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Abstract— The increasing number of terrorist attacks in recent years have shown that in designing structures such as floor slabs and 
rigid roadway pavement, the effect of blast loads should be taken into consideration. In this study, we analyze the blasting effect on 
the rigid roadway pavements and provide a numerical example of a toll road shoulder section exposed to this blast load. We assumed 
that the rigid roadway slab is connected by dowels and tie-bars along its edges. Furthermore, we modeled the blast as a Friedlander 
blast load, where it is initially a positive pressure before decreasing to a negative pressure due to drag. We obtained the vertical shear 
force that is carried by the dowels and tie-bars along its edges, the time history of the rigid roadway slab deflection, and identified the 
parameters of the sub-grade that has significant effects on the dynamic response of the rigid roadway pavement. We carried out the 
numerical analysis using the first and the second type of Levy’s problem to find the Eigenvalues and Eigenvectors and to predict the 
maximum deformed shape, the maximum vertical shear forces along the joint of the rigid roadway pavement subjected to the blast 
load. Our results show that the duration ratio of the blast loading, the thickness of the slab, and the stiffness coefficient of the soil has 
a significant influence on the dynamic response of the slab. This paper provides essential techniques in increasing the capacity of a 
rigid roadway slab against explosive effects. 
 
Keywords— rigid roadway pavement; friedlander blast load; levy’s problem; dynamic response. 
 
 

I. INTRODUCTION 

Orthotropic slabs are one of the most vital structural 
elements in construction. Almost every project, whether it be 
in toll roads, buildings, schools, apartments, malls, shelters, 
and other public facilities, contain slabs subjected to various 
condition and environment. Due to this, slabs should be 
evaluated at different conditions and situations to achieve a 
functional and economical design that is safe. To satisfy both 
strength and serviceability requirements, slab responses that 
should be analyzed include deflections, internal shear force, 
and flexural stresses. 

The types of load commonly modeled in roadway slab 
analysis include gravity load and traffic loads. However, 
many engineers ignore the effects of other dynamic loads, 
particularly blast loads. Blast loads, or explosions, are 

defined as the rapid release of energy as a mass that is 
converted to regions of extremely high strain rates. The high 
strain rates would change the dynamic mechanical properties 
of the structure and potentially cause damage to the 
structural elements [1]. Given the potential consequence of 
blast loads, an effective slab design should, therefore, 
anticipate any load that may potentially affect the slab, 
including blast loads, which have unique characteristics and 
effects on slabs that must be accounted for.  

Until now, most researchers have focused on the problems 
of traffic load-roadway interaction but not of the blast load–
roadway interaction. Meanwhile, because modern terrorism 
has increased in recent years, the risk of blast loads on 
roadway structures has also increased. Developed societies 
have become very dependent on complex and vulnerable 
systems such as toll roads, railways, runways, large 
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Fig. 1 Rigid roadway pavement slab on a two-parameters soil model subjected to blast load 

shopping areas, hotels, and business centers enabling the 
terrorists to have many suitable targets. Explosive devices 
have become smaller in size and more powerful over the 
years, further increasing the risk of blast loads on roadway 
structures [2].  

It is therefore essential to develop a procedure that will 
give practical design solutions for the design of new or 
retrofitted roadway structures to be able to withstand the 
effects of explosive loads. In designing new or retrofitted 
roadway structures, engineers must calculate the acting 
forces of certain blast scenarios, including the type and 
weight of the used explosive, as well as the distance from the 
blast load source to the roadway structure. These forces 
would then be applied to the structural system to design the 
roadway sections and connections, thus ensuring sufficient 
robustness of the roadway slab to survive the effects of the 
computed actions [3]. 

In 2018, Alisjahbana et al [4] investigated the dynamic 
response of an orthotropic concrete plate subjected to the 
positive and negative phases of blast loading and found that 
negative phases of the localized blast load an important 
factor in the dynamic response of the stiffened orthotropic 
plates. In their study, they found that parameters such as 
stiffness configuration, location of load, and plate thickness, 
affect the dynamic response of plates subject to Friedlander 
blast loads. They focused their study on the evaluation of 
midpoint displacements and maximum stress distribution 
within the plate region.  

