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Abstract— The increasing number of terrorist attacks in recent years have shown that in designing structures such as floor slabs and
rigid roadway pavement, the effect of blast loads should be taken into consideration. In this study, we analyze the blasting effect on
the rigid roadway pavements and provide a numerical example of a toll road shoulder section exposed to this blast load. We assumed
that the rigid roadway slab is connected by dowels and tie-bars along its edges. Furthermore, we modeled the blast as a Friedlander
blast load, where it is initially a positive pressure before decreasing to a negative pressure due to drag. We obtained the vertical shear
force that is carried by the dowels and tie-bars along its edges, the time history of the rigid roadway slab deflection, and identified the
parameters of the sub-grade that has significant effects on the dynamic response of the rigid roadway pavement. We carried out the
numerical analysis using the first and the second type of Levy’s problem to find the Eigenvalues and Eigenvectors and to predict the
maximum deformed shape, the maximum vertical shear forces along the joint of the rigid roadway pavement subjected to the blast
load. Our results show that the duration ratio of the blast loading, the thickness of the slab, and the stiffness coefficient of the soil has
a significant influence on the dynamic response of the slab. This paper provides essential techniques in increasing the capacity of a
rigid roadway slab against explosive effects.

Keywords— rigid roadway pavement; friedlander blast load; levy’s problem; dynamic response.

defined as the rapid release of energy as a mass that is
I. INTRODUCTION converted to regions of extremely high strain rates. The high
strain rates would change the dynamic mechanical properties

elements in construction. Almost every project, whether it be of the structure and p(_)tentlally cause damage to the
structural elements [1]. Given the potential consequence of

in toll roads, buildings, schools, apartments, malls, shelters, . .
g P blast loads, an effective slab design should, therefore,

and other public facilities, contain slabs subjected to various™ <", !
condition and environment. Due to this, slabs should be nticipate any load that_ may pote_ntlally affect t_he_ slab,
evaluated at different conditions and situations to achieve a"¢luding blast loads, which have unique characteristics and
functional and economical design that is safe. To satisfy botheﬁECtS. on slabs that must be accounted for.
strength and serviceability requirements, slab responses that Unt|I_ oW, most resegrchers.have focused on the problems
should be analyzed include deflections, internal shear force 0! raffic load-roadway interaction but not of the blast load—
and flexural stresses.

The types of load commonly modeled in roadway sla
analysis include gravity load and traffic loads. However,
many engineers ignore the effects of other dynamic loads,

particularly blast loads. Blast loads, or explosions, are

Orthotropic slabs are one of the most vital structural

roadway interaction. Meanwhile, because modern terrorism
b has increased in recent years, the risk of blast loads on
roadway structures has also increased. Developed societies
have become very dependent on complex and vulnerable
systems such as toll roads, railways, runways, large
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shopping areas, hotels, and business centers enabling théhe midspan due to soil condition above the slab, and the
terrorists to have many suitable targets. Explosive devicesvertical shear force distribution along the edges of the slab to
have become smaller in size and more powerful over theprovide protection of the roadway against blast load effects.
years, further increasing the risk of blast loads on roadway
structures [2]. Il. MATERIAL AND METHOD

It is therefore essential to develop a procedure that will L )
give practical design solutions for the design of new or A- Rigid Roadway Slab and Blast Load Modeling
retrofitted roadway structures to be able to withstand the In this study, we consider the model of a rigid roadway
effects of explosive loads. In designing new or retrofitted pavement supported by a two-parameter soil foundation.
roadway structures, engineers must calculate the actingTwo-parameter soil foundations are commonly used to
forces of certain blast scenarios, including the type andmodel soil and accounts for shear deformations [6]. The
weight of the used explosive, as well as the distance from theequation of motion for a rigid roadway slab is derived based
blast load source to the roadway structure. These forcen the elastic thin slabs theory and Newton Il theory as
would then be applied to the structural system to design thedescribed by [7]:
roadway sections and connections, thus ensuring sufficient
robustness of the roadway slab to survive the effects of the, ow(x y T(h+ D T(y+ & hw( x yITO
computed actions [3]. oo ox°oy” Ty “ )

