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Abstract—Reducing costs in the acquisition of industrial robots and their benefit in continuous production workdays have increased 

the number of investigations that expand the robot's action capabilities. This work proposes a trajectory planning system for a UR3 

robot that is very usual in academic, research, and industrial applications. The system is presented based on a convolutional network 

training for regression tasks focused on learning the desired trajectory.  A virtual environment has been developed to simulate different 

trajectories based on the interaction between UR3 robot and object detection and location through the convolutional network employed. 

This work exposes the network's training and the results of the transport of the object, where the robot can position itself on the desired 

tool (scissors and screwdriver), which is recognized by training a Faster network R-CNN and the re-localization of the tool in a conveyor 

band. For the trained trajectory’s, a ResNet-50 model is proposed, and the overall performance achieved was 92.63%, with a mean 

square error of 24.7 mm in the trained trajectory's repetition. Also, the boxplot of each ax in the trajectory is exposed since they show 

in a more detailed way the deviation of each of the points in the whole validation set. The average collection time, from when the system 

takes the workspace capture to its initial positioning after leaving the tool on the belt, was 51.3 seconds, enough for real-time 

applications. 
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I. INTRODUCTION

In recent decades, the use of robots has increased in 

different fields due to the high versatility they allow and the 

reduction of their costs, both at the industrial level [1] and the 

social level [2]. Likewise, the number of investigations 

carried out in robotics is also increasing, allowing the tasks 

they can perform to be made more efficient [3] [4]. Among 
the tasks that a robot can carry out, one of the essential aspects 

that must be determined is how its displacement will be 

carried out [5], known as path planning. 

Robot path planning requires that it extract the necessary 

information from the environment, for example, to move free 

of collisions for mobile robots as presented in Campbell et al. 

[6], and based on points in space for fixed robots, as presented 

in Hou et al. [7]. In general, it is required to know the 

kinematics of the robot to determine its displacement [8], 

where the path to follow can be established even using 

optimization techniques that allow improved movement [9] 
[10]. A traditional trajectory planning technique is the filling 

algorithm [11] [12] that has been improved with hybrid 

models like the one presented in Xizhi et al. [13]. Likewise, 

as discussed in Han and Yu [14] and Kumar et al. [15], 

heuristic models have been implemented as trajectory 

planning algorithms. 

However, artificial intelligence techniques are being used 

with remarkable success in the planning of trajectories. In 
Jiménez-Moreno and Brito [16], fuzzy logic algorithms are 

used to determine the path of the robot's movement, and in 

Moteir et al. [17] and Wang et al. [18], the authors employ 

deep learning techniques based on convolutional neural 

networks (CNN) [19]. For locational tasks, regressions CNN 
has shown great robustness [20]. 

Deep Learning techniques also allow the development of 

an entire robotic assistance system as set out in Jiménez-

Moreno et al. [21], where the system recognizes from the 

user's voice what tool he wants, identifies it, and takes it, 

handing it over to his hand, the algorithms developed are 

based on CNN. For the development of object identification, 

Faster R-CNN networks are one of the most versatile 

algorithms for their ability to recognize and locate an object 

[22]. Faster R-CNN has many applications in object 

recognition; in Li et al. [23], they are used for facial 
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recognition of expressions, in Wan and Goudos [24] for fruit 

detection in robotic vision systems. 

Given the great robustness of Deep Learning algorithms, a 

robotic path planning system based on the location of the 

desired object is exposed in this work. A Faster R-CNN 

network is used to identify the object over which the robot 

must be positioned for its grip, and to establish the trajectory, 

a CNN architecture for the regression task, is used. A virtual 

environment is used to simulate the robot trajectory planning 

task since virtual media has become a support tool for robotics 

investigations and simulation of tasks in safe environments 
prior to the implementation of robot operation [25]-[27]. 

The document is divided into four sections. The first 

section corresponds to the introduction, where state-of-the-art 

was exposed within the framework of the proposed 

developments. Section two presents the methodology used for 

tool detection and trajectory estimation. The third section 

exposes the analysis and results of the algorithms exposed in 

the robotic displacement task, and finally, section four 

exposes the conclusions reached. 

II. MATERIALS AND METHODS 

The implemented tool collection system is composed of 

two stages. The first stage consists of detecting the tools 

available in the workspace. Once identified, it is verified 

which is closer to the manipulator, moving on to the second 

stage. An estimation of the path to be followed by the 

manipulator is made, from the point where the tool is located 

to the conveyor belt where it will be left. For each of the stages, 

two artificial intelligence techniques based on Deep Learning 

were implemented: a Faster R-CNN [28] and a CNN by 
regression, respectively. This system is used within a virtual 

environment previously built, where a UR3 robot and two 

types of tools (scissors and screwdriver) are used. The 

development of the system is described. 