Since the dynamic response of the rigid roadway 
pavement subjected to the localized blast load has not 
previously been studied in detail, this paper gives an 
overview of the dynamic response of the rigid roadway slab 
to a localized blast load by using the first and the second 
Levy’s problems. The first and second Levy’s problem has 
been shown to provide accurate results, especially in 
calculations of high modes [5]. We focus our analysis on the 

method used to model the blast loading on rigid roadway 
slab, including the shoulder section, vertical deformation at 

the midspan due to soil condition above the slab, and the 
vertical shear force distribution along the edges of the slab to 
provide protection of the roadway against blast load effects. 

II. MATERIAL AND METHOD 

A. Rigid Roadway Slab and Blast Load Modeling 

In this study, we consider the model of a rigid roadway 
pavement supported by a two-parameter soil foundation. 
Two-parameter soil foundations are commonly used to 
model soil and accounts for shear deformations [6]. The 
equation of motion for a rigid roadway slab is derived based 
on the elastic thin slabs theory and Newton II theory as 
described by [7]:  
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 According to Equation (1), W(x,y) is the spatial function, 

T(t) is the temporal function, Dx is the flexural rigidity of 
slab in the x direction, B is the torsional rigidity, Dy is the 
flexural rigidity of slab in the y direction, ξ is the damping 
ratio, ρ is the mass density, kf is the stiffness of the soil, Gs is 
the shear modulus of the soil, 2∇  is the Laplacian operator 
and p(x,y,t) is the load’s function.  

The solution of equation of motion of the slab according 
to Equation (1) can be found by using the method of 
separation of variables which consists of the multiplication 
of the spatial function W(x,y) and the temporal function T(t). 
The function W(x,y) is determined from the solutions of the 
first and the second equations of the Levy type problems.  

A few studies have developed the equation for a 
localized Friedlander load for both the positive phase and 
negative phase of the load. The positive phase of a blast load 

is commonly expressed as a linear or exponential function 
and acts in the direction towards the slab. In this case, we 
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utilized an exponential function for the positive phase [8] 
and the cubic function for the negative phase as follows [9]: 
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(3) 

According to Equation (3) after the positive phase (0 ≤ t 
≤ tdp) is completed, the load enters its negative phase (tdp ≤ 
t ≤ tdp+tdn), changing into vacuum force. Generally, this 
phase has an amplitude smaller than the positive phase, but it 
has a much longer duration, approximately twice the length 
of the positive phase. The function of a Friedlander load for 
both the positive and negative phase is shown in Fig. 2. 

The position of the blast load at any time t can be 
expressed by using the Dirac delta function [7]: 

0 0( , , ) ( ) [ ] [ ]p x y t P t x x y yδ δ= − −  (4) 

 
To solve the equation of motion of roadway slab 

according to Equation (1), the following boundary 
conditions along the edges of rigid roadway slab are needed: 
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In the y direction: 
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The coefficient vertical translational restriction and the 
coefficient rotation along the edges of the slab due to the 
existence of dowels and tie bars along the x-axis and y-axis 
are characterized by  ksx, krx, ksy, kry  respectively [10].   

In this study, we include the shoulder part of the slab 
where the blast load was assumed to have exploded. 

B. Solution for Levy’s Problem 

In this part of the paper, we show the free vibration 
response of orthotropic rigid roadway slab with boundary 
conditions according to Equations (5) to (9) resting on a two 
parameters soil foundation model. The natural period of the 
system and the eigen vectors in the x and y directions were 
determined through the Levy‘s problem [5]. 

We obtained the eigenvalue for a roadway slab with 
dowels and tie-bars support on all sides by solving the 
equation in a manner similar to a simply supported plate. We 
substituted the integer index values for the x and y directions 
with coefficients p and q for the mode shapes in the x and y 
directions respectively. The natural period (Tn) for a 
roadway slab with dowel and tie-bars supports can then be 
expressed as Equation (10): 
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(10) 

The values of p and q in Equation (10) are the real roots 
of transcendental equations, which we determined from the 
determinant of two matrices of the imposed boundary 
conditions for both the x and y directions [8]. Because we 
solved the auxiliary problems for each direction separately 
and assumed the perpendicular direction vibrates 
harmonically, this problem was categorized as a Levy type 
problem. Each of the x and y directions had a Levy type 
problem called the first auxiliary and second auxiliary 
equations. The first auxiliary equation provided the solution 
for the position function X(x) in the x direction while the y 
direction vibrated harmonically. On the other hand, the 
second auxiliary equation provided the solution for the 
position function Y(y) in the y direction while the x direction 
vibrated harmonically. 