In 2018, Alisjahbana et al [4] investigated the dynamic +pnw(x 9 T0 4w xy T & WaxyMe (Gxyt
response of an orthotropic concrete plate subjected to the at
positive and negative phases of blast loading and found that
negative phases of the localized blast load an importanLl_(t)
factor in the dynamic response of the stiffened orthotropic
plates. In their study, they found that parameters such a | | rigidity of slab in they directi s the d )
stiffness configuration, location of load, and plate thickness, exural rigidity of siab 1n they direc lon,¢ is the amping
affect the dynamic response of plates subject to Friedlandefato:# 1S the mass densit is tge stiffness of t_he SOl is
blast loads. They focused their study on the evaluation ofth€ Shéar modulus of the sail? is the Laplacian operator

midpoint displacements and maximum stress distribution 2dP(X.y,1)is the load’s function. ,
within the plate region. The solution of equation of motion of the slab according

Since the dynamic response of the rigid roadway © Equation (1) can be found by using the method of
pavement subjected to the localized blast load has nolseparatlon_of varle}bles which consists of the mu!t|pl|cat|on
previously been studied in detail, this paper gives anf the spatial functioW(x,y)and the temporal function(t).
overview of the dynamic response of the rigid roadway slab 1€ functionW(x,y)is determined from the solutions of the
to a localized blast load by using the first and the secondfi'St and the second equations of the Levy type problems.

Levy’s problems. The first and second Levy’s problem has A few studies have developed the equation for a
been shown to provide accurate results, especially inlocalized Friedlander load for both the positive phase and

calculations of high modes [5]. We focus our analysis on the negative phase of the load. The positive phase of a blast load

T(t)+280‘W(X, ) 0"W(:<, ) dT(t

According to Equation (1)V(x,y)is the spatial function,
is the temporal functionD, is the flexural rigidity of
lab in thex direction,B is the torsional rigidityD, is the

Localized blast load

o

Roadway Pavement
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Fig. 1 Rigid roadway pavement slab on a Mo—paraméters soil model subjected to blast load

z ECECEC  springlayek

method used to model the blast loading on rigid roadway is commo_nly expr_essed as a linear or exponent_ial function
slab, including the shoulder section, vertical deformation at 2"d acts in the direction towards the slab. In this case, we
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utilized an exponential function for the positive phase [8] B. Solution for Levy's Problem

and the cubic function for thte negative phase as follows [9]: In this part of the paper, we show the free vibration
B -a - response of orthotropic rigid roadway slab with boundary
P(t) = Frax (1 d_pj e % forOst<dp ) conditions according to Equations (5) to (9) resting on a two

parameters soil foundation model. The natural period of the

and ) system and the eigen vectors in the x and y directions were
: 6.75(t —tdp) (t—tdp) determined through the Levy‘s problem [5].
P(t) =~Fan tdn 1- tdn ©) We obtained the eigenvalue for a roadway slab with
dowels and tie-bars support on all sides by solving the
for tdp< t < (tdp+tdn) equation in a manner similar to a simply supported plate. We

According to Equation (3) after the positive phasec 0 substituted the integer index values for xtendy directions
<tdp) is completed, the load enters its negative phiaige<(  with coefficientsp andq for the mode shapes in thkeandy
t < tdp+tdn), changing into vacuum force. Generally, this directions respectively. The natural periodn) for a
phase has an amplitude smaller than the positive phase, but foadway slab with dowel and tie-bars supports can then be
has a much longer duration, approximately twice the lengthexpressed as Equation (10):
of the positive phase. The function of a Friedlander load for “ 2 os
both the positive and negative phase is shown in Fig. 2. T”ZZ”M[ B pazf +23p7+ B qabf'f the Q[ e qblzr ]] (10)
The position of the blast load at any time t can be  The values op andq in Equation (10) are the real roots
expressed by using the Dirac delta function [7]: of transcendental equations, which we determined from the
p(x Y 9=RYAx ¥q y- ¥ (4) determinant of two matrices of the imposed boundary
conditions for both thex andy directions [8]. Because we
solved the auxiliary problems for each direction separately
and assumed the perpendicular direction vibrates
harmonically, this problem was categorized as a Levy type
problem. Each of thet andy directions had a Levy type
problem called the first auxiliary and second auxiliary
— equations. The first auxiliary equation provided the solution
function for the position functiorX(X) in the x direction while they
direction vibrated harmonically. On the other hand, the
second auxiliary equation provided the solution for the
position functionY(y)in they direction while thex direction

Prnax

ok T vibrated harmonically.
5 b Cubic function We obtained the solution for the first auxiliary
dp dn equation in thex direction by utilizing the following trial