A. Tool Detection 

For the implementation of the tool detection subsystem, a 

database is created, which consists of 1400 images of size 

640x480 pixels in RGB format, taken from the top of the work 
environment. Each image was manually labeled, locating the 

tools by means of a bounding box, as shown in Fig. 1. In total, 

1100 of the images are used to perform the network training 

and 300 for the validation of this. 
 

 
Fig. 1 Samples of the database for tool detection 

The model selected for detection was the ResNet-50 [29], 

which was modified to match the Faster R-CNN architecture, 

as described in Shaoqing et al. [28]. As it is a pre-trained 

model, transfer learning is done by fine-tuning its weights. 

For this, the training parameters shown in Table 1 are 

established for each learning stage since the model used was 

trained with a learning rate of 0.1. Also, a large number of 

training epochs are not required, thanks to the patterns that the 

model has already learned. 

 

TABLE I 
TRAINING PARAMETERS OF THE FASTER R-CNN. 

  Learning Rate Epochs 

Stage 1  1x10-3 10 

Stage 2 1x10-3 10 

Stage 3 5x10-4 8 

Stage 4 5x10-4 8 

B. Trajectory Estimation 

It was decided to employ a CNN whose output is done 

using regression for the implementation of the second stage 

of the system. It will not classify the image but will produce a 

continuous output that depends on what is seen in the working 

environment. The output in this situation refers to the path that 

the UR3's final effector must take from the tool's location to 
the conveyor where it will exit it. Based on this, the database 

is built, with 400 of the photos used in the detection stage (300 

images for training and 100 for validation). The network 

developed in the first stage is used to tell the network which 

tool to focus on as a starting point. The distance between each 

object and the robot base is estimated based on the center of 

the detection boxes, taking into account the real dimensions 

of the workspace. Once the closest object has been found, a 

marker is placed to the image obtained at the center of the 

detection box (the tool's position in the image) and, in turn, at 

the end of the path on the conveyor belt. 

With this, the manual labeling of each path in all the images 
is done. For this labeling, three factors are taken into account: 

first, the initial reference point (0.0.0), in millimeters, is 

located at the base of the robot. Second, depending on the 

location of the tool, the robot must take the most appropriate 

path; for example, if the nearest object is on the right (or with 

a negative value on the X-axis), the robot must go from the 

object to the conveyor belt on the right side, similarly if the 

object is on the left of the robot (positive value on the X-axis), 

it must follow a path on this same side. Third, the estimated 

path is made up of 10 points in space, so that in total, the 

network must estimate 30 values (three values for each point 
representing its position on the X-, Y- and Z-axes). Fig. 2 

shows the two possible paths for the manipulator movement, 

depending on the location of the nearest tool.  
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C. Training 

For the neural network to be used, the ResNet-50 model is 

proposed. Since based on tests made to three different models 

for trajectory estimation in a 2D plane [30], this obtained the 

best performance. For its training, the following training 

parameters are set, initial learning rate of 10-4, with a 

reduction factor of 0.5 every 40 periods, 250 training epochs, 

and a mini-batch size of 10 images per iteration. With this, the 

network is trained, obtaining the results shown in Fig. 3.  

 

 
Fig. 3 CNN regression’s behavior during training (Loss). 

 

As it is possible to observe, because the model used 
specializes mainly in classification when used for regression, 

it causes significant losses in its first iterations since the root 

mean square error (RMSE) of the estimation of each of the 

points of the trajectory exceeds 1000 mm. However, the 

network improves its learning around iteration 600, 

stabilizing over iteration 3000, reaching an RMSE of less than 

150 mm (Fig. 4). 

 

 
Fig. 4 CNN regression’s behavior during training (RMSE) 

III. RESULTS AND DISCUSSIONS 

To verify the performance of the detection network in a 

more detailed way, the precision vs. recall plot is made, which 
shows the robustness of the network by locating the bounding 

boxes on each of the objects, using the validation set. Fig. 5 

shows this plot, where it is possible to see that the network 

was able to detect the two tools, with an average accuracy 

above 97%. This is reflected in the example in Fig. 6a, whose 

 
 

 
Fig. 2 Samples of paths used for network training. 
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detection boxes were remarkably close to the established 

ground-truth. On the other hand, the accuracy drop in the 

screwdriver was due to situations where the scissors were 

occluding it entirely, causing the network to find only the 

scissors. However, when the screwdriver is placed over the 

scissors, as in Fig. 6b, the network was able to detect it.  