 We obtained the solution for the first auxiliary 
equation in the x direction by utilizing the following trial 
function: 

( , ) ( ) sin
q y

W x y X x
b

π=  (11) 

where X(x) is the position function from the orthotropic 
plate in the x direction. 

The solution of the first auxiliary equation was expressed 
as [12]: 
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Based on Equations (5) and (6), A1, …., A4 are constants 
which were determined using the boundary conditions along 
the edges. Applying the boundary conditions along x = 0 and 
x = a, resulted in the linear algebra equation in terms of Ai, 
as follows: 
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where the coefficients αij are obtained by setting the 
determinant of Equation (13) to equal to zero for a non-
trivial condition.  

The spatial function in the y direction can be expressed by 
[4]: 

P

t

Pmax

Pmin

tdp tdn

Exponential 
function

Cubic function

 
Fig. 2 Friedlander blast load described by exponential function during 
the positive phase (tdp) and cubic function during the negative phase 

(tdn) 
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We solved the second auxiliary in the y direction with a 
procedure analogous to the above derivations. By applying 
the boundary conditions along the shoulder section of the 
road slab at y=0 and y=b according to Equations (7) and (8), 
we obtained the auxiliary matrix in the y direction as follows: 
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where the coefficients βij are obtained by setting the 
determinant of Equation (15) to equal to zero for a non-
trivial condition. 

The total dynamic response of the slab subjected to a 
localized transversal blast load requires two distinct 
solutions, the homogeneous solution and the forced vibration 
solution. The homogeneous solution is the solution for the 
structure that was imposed by an initial deformation or 
initial velocity condition that causes the structure to vibrate 
freely. In order to solve for the homogeneous solution, we 
set the right side of the governing equation of motion 
according to Equation (1) to equal to zero. As explained 
previously, this was solved through the separation of 
variables method. This method simplified the above 
equations by separating the governing differential equation 
into two different equations: the spatial differential equation 
W(x,y) and the temporal differential equation T(t). The 
spatial differential equation is a function of position x and y 
while the temporal differential equation is a function of time 
t. The homogeneous solution was expressed as the following 
equation: 

2 2
1 2( , , ) ( , ) cos 1 sin 1t
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 (16) 

Similar to the method for solving the homogeneous 
solution, we also solved the forced vibration solution using 
the separation of variables method. The forced vibration 
solution has initial conditions cause by the transient 
vibration without loading and is expressed as follows: 
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(17) 

Thus, we obtained the general solution of the associated 
rigid roadway pavement subjected to localized blast load by 
adding the homogeneous solution according to Equation (16) 
and the forced vibration solution according to Equation (17). 

III.  RESULTS AND DISCUSSION 

We used the Mathematica-Wolfram package version 12.1 
to solve the dynamic responses of the roadway slab, which 
included integrating the Duhamel formula to find the 
temporal function T(t).  

In this study, we studied one segment of the rigid roadway 
pavement (5.0x3.5 m2) with dowel and tie bar connections 
along three edges of the slab and one side with shoulder 
edge condition. This slab was subjected to the localized blast 
load. We used 0.25m, 0.26m and 0.27m as the slab thickness 
in the numerical studies. 

The adopted material properties were: Young’s modulus, 
Ex= 27.8x109 Nm-2, Ey= 30.0x109Nm-2, Poisson coefficients, 
υx= 0.18, υy= 0.15, ξ = 5% and mass density ρ= 2400 kgm-3. 
The coefficients restriction along the edge of the slab were: 
ksx1, ksx2 = 2.825x107 Nm-1, ksy1=0, ksy2= 5.488x107 Nm-1, 
krx1, krx2, kry1, kry2= 106 Nm rad-1. The values of two 
parameters soil beneath the roadway slab were kf= 2.725x107 
Nm-1 and Gs= 9.52x106 Nm-1. 

