agar, 

Eosin Methylene Blue Agar (EMB) Agar, and Brilliant E. coli 

(BEC) Agar. Meanwhile, S. Typhimurium was cultured in 

selective media: BG Agar, Salmonella Shigella (SS) Agar, 

and Xylose Lysine Deoxycholate (XLD) Agar. Then, both 

types of bacteria were also biochemically tested, such as 

applying the indole test, the methyl red-Voges test was 

analyzed (MR-VP) test, citrate test, urease test, sulfur-indole-

motility (SIM) reduction test, sugar fermentation ability, and 

hydrogen-sulfide production on Triple Sugar Iron Agar 

(TSIA), carbohydrate fermentation test (glucose, sucrose, and 
mannitol), and lysine decarboxylase and ornithine test. 

C.  Preparation of Sample Solution 

TSB was used as basal media, where TSB without bacteria 

inoculation (blank) was used as a negative control. Before 

analysis, the bacteria stock was thawed in a water bath at 37 

°C followed by transferring to TSB broth. Then, E. coli (100 

– 1000 CFU/ml) was inoculated into TSB. A total of 3 mL of 

TSB (as a sample solution) was transferred into a 5-ml closed 
sterile glass vial bottle. Next, an amount of 3-ml TSB (as a 

sample solution) was transferred into a 5-ml closed sterile 

glass vial, and the sample was incubated at 37 °C. Analysis of 

the sample using the e-nose was performed every 8 hours for 

48 hours incubation. The same treatments and analysis were 

applied to S. Typhimurium culture stock. 

D.  Bacteria Enumeration Method 
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For calculating the bacterial colony, all bacterial culture 

stock solution samples were diluted using 0.9% sterile liquid 

of sodium chloride (Otsu-NS). Then, 1 mL of the diluted 
product was transferred to sterile Petri dish, followed by 

adding 15-20 mL of sterile Plate Count Agar (M019S, 

Himedia), where each liter of the Plate Count Agar contained 
Casein Enzymic Hydrolysate 5 g, Yeast Extract 2.5 g, 

Dextrose 1 g, Sodium Chloride 6.5 g, and Agar 15 g. Petri 

disk shaker was used to homogenize the mixture between the 

media and the sample. When the sample and media mixture 

became solid, it was incubated at 37 C for 24 hours. The 
number of colony-forming units (CFU) per mL growing 

during incubation is then calculated using the Quebec colony 

counfter. 

E.  Volatile Analysis by Electronic Nose 

The e-nose used in this study comprised eight metal oxide-

based sensors, namely TGS813, TGS822, TGS823, TGS826, 

TGS2600, TGS2603, TGS2612, and TGS2620 [22]–[24]. 

The e-nose was also equipped with SHT31-D sensor to 

monitor the temperature and humidity in the sample chamber 

(Fig. 1). Briefly, the e-nose consisted of sampling and sensor 

array systems (in the sensor chamber) controlled by a data 

acquisition system (DAQ). In addition, the output of the e-

nose was then analyzed using signal processing and 

chemometric systems. In the sampling system, two valves 

(valve-1 and valve-2) were controlled for the sensing process 

and purging process. During the sensing process, MVOC 

from the sample was sucked by the small pump into the sensor 

chamber. Oppositely, during the purging process, reference 

air (dry and clean) or inert gas was sucked into the sensor 
chamber to remove the MVOC so that the sensor response 

returned to its initial condition. For measurement, the vial 

containing the sample was placed hot plate at a temperature 

setting of 47 °C to maintain the temperature inside the vial 

was 37 °C (incubation temperature). A more detailed 

description of the two processes is explained in Hidayat et al. 

[22]. As shown in Fig. 2, the typical response of a gas sensor 

in the e-nose and the time configuration sets are as follows: 

10 seconds for the delay, 60 seconds for sampling, and 60 

seconds for purging. 
 

 
Fig. 1  A. A lab-made electronic-nose device. i: a computer equipped with chemometric tools, ii: the main part of e-nose, and iii: sample on the hot plate; and B. 

Part of e-nose device. a: power supply, b: sensor chamber, c: DAQ and controller, and d: sampling system 

 

 
Fig. 2  Typical of response of a gas sensor to a sample. Time configuration 

setting in this study, for delay, sampling and purging were 10 s, 60 s, and 60 

s, respectively. 