Fig. 2 Friedlander blast load described by exponential function during function:
the positive phasedp) and cubic function during the negative phase my

(tdn) W(x y)= X( »sian

where X(x) is the position function from the orthotropic
To solve the equation of motion of roadway slab piate in the x direction.

according to Equation (1), the following boundary  The solution of the first auxiliary equation was expressed
conditions along the edges of rigid roadway slab are needed:as [12]:

(11)

In thex direction: 28Ge , e, GEE 87 ., GEY
Wi X > ] o R i
veop[ DT (B IS Whogny s (5)  Formaes S meaal S )
WX YT(Y azvx(xyr)t AW Xy D + A cosP+ A sin
M, =- [ X2 ay? ] kr, ox (6) Based on Equations (5) and (8}, ...., A are constants

In the y direction: which were determined using the boundary conditions along

WX YT(Y
V,=-D,

the edges. Applying the boundary conditions alwrg0 and

B 4 XJWJ ksWx YT (7) X = a, resulted in the linear algebra equation in term4, of

y as follows:
2 .
My:—Dy("ZW(;yz”T(‘)wx" V‘(az}”]:kry" W;;”) ®) m1 a1 a1z aygl[Aq [0
a1 Gz G23 az4|Az _ |0
(2=, DD, = (13)
D, = ; (9) a3y a3z 033 034 Ag 0
The coefficient vertical translational restriction and the Q41 Q42 043 O 44/ | M 0
cogfﬁcient rotation along 'the edges of the.slab due'to the here the coefficientsz; are obtained by setting the
existence of dowels and tie bars along xfxis andy-axis  geterminant of Equation (13) to equal to zero for a non-
are characterized bys, kry, ks, kr, respectively [10]. trivial condition.
In this study, we include the shoulder part of the slab g gpatial function in the y direction can be expressed by
where the blast load was assumed to have exploded. [4]:
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2 2 2
2Bp°K | ol + G,a’b’ 2Bp’K° gt + G,;zan2
Y(y) = Beos z L1y + B,sinh z

=8 v my+B prS my

+B, CO{%) + Bﬁin(%’)

(14)

We solved the second auxiliary in the y direction with a

procedure analogous to the above derivations. By applying
the boundary conditions along the shoulder section of the

road slab ay=0 andy=b according to Equations (7) and (8),
we obtained the auxiliary matrix in the y direction as follows:

ﬂll ﬂlZ ﬁli% ﬂ14 B 1 O

ﬂZl ﬂ22 ﬁ23 ﬁ24 B 2 —

ﬁ3l ﬁSZ ﬁ33 ﬁ34 B 3 B 0 (15)
ﬁ41 ﬁ42 ﬁ43 ﬁ44 B4 O

where the coefficientsf; are obtained by setting the
determinant of Equation (15) to equal to zero for a non-
trivial condition.

In this study, we studied one segment of the rigid roadway
pavement (5.0x3.5 fwith dowel and tie bar connections
along three edges of the slab and one side with shoulder
edge condition. This slab was subjected to the localized blast
load. We used 0.25m, 0.26m and 0.27m as the slab thickness
in the numerical studies.

The adopted material properties were: Young's modulus,
E,= 27.8x109 Nrif, E,= 30.0x109Nri, Poisson coefficients,
v= 0.18,0= 0.15,& = 5% and mass density 2400 kgrie.

The coefficients restriction along the edge of the slab were:
kSa, Ko = 2.825x10 Nm™, ks;,=0, ks= 5.488x10 Nm™,

Ky, Kryo, Kryi, kr= 1 Nm rad". The values of two
parameters soil beneath the roadway slab er@.725x10
Nm™* andGs= 9.52x16 Nm™.

In this study, we used a localized blast load developed by
Friedlander, with the positive phase using an exponential
function and the negative phase using the cubic negative
phase developed by Garistr [13]. Rigby et al [14] showed
that for the negative phase of a Friedlander load, the cubic
negative phase approach yields the most accurate results.