 

 
Fig. 5 Precision vs recall plot of the network for tool detection 

 

 
Fig. 6 Examples of detection on the validation set 

 

For the validation of the CNN regression in charge of 

estimating the paths to be followed, the accuracy of each of 

the points estimated in each axis is verified, i.e., how much 

deviation they had with respect to the proposed trajectory. For 

this, it is proposed to use a threshold, within which, if the point 
exceeds its distance above it, then it will be given as an 

erroneous estimate. Likewise, the RMSE is used to verify the 

total deviation on each axis and the average of the entire 

trajectory. 

Because not all points necessarily need to be strictly subject 

to the proposed path, different thresholds are chosen for each 

section of the path. For example, the grip and the final position 

points of the tool must have a small deviation, as if a point is 

estimated far from these, then the grip would not be made, and 

the tool would not be correctly located on the belt. On the 

other hand, the intermediate points of the path can have a 

higher degree of deviation without affecting it, however, they 

must be within the robot's range, to avoid singularities. 

Bearing this in mind, it is proposed to establish three threshold 

distances in each path section, as can be seen in Table 2, 

although for the Z-axis, the threshold used is constant, of 20 

mm. With this, it is obtained that the two points with the 
greatest deviation were point 1 (located on the tool), 2 and 8 

on the X-axis, with average accuracies of less than 70%. In 

contrast to the X-axis, in the Y- and Z-axis, the accuracy 

results with respect to the thresholds were above 90%, with 

the exception of point 4 on the Y-axis. 

TABLE II 

ACCURACY OF EACH POINT, AVERAGE RMSE AND OVERALL PERFORMANCE 

OF THE NEURAL NETWORK 

Point X-axis Y-

axis 

Z-axis Threshold 

X-Y [mm] 

1 61% 98% 100% 
20 

2 58% 94% 100% 

3 90% 91% 100% 
50 

4 85% 76% 100% 

5 94% 97% 100% 

70 6 93% 100% 100% 

7 89% 100% 100% 

8 68% 99% 100% 
50 

9 86% 100% 100% 

10 100% 100% 100% 20 
Average 

accuracy 
82.4% 95.5% 100%  

RMSE 

[mm] 
35.77 23.31 2.66 

 

Total Network RMSE [mm] 24.7  
Network Accuracy 92.63%  

 

In general, the network obtained an overall accuracy of 

92.63% in estimating the points on the trajectory, even having 

a relatively small RMSE of 24.7 mm, which is very close to 

the 20 mm threshold set for the points requiring the highest 

accuracy. The axis with the greatest deviation was the X, with 

35.77 mm. 

To understand these results more clearly, some examples 
of estimated paths compared to the proposals are shown in Fig. 

7. Fig. 7a represents a very precise trajectory, which follows 

very closely the trajectory that was proposed. Another correct 

path, although it does not fully follow the one proposed, is 

presented in Fig. 7b, where in the first stage of the estimation 

the network locates the initial and final point accurately, while 

in points 6 to 9, a shorter path is generated, but within the 

limits of the established threshold and robot’s workspace. 

On the other hand, there is the path estimated in Fig. 7c, in 

which, although the initial and final points were correct, the 

intermediate points are very far from the X-axis, reaching 
distances of more than 200 mm at point 6 with respect to the 

proposed path, even taking them to areas out of the robot's 

workspace. Fig. 7d presents another case of erroneous 

estimation, mainly because of the initial points, since these 

were located far from the grip point that would cause the robot 

not to collect the tool. These last two examples show possible 
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reasons why on the X-axis, the RMSE was higher than on the 

other axes. 

 

 
Fig. 7 Trajectory estimation generated by the CNN regression 

 

In the same way, the boxplot of each of the axes is 

presented in Fig. 8 since they show the deviation of each of 

the points in the whole validation set in a more detailed way. 

It should be noted that the median and even the ranges 

obtained at all points remained within the thresholds 
established for each section of the path, with the median of 

the furthest error at point 5 on the Y-axis having a value of 21 

mm. Although it was the least accurate axis on the X-axis, the 

medians remained close to 0; however, it is on this axis where 

there are more outliers, reaching maximum values of up to 

219 mm of error in point 6. Also, in most cases on this axis, 

the minimum and maximum values (quartiles 1 and 4, 

respectively) remained above the threshold of each point. On 

the other hand, on the Y-axis, these values only exceeded the 

threshold in points 3, 4, and 5. As for the Z-axis, it was the 

one that obtained the smallest deviation in the estimation of 

its values, with atypical errors of less than 20 mm. 