In this study, we used a localized blast load developed by 
Friedlander, with the positive phase using an exponential 
function and the negative phase using the cubic negative 
phase developed by Ganstrӧm [13]. Rigby et al [14] showed 
that for the negative phase of a Friedlander load, the cubic 
negative phase approach yields the most accurate results. 
The parameters used for the Friedlander load are identical to 
the ones used in studies by Susler et al [9] and Draganic, H. 
and Sigmund, V. [15]. The parameters are tabulated in Table 
1. 

 
TABLE I 

FRIEDLANDER LOAD ARAMETERS 
Symbol  Value and units 

Pmax 
Positive phase 
amplitude 

2.89x104 [Nm-2] 

Pmin 
Negative phase 
amplitude 

7.23x103 [Nm-2] 

t0 Initial load time 0 [s] 

tdp 
Duration of 
positive phase 

0.0018 [s] 

tdn 
Duration of 
negative phase 

0.0036 

α 
Wave shape 
coefficient 

0.35 

 
In the first part of the numerical results, we focused on the 

dynamic response of the roadway slab, which included the 
vertical shear force distribution along the edges and the 
maximum flexural stress of the system, as an effect to the 
duration of the positive phase of the blast load (tdp). In the 
remainder of this paper, we demonstrate the influence of the 
stiffness of the soil foundation model and the slab thickness 
to the total response of the system subjected to a localized 
blast load. 

A. Effect of the Duration of the Positive Phase (tdp) 

To demonstrate the influence of the duration of the 
positive phase on the dynamic response of the roadway slab, 
we solved the equation of motion by using the method of 
separation of variables and the two Levy’s problems under 
the localized blast load parameter taken from Susler et al [9]. 
The variation of the duration of positive phase showed an 
important influence on the response of the roadway slab. The 
maximum dynamic deflections for all variation of the tdp are 
shown in Fig. 3. 
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Fig. 3 Influence of tdp to the vertical displacement of the slab computed at 
the mid-span. 

 
Our results show that the duration of positive phase has 

the important role in increasing the mid-point deflection of 
the roadway slab. As expected, increasing the duration of 
positive phase by 0.2 ms results in an increase of the 
maximum dynamic deflection by 17.2%, which occurs right 
after the negative phase of the blast load applied at the 
system. Vertical shear force distribution along the edges of 
the road-way slab at x=a can be seen in Fig. 4. 

 

 
Fig. 4 Vertical shear force distribution along the edge of the roadway slab 
(x=a) computed at free vibration phase (t= 5.5 ms). 

 

Fig. 4 shows the distribution of vertical shear force (Vx) 
along the edge of the roadway slab where the dowels exists. 
This was computed at t = 5.5 ms when the free vibration 
phase occurred for different values of tdp. Referring to Fig. 4, 
it is clear that the maximum vertical shear force occurs not 
along the edge of the slab, but at about a quarter of the slab 
for all the value of tdp considered in this paper. 
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Fig. 5 Maximum vertical displacement versus tdp/Tn computed at mid-span 
of the rigid roadway slab for different values of h. 

 
 

Fig. 6 Maximum flexural stress versus tdp subjected to a localized blast 
load for different values of thickness. 

 

Fig. 7 Flexural stresses distribution of the rigid roadway slab subjected to a localized blast load computed at t= 5.5 ms. 
 

B. Effect of the Thickness of Roadway Slab 

To demonstrate the influence of the slab thickness, we 
solved the maximum vertical deflections of the system using 
three-thickness values, which are h = 0.25 m, h = 0.26 m and 
h = 0.27 m, respectively. By increasing the thickness of the 
slab by 0.01 m, the maximum vertical deflection of the 
system decreases by 31.6% for the value of tdp= 18 ms. 
Travakoli and Kiakojouri [16] has shown that blast loads 

produce very high strain rates (102-104 s-1). According to this, 
high loading rates would alter the response of the system. 
This fact is further confirmed by the numerical study shown 
in Fig. 5. The system will resist a longer tdp as long as the 
thickness of the plate is thick enough. For the same value of 
Pmax applied at the system, the maximum vertical deflection 
of the system with tdp/Tn= 0.99 and h= 0.25 m was 
7.976.10-4 m, while the system with h= 0.26 m had a 
maximum vertical displacement of 7.276.10-4 m. For this 