F. Data Analysis 

The total data of measurement are 336 consisted of 7 

incubation times × 6 independent replication = 42 data of TBS 

blank (Neutral (N)), 7 incubation times × 21 independent 

replications = 147 data of E. coli (E), and 7 incubation times 

× 21 independent replications = 147 data of S. Typhimurium 

(S), as shown in Table 1. In this case, the sample of TBS blank 

was repeated six times because of very similar measurement 

results, while the sample of E. coli and S. Typhimurium were 

repeated 21 times. The independent replication means the 

different culture stocks. Each sample was measured using 

eight types of gas sensors, one temperature sensor, and one 

humidity sensor so that the sensor responses contained ten 

sensors x 1301 data lines. 

TABLE I 

TIME OF MEASUREMENT REFERRED AS TIME OF INCUBATION AND THE 

LABEL OF EACH SAMPLE 

Incubation 

time (h) 

Blank TBS 

(Neutral (N)) 

E. coli 

(E) 

S. Typhimurium 

(S) 

2 N2 E2 S2 

8 N8 E8 S8 

16 N16 E16 S16 

24 N24 E24 S24 

32 N32 E32 S32 

40 N40 E40 S40 

48 N48 E48 S48 

 

Because resulting in big datasets of all measurements, Fast 
Fourier Transform (FFT) was used as a data pre-processing 

technique, while robustScaler was applied to the original data 

for obtaining a relatively similar scale. For data prediction, 

partial least square (PLS) was applied to the data regarding 

the incubation time. Supervised chemometric tools included 
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linear and quadratic discriminant analysis (LDA dan QDA) 

analysis, and support vector machine (SVM) were used in 

pattern recognition to classify the samples according to their 

respective classes. Finally, to define an excellent 

chemometric tool, the datasets were split into 10 folds and 10 

times repeated of training datasets (for optimization and 

internal validation using K-fold cross-validation procedure) 

and test datasets (for external validation). The development of 

a technique or sensing methods for ensuring product 

quality/safety has become a priority, which will also help the 

community [25]. 

III. RESULTS AND DISCUSSION 

A. Identification of E. Coli and S. Typhimurium in Selective 
Media  

It is important to identify the type of bacteria at the 

beginning of this study to confirm whether the bacteria used 

were correct. Figure 3 confirmed that species of E. coli grew 

well, as indicated by purple colonies in Brilliance E. 

coli/Coliform Agar (BECA) media, while species of S. 
Typhimurium grew well as indicated by black center colonies 

in Salmonella Shigella Agar (SSA) media. Gram stain of E. 

coli described rounded end rod shape, occurred individually 

and in pairs while S. Typhimurium was rod shape, relatively 

smaller than E. coli. Both appeared pink, which indicated 

Gram-negative bacteria. Biochemistry analyses of both 

bacteria are summarized in Table 2. 

TABLE II 

BIOCHEMISTRY AND GRAM STAIN PROPERTIES OF E. COLI AND S. 

TYPHIMURIUM 

Test E. coli S. Typhimurium 

Indole + - 

MR + + 

VP - - 

Citrate - + 

Urease - - 

SIM H2S : -, Indole : +, 

Motility : + 

H2S : +, Indole : -, 

Motility : - 

TSIA Gas : +, acid 

slant/acid butt. 

H2S: +, alkaline 

slant/acid butt 

Glucose + + 

Mannitol + + 

Sucrose - - 

Lysine 

decarboxylase 

+ + 

Ornithine 

decarboxylase 

Are not done + 

Gram stain Gram-negative Gram-negative 

 

B. Colony Counting of Bacteria 

Before E. coli and S. Typhimurium were moved into a 

closed vial containing TSB, the bacterial population was 

calculated firstly. Data are derived from seven replications of 

each kind of bacterium. The culture showed that the number 
of inoculated bacteria was about 102 - 103 CFU/ml. 

 

Fig. 3  (a). E. coli in BEC media and (b). S. Typhimurium in SS media. 