 

 

 

 
Fig. 8 Boxplot for the points on (a) the X-axis, (b) the Y-axis, and (c) the Z-

axis 

 

Once the two neural networks to be used have been 

validated, their coupling is carried out within the virtual 
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environment so that the robot collects the two tools within the 

workspace. The whole system follows the logic of the 

flowchart shown in Fig. 9, where first, a capture of the 

environment is taken. This image is entered into the Faster R-

CNN, which performs tool detection. If there are tools in the 

environment, the system will calculate the distances of the 

tools from the robot base to verify which one is closer. The 

closest one is tagged, and the image captured with the tag is 

entered into CNN regression. This network estimates the 

trajectory the robot should follow. The first step that is 

indicated to the robot is to go to the first point of the path, 
which is where the tool is located, so that the tool grip is 

performed. Once the end-effector gripper is closed, the robot 

follows the estimated path until it reaches the last point, which 

is the location of the conveyor belt. In this part, the robot 

releases the tool and then returns to its initial position. Finally, 

the work environment is captured again. If there are no more 

tools available, the program ends. 

 

 
Fig. 9 System flowchart 

 

An example of this can be seen in Fig. 10, where the robot 

collects both the screwdriver (left) and the scissors (right), in 

three frames sequences for each. The image shows the 

trajectory made in the environment during the tests, drawn by 

a green line. In the screwdriver collection test, the start of the 

trajectory can be observed, where the robot is placed in its 

initial position, descends to where the tool was, and then 

moves it to the belt. In the second case, part of the trajectory 

of the previous grip is shown, evidencing that the robot 
actually passed through the belt to leave the tool, then to its 

initial position, to finally pick up the scissors in order to leave 

them on the conveyor. The estimated trajectory that the robot 

is performing to collect the scissors can be seen in Fig. 11. 

In total, 20 repetitions were performed, randomly placing 

both tools in position and in angle. The results obtained from 

the operation of the total system are shown in Table 3. The 

tool that more times were able to collect the robot was the 

screwdriver, making a mistake only twice, in which the 

estimated grip point was located very close to the edge of it, 

making the robot did not make a good grip and let the tool fall 

down. 

 

 
Fig. 10 Tool collection tests and the trace of the trajectory made by the robot 

 

 
Fig. 11 Estimated trajectory during the test for collecting the scissors 
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On the other hand, the successful attempts of collecting in 

the scissors were only 35% (7 correct), due to the difficulty of 

the grip of these. Since these are thin and most of the time, 

their grip point was estimated in the area of the blades, making 

the robot to release it at the beginning. It also failed due to the 

label generated based on the bounding box, since this was 

outside the scissors and. Therefore, the network located the 

initial point away from the tool. The average collection time, 

from when the system takes the workspace capture to its 

initial positioning after leaving the tool on the belt, was 51.3 

seconds. 

TABLE III 

RESULTS OF THE TESTS PERFORMED 

  Screwdriver 

collection 

Scissors Collection 

Correct/Repetitions 18/20 7/20 
Success rate 90% 35% 
Average time 51.3 s 

IV. CONCLUSION 

In the present work, a tool collection system was 

implemented, using Deep Learning techniques for the 

detection of these tools and subsequent trajectory to follow 

for the collection and location of them. One of the techniques 

used was a Faster R-CNN, which obtained a performance in 

the detection of the two required tools higher than 97% of 

average accuracy, even managing to detect the tools when 

they overlapped one over the other. The other technique used 

was a CNN regression, which was responsible for estimating 

the path that the robot should follow in order to collect the 

tools and place them on a conveyor belt. This last network 
achieved an accuracy of 92.63% in the correct estimation of 

the 10 established points, even making trajectories obeying 

the rule of their location. If the tool was located on the right 

side of the robot, the trajectory had to be made on that side, 

also for the left side. 

When coupling the algorithms for the global system, 

operational and success tests were performed to collect the 

tools, showing that the system has a high success rate to 

collect the screwdriver. However, for thin or difficult-to-

handle tools, such as scissors, the system tends to fail. This is 

because the grip point depends only on the starting point of 

the path, with no estimation of the tool position angle or a 
better tool grip point. For this reason, it is expected to 

implement an addition to the system as future work, which is 

the use of a Deep Learning technique for the estimation of 

angle and grip point of the tool to be manipulated.  
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