   

h=0.25 m, σmax= 1.40968 MPa h=0.26 m, σmax=1.19411 MPa h=0.27 m, σmax= 1.04149 MPa 
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study, the flexural stresses calculated were the maximum 
and the minimum stresses, while the maximum shear 
stresses were based on the Mohr’s theory. 

In order to find those maximum stresses, we calculated 
the stress components σx, σy, and τxy using equations that 
show the relationship between displacements and stress 
components [8]. For all stress calculations, we used blast 
loads located at the midspan of the slab. The plot showing 
the resulting maximum flexural stress versus tdp is 
illustrated in Fig. 6. For all types of stresses evaluated, the 
roadway slab with an additional 0.01m of slab thickness 
provided the greatest reduction in stresses as shown in Fig. 6 
and Fig. 7. The percentage of reductions in stresses from 
adding the values of an additional 0.01m of slab thickness is 
15.29%.  

Our results show that if the main design purpose of the 
slab was to reduce the dynamic deflection, the vertical shear 
force, and the maximum flexural stress along the edge of the 
plate, the slab thickness should be increased. 

C. Effect of the soil stiffness (kf) 

We analyzed the influence of soil stiffness (kf) between 
the intervals 27.5 MNm-1 and 44.0 MNm-1. The maximum 
vertical deflection of the rigid roadway pavement at the 
center of the slab versus the soil stiffness is plotted in Fig. 8. 
With different values of the soil stiffness, we found several 
observations. When the stiffness of the soil beneath the slab 
increased, the vertical displacement at the mid-span of the 
slab and the maximum flexural stress along the edges of the 
plate decreased. 

 

 
Fig. 8 Vertical displacement at mid-span of the rigid roadway slab versus 
the soil stiffness (kf) subjected to a localized blast load 

IV.  CONCLUSIONS 

In this paper, we numerically analyzed the interaction 
between a localized blast load and the rigid roadway 
pavement. The numerical method of a rigid roadway 
pavement sitting on a two parameters soil foundation model 
was described by the fourth order partial differential 
equation where the Levy’s problem was used to solve the 
fundamental frequency of the system. We considered the 
variation of duration of the positive phase of a blast load, the 
thickness of the slab and the soil condition beneath the 
roadway slab to the vertical deflection, vertical shear force 
along the edge of the slab and the maximum flexural stress 
within the slab region. The results of this study can be 
summarized as follow: (a) The ratio of the duration of the 
blast loading in the positive phase (tdp) over the natural 

period of the rigid roadway slab (Tn) determined the 
development of maximum response for both the force 
vibration phases (positive and negative phases) and the free 
vibration phase; (b) The thickness of the rigid roadway slab 
greatly affects the overall response of the slabs including the 
maximum vertical displacement, vertical shear force and the 
distribution of the flexural stress. The thickness of the slab is 
important to fulfill the technical requirements of the rigid 
roadway pavement design and therefore special attention 
regarding the joint characteristics along the edge of the slab 
where the dowels and tie-bars are located should be given; (c) 
Our results show that the stiffness coefficient of soil 
underneath the slab has a significant influence on the 
dynamic response of the slab subjected to a localized blast 
load. By increasing the stiffness coefficient of the soil 
beneath the slab, the maximum vertical deflection at the 
mid-span of the slab decreased drastically. However, the rate 
of decrease depended on the duration of the positive phase of 
blast load. 

In this study, we used a two-parameter soil foundation to 
analyse slabs with a soil depth of 1.0m-1.5m. To analyse the 
slabs with a greater depth, however, a three-parameter soil 
foundation might be needed to obtain accurate results. 
Ultimately, taking into accounts blast loads in designing 
roadway slabs is necessary to account for accurate loads to 
reduce damage on the structure. In turn, this will help reduce 
the number of casualties if a terrorist attack occurs. 
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