C. Data analysis Sensor Response 

The E. coli and S. Typhimurium bacteria have been 

successfully grown in superbroth (tryptone 32 g, yeast 20 g, 

NaCl 5g, and NaOH 5ml). The base of the superbroth is 

similar to TSB. Using solid-phase microextraction analysis, 

specific compounds of dimethyl disulfide, ethanol, 2-

nonanone, 2-heptanone, pentyl-cyclopropane, and indole 

were detected in E. coli hydrogen sulfide, ethanol, carbon 

disulfide, dimethyl cyclopropane, and 1-propanol were 

detected in S. Typhimurium [17], [18]. It has been reported 

that E. coli and S. Typhimurium in TSB produced 1-octanol, 

1-decanol, and dodecanol. Specially, E. coli also produced 

indole, 2-undercanone, and 2-tridicanone [26]. From another 
report, E. coli produces a tryptophanase enzyme to catalyze 

tryptophan into indole and other compounds [27]. Although 

Salmonella species is indole negative, it produced hydrogen 

sulfide. Detected alcohol in the samples was likely derived 

from decarboxylation and deamination of amino acids. The 

presence of dimethyl disulfide resulted from the degradation 

of sulfur-contained amino acids such as methionine and 

cysteine [28]. The microorganism produces various metabolic 

and intermediate compounds due to metabolic activity during 

the growing phase. All data matrices collected from three 

types of samples resulted in 336 sample replications listed in 
Table 1. The original (time-domain) sensor responses of three 

types are depicted in Fig. 4. These plots are used to illustrate 

the variability between sensor responses, enabling the 

existence of the differences of patterns of three types of 

samples. 

(a) (b) 
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Fig. 4  Examples of the response on sensor array from raw data of measurement. Neutral (left), E. coli (middle), and S. Typhimurium (right). 

 

D.  Partial Least Square (PLS) 

The growth of bacteria from 2 h to 48 h with the sequential 

measurement of every 8 h was shown in Fig. 5. Each data 

measurement was independently repeated six times for blank 

samples, and the others were repeated 21 times. The PLS 

actual data plot showed continuously increasing the number 

of bacteria E and S; therefore, each measurement time data 

was strongly correlated and overlapping to dispersed 

prediction plots. For E. coli incubated in the media, a clear 

distinction of each measurement time plot was observed, i.e., 

8 h data compared to 32 h data. For S. Typhimurium incubated 

in the media, however, all predicted data are overlapping 

indicating that bacterial growth continuously. 
In general, bacterial growth is divided into four distinct 

phases, namely the adaptation phase (lag phase), the growth 

phase (exponential phase), the balance phase (stationary 

phase), and the death phase [29]. The lag phase is a period 

with no growth that occurs when stationary phase bacteria are 

transferred to a fresh medium. The lag phase is a period of 

time without growth that occurs when the stationary phase 

bacteria are transferred to fresh media. The lag or adaptation 

phase for E. coli is 0 to 4 hours, whereas for S. Typhimurium 

the initial growth phase or adaptation occurs more quickly, in 

the incubation period of 0 to 2 hours. The lag phase of 
bacterial adaptation occurs, not to reproduce immediately, 

and the number remains constant; cells are metabolically 

active and only increase cell size. Then entering the 

exponential phase, the number of cells increases 

logarithmically, and each cell generation occurs at the same 

time interval as the previous one. The exponential phase of E. 

coli is 4 to 10 hours; the stationary phase is at 10 to 23 hours, 

then E. coli enters the death and dead phases. For S. 

Typhimurium, the exponential phase occurs in 2 to 7 hours, 

the stationary phase in 7 to 10 hours, and then the death phase 

occurs. PLS figures are seen in the exponential phase of E. 
coli 8 hours and S. Typhimurium 2 hours closer than the other 

phases. During the exponential or logarithmic phase, cells will 

metabolize optimally, multiplying by the time of manufacture 

which is determined by the quantity and quality of nutrients 

and available energy sources. When the nutrients in the 

medium begin to thin out, the metabolic waste products will 

accumulate [30], [31]. 

 
Fig. 5  PLS plot of growing bacteria from 0-48 h of (a) E. coli and (b) S. 