The total dynamic response of the slab subjected 0 arpg narameters used for the Friedlander load are identical to

localized transversal blast load requires two distinct

solutions, the homogeneous solution and the forced vibration

solution. The homogeneous solution is the solution for the
structure that was imposed by an initial deformation or
initial velocity condition that causes the structure to vibrate
freely. In order to solve for the homogeneous solution, we
set the right side of the governing equation of motion
according to Equation (1) to equal to zero. As explained
previously, this was solved through the separation of
variables method. This method simplified the above
equations by separating the governing differential equation
into two different equations: the spatial differential equation
W(x,y) and the temporal differential equatiof(t). The

spatial differential equation is a function of positioandy

while the temporal differential equation is a function of time

t. The homogeneous solution was expressed as the following

equation:

the ones used in studies by Susler et al [9] and Draganic, H.

and Sigmund, V. [15]. The parameters are tabulated in Table
1.

TABLE |
FRIEDLANDER LOAD ARAMETERS
Symbol Value and units
Positive phase :
Pra ety dg 2.89x10 [Nm?]
Negative phase :
Punin am%mu dep 7.23x16 [Nm9]
to Initial load time 0 [s]
Duration of
tdp positive phase 0.0018 [s]
tdn Duration of 0.0036
negative phase
o Wave shape 0.35
coefficient

In the first part of the numerical results, we focused on the

w0 3.9 = Wx 9 8 goosan T £2t+Cy s 17| (16)
dynamic response of the roadway slab, which included the

Similar to the method for solving the homogeneous vertical shear force distribution along the edges and the
solution, we also solved the forced vibration solution using maximum flexural stress of the system, as an effect to the
the separation of variables method. The forced vibration duration of the positive phase of the blast lo@gbh)( In the
solution has initial conditions cause by the transient remainder of this paper, we demonstrate the influence of the
vibration without loading and is expressed as follows: stiffness of the soil foundation model and the slab thickness
to the total response of the system subjected to a localized
blast load.

WXy [ 1 ) et [ TR (1
W,(% ¥, =~y hm]ﬂp(r)(e“‘ ")sin(enf1-€ (¢ r))]dr

j j X2()Y2( Y dxdpr
20y0

17
A. Effect of the Duration of the Positive Phase (tdp)

Thus, we obtained the general solution of the associated To demonstrate the influence of the duration of the
rigid roadway pavement subjected to localized blast load bypositive phase on the dynamic response of the roadway slab,
adding the homogeneous solution according to Equation (16)we solved the equation of motion by using the method of
and the forced vibration solution according to Equation (17). separation of variables and the two Levy’s problems under
the localized blast load parameter taken from Susler et al [9].
The variation of the duration of positive phase showed an

We used the Mathematica-Wolfram package version 12.1::?;)8:;?]% Igﬂ:qupnﬁg ggﬂt:;igenssp%:s;I(cc;rr;ztirgﬁ%\f’vay S;?le)' The
to solve the dynamic responses of the roadway slab, which y iy

included integrating the Duhamel formula to find the shownin Fig. 3.
temporal function (t).

I1l. RESULTS ANDDISCUSSION
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Fig. 3 Influence of tdp to the vertical displacement of the slab computed at
the mid-span.

Our results show that the duration of positive phase has

the important role in increasing the mid-point deflection of

the roadway slab. As expected, increasing the duration of
positive phase by 0.2 ms results in an increase of the

maximum dynamic deflection by 17.2%, which occurs right

Fig. 4 shows the distribution of vertical shear forg&) (
along the edge of the roadway slab where the dowels exists.
This was computed at= 5.5 ms when the free vibration
phase occurred for different valuestdip. Referring to Fig. 4,
it is clear that the maximum vertical shear force occurs not
along the edge of the slab, but at about a quarter of the slab
for all the value ofdp considered in this paper.

0.0016
mh=0.25m

0.99 1.10 1.21 1.32 1.43
tdp/T

mh=0.26m
0.0014

0.0012
0.001
0.0008
0.0006

0.0004
0.0002
0

Max vertical deflection (m)

after the negative phase of the blast load applied at the

system. Vertical shear force distribution along the edges of
the road-way slab at=a can be seen in Fig. 4.
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Fig. 4 Vertical shear force distribution along the edge of the roadway slab
(x=a) computed at free vibration phase (t= 5.5 ms).

Fig. 5 Maximum vertical displacement vergdp/Tncomputed at mid-span
of the rigid roadway slab for different valuesthof
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.S 0.0008
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0
0.0018 0.002

tdp (s)

0.0022

Fig. 6 Maximum flexural stress versus tdp subjected to a localized blast
load for different values of thickness.
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Fig. 7 Flexural stresses distribution of the rigid roadway s

B. Effect of the Thickness of Roadway Slab

To demonstrate the influence of the slab thickness, we
solved the maximum vertical deflections of the system using
three-thickness values, which dre 0.25 mh=0.26 m and
h = 0.27 m, respectively. By increasing the thickness of the
slab by 0.01 m, the maximum vertical deflection of the
system decreases by 31.6% for the valuadpt 18 ms.
Travakoli and Kiakojouri [16] has shown that blast loads
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lab subjected to a localized blast load computed at t= 5.5 ms.

produce very high strain rates (410" s). According to this,
high loading rates would alter the response of the system.
This fact is further confirmed by the numerical study shown
in Fig. 5. The system will resist a longeip as long as the
thickness of the plate is thick enough. For the same value of
Pmax applied at the system, the maximum vertical deflection
of the system withtdp/Tn= 0.99 andh= 0.25 m was
7.976.10" m, while the system witth= 0.26 m had a
maximum vertical displacement of 7.276™én. For this



study, the flexural stresses calculated were the maximumperiod of the rigid roadway slabTif) determined the
and the minimum stresses, while the maximum sheardevelopment of maximum response for both the force
stresses were based on the Mohr’s theory. vibration phases (positive and negative phases) and the free
In order to find those maximum stresses, we calculatedvibration phase; (b) The thickness of the rigid roadway slab
the stress components, oy, andz,, using equations that greatly affects the overall response of the slabs including the
show the relationship between displacements and stressnaximum vertical displacement, vertical shear force and the
components [8]. For all stress calculations, we used blastdistribution of the flexural stress. The thickness of the slab is
loads located at the midspan of the slab. The plot showingimportant to fulfill the technical requirements of the rigid
the resulting maximum flexural stress verstdp is roadway pavement design and therefore special attention
illustrated in Fig. 6. For all types of stresses evaluated, theregarding the joint characteristics along the edge of the slab
roadway slab with an additional 0.01m of slab thickness where the dowels and tie-bars are located should be given; (c)
provided the greatest reduction in stresses as shown in Fig. ®ur results show that the stiffness coefficient of soil
and Fig. 7. The percentage of reductions in stresses fromunderneath the slab has a significant influence on the
adding the values of an additional 0.01m of slab thickness isdynamic response of the slab subjected to a localized blast
15.29%. load. By increasing the stiffness coefficient of the sail
Our results show that if the main design purpose of thebeneath the slab, the maximum vertical deflection at the
slab was to reduce the dynamic deflection, the vertical sheamid-span of the slab decreased drastically. However, the rate
force, and the maximum flexural stress along the edge of theof decrease depended on the duration of the positive phase of
plate, the slab thickness should be increased. blast load.
In this study, we used a two-parameter soil foundation to
analyse slabs with a soil depth of 1.0m-1.5m. To analyse the
We analyzed the influence of soil stiffnedg) petween slabs with a greater depth, however, a three-parameter soil
the intervals 27.5 MNih and 44.0 MNrit. The maximum  foundation might be needed to obtain accurate results.
vertical deflection of the rigid roadway pavement at the Ultimately, taking into accounts blast loads in designing
center of the slab versus the soil stiffness is plotted in Fig. 8.roadway slabs is necessary to account for accurate loads to
With different values of the soil stiffness, we found several reduce damage on the structure. In turn, this will help reduce
observations. When the stiffness of the soil beneath the slahihe number of casualties if a terrorist attack occurs.
increased, the vertical displacement at the mid-span of the
slab and the maximum flexural stress along the edges of the
plate decreased.

C. Effect of the soil stiffnessi k
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Fig. 8 Vertical displacement at mid-span of the rigid roadway slab versus
the soil stiffnessl¢) subjected to a localized blast load

[3]

IV. CONCLUSIONS

In this paper, we numerically analyzed the interaction [4]
between a localized blast load and the rigid roadway
pavement. The numerical method of a rigid roadway
pavement sitting on a two parameters soil foundation model|s)
was described by the fourth order partial differential
equation where the Levy’s problem was used to solve the
fundamental frequency of the system. We considered the
variation of duration of the positive phase of a blast load, the
thickness of the slab and the soil condition beneath the
roadway slab to the vertical deflection, vertical shear force [7]
along the edge of the slab and the maximum flexural stress
within the slab region. The results of this study can be
summarized as follow: (a) The ratio of the duration of the [8]
blast loading in the positive phastlfd) over the natural

(6]
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