Typhimurium 

E.  Chemometric Tools 

In order to evaluate the prediction performance, the e-nose 

was coupled with chemometric tools. Subsequently, after 

feature extraction, data of 336 samples (147 E data, 42 N data, 

and 147 S data) were classified using the chemometric tools 

of LDA, QDA, and SVM. For cross-validation purposes, 70% 

of each data class was split for training datasets and internal 

validation. The remaining 30% was used as external 

validation or testing datasets. To the extent of internal 

validation, repeated K-fold-CV Varian (10-repeats x 10-fold) 

was accounted for resampling to ensure 10% of training data 

in each run was reserved for internal validation. 
The LDA was one of the standard supervised multi-class 

classification models [32]. In general, LDA also is known as 

Fisher linear discriminant since Fisher's introduction in 1936.  

The LDA was used to obtained optimum linear 

combination to discriminate data into the distinct group by 

projecting data sample into lower dimension chamber. The 

LDA assumes the data are normally distributed, the class is 

split in identical covariance, and all features are independent 

and distributed identically. In order to classify, the LDA 

measures the distance between the projected objects and uses 

a scatter matrix to maximize the ratio of sample distances 

between classes to sample distances within the class. Figure 6 
shows a two classes-LDA plot of N with E, N with S, and E 

with S. Imperfect classification of e-nose LDA was showed 

in LD-1, indicated by excessive overlapping data between the 

two classes, particularly E and S class (Fig. 6. (c)). 
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Fig. 6  First LD plots of bacteria incubated for 48 h of (a) N vs E, (b) N vs S, and (c) E vs S. 

 

As listed in Table 3, the three chemometric tools used in 

this study allow the formation of a satisfying two-class 

classification modelling between non-inoculated to 

inoculated sample according to training and internal 

validation procedures (repeated K-fold-CV). The sensitivity 

of LDA, QDA and SVM (i.e., the percentage of samples 

correctly classified, Table 4) between N and E is 95%; 97%; 

and 99% and between N and S is 90%; 93% and 98%, 

respectively. Unfortunately, the e-nose capability to different 

types of bacteria establishing on collected signals by MOS gas 

sensor array showed relatively low predictive accuracy, i.e. 

61% (using LDA), 66% (using QDA) and 84% (using SVM). 

In addition to that, e-nose SVM is considered superior among 

all two-class classification modelling. 
 

TABLE III 

CONFUSION MATRIX OF TWO CLASSES WITH DIFFERENT CLASSIFICATION MODELS 

A
c
tu

a
l 

 
LDA 

A
c
tu

a
l 

 
QDA 

A
c
tu

a
l 

 
SVM 

N E N E N E 

N 34 8 N 38 4 N 40 2 

E 2 146 E 1 147 E 0 148 

A
c
tu

a
l 

Predicted 

 

A
c
tu

a
l 

Predicted 

A
c
tu

a
l 

Predicted 

 N S  N S  N S 

N 27 15 N 37 5 N 38 4 

S 4 143 S 8 139 S 0 147 

A
c
tu

a
l 

Predicted 

 

A
c
tu

a
l 

Predicted 

A
c
tu

a
l 

Predicted 

 E S  E S  E S 

E 89 59 E 107 41 E 125 23 

S 56 91 S 58 89 S 21 126 

 Predicted  Predicted  Predicted 

TABLE IV 

THE SUMMARY OF E-NOSE PERFORMANCE COUPLED WITH CHEMOMETRIC TOOLS 

Chemometric tools N vs E N vs S E vs S 

Accuracy Standard Error Accuracy Standard Error Accuracy Standard Error 

LDA 0.95 0.01 0.90 0.03 0.61 0.03 

QDA 0.97 0.01 0.93 0.01 0.66 0.03 

SVM 0.99 0.01 0.98 0.01 0.84 0.02 

 

IV. CONCLUSION 

The produced volatile compounds MVOCs by E. coli, and 

S. Typhimurium could be utilized as a biomarker to their 

presence.  e-nose was able to sniff the produced MVOCs for 

detection and differentiation of bacteria type. In this study, 

SVM is the best method for the detection and differentiation 

of the two species. In comparison to the conventional method, 

e-nose showed its capability to detect bacteria without using 

reagents rapidly. This system is highly applicable for 

conducting food safety and quality control inspections, 
particularly potential quarantine products. 
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