
Vol.12 (2022) No. 1

ISSN: 2088-5334

Path Planning for Robotic Training in Virtual Environments using

Deep Learning

Javier O. Pinzón-Arenas a,*, Robinson Jiménez-Moreno a, Astrid Rubiano a
a Department of Mechatronics Engineering, Militar Nueva Granada University, Bogotá D.C, 110111, Colombia

Corresponding author: *u3900231@unimilitar.edu.co

Abstract—Reducing costs in the acquisition of industrial robots and their benefit in continuous production workdays have increased

the number of investigations that expand the robot's action capabilities. This work proposes a trajectory planning system for a UR3

robot that is very usual in academic, research, and industrial applications. The system is presented based on a convolutional network

training for regression tasks focused on learning the desired trajectory. A virtual environment has been developed to simulate different

trajectories based on the interaction between UR3 robot and object detection and location through the convolutional network employed.

This work exposes the network's training and the results of the transport of the object, where the robot can position itself on the desired

tool (scissors and screwdriver), which is recognized by training a Faster network R-CNN and the re-localization of the tool in a conveyor

band. For the trained trajectory’s, a ResNet-50 model is proposed, and the overall performance achieved was 92.63%, with a mean

square error of 24.7 mm in the trained trajectory's repetition. Also, the boxplot of each ax in the trajectory is exposed since they show

in a more detailed way the deviation of each of the points in the whole validation set. The average collection time, from when the system

takes the workspace capture to its initial positioning after leaving the tool on the belt, was 51.3 seconds, enough for real-time

applications.

Keywords— CNN regression; faster R-CNN; path planning; virtual environment.

Manuscript received 27 Jul. 2020; revised 17 Mar. 2021; accepted 7 Jun. 2021. Date of publication 28 Feb. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In recent decades, the use of robots has increased in

different fields due to the high versatility they allow and the

reduction of their costs, both at the industrial level [1] and the

social level [2]. Likewise, the number of investigations

carried out in robotics is also increasing, allowing the tasks

they can perform to be made more efficient [3] [4]. Among
the tasks that a robot can carry out, one of the essential aspects

that must be determined is how its displacement will be

carried out [5], known as path planning.

Robot path planning requires that it extract the necessary

information from the environment, for example, to move free

of collisions for mobile robots as presented in Campbell et al.

[6], and based on points in space for fixed robots, as presented

in Hou et al. [7]. In general, it is required to know the

kinematics of the robot to determine its displacement [8],

where the path to follow can be established even using

optimization techniques that allow improved movement [9]
[10]. A traditional trajectory planning technique is the filling

algorithm [11] [12] that has been improved with hybrid

models like the one presented in Xizhi et al. [13]. Likewise,

as discussed in Han and Yu [14] and Kumar et al. [15],

heuristic models have been implemented as trajectory

planning algorithms.

However, artificial intelligence techniques are being used

with remarkable success in the planning of trajectories. In
Jiménez-Moreno and Brito [16], fuzzy logic algorithms are

used to determine the path of the robot's movement, and in

Moteir et al. [17] and Wang et al. [18], the authors employ

deep learning techniques based on convolutional neural

networks (CNN) [19]. For locational tasks, regressions CNN
has shown great robustness [20].

Deep Learning techniques also allow the development of

an entire robotic assistance system as set out in Jiménez-

Moreno et al. [21], where the system recognizes from the

user's voice what tool he wants, identifies it, and takes it,

handing it over to his hand, the algorithms developed are

based on CNN. For the development of object identification,

Faster R-CNN networks are one of the most versatile

algorithms for their ability to recognize and locate an object

[22]. Faster R-CNN has many applications in object

recognition; in Li et al. [23], they are used for facial

8

recognition of expressions, in Wan and Goudos [24] for fruit

detection in robotic vision systems.

Given the great robustness of Deep Learning algorithms, a

robotic path planning system based on the location of the

desired object is exposed in this work. A Faster R-CNN

network is used to identify the object over which the robot

must be positioned for its grip, and to establish the trajectory,

a CNN architecture for the regression task, is used. A virtual

environment is used to simulate the robot trajectory planning

task since virtual media has become a support tool for robotics

investigations and simulation of tasks in safe environments
prior to the implementation of robot operation [25]-[27].

The document is divided into four sections. The first

section corresponds to the introduction, where state-of-the-art

was exposed within the framework of the proposed

developments. Section two presents the methodology used for

tool detection and trajectory estimation. The third section

exposes the analysis and results of the algorithms exposed in

the robotic displacement task, and finally, section four

exposes the conclusions reached.

II. MATERIALS AND METHODS

The implemented tool collection system is composed of

two stages. The first stage consists of detecting the tools

available in the workspace. Once identified, it is verified

which is closer to the manipulator, moving on to the second

stage. An estimation of the path to be followed by the

manipulator is made, from the point where the tool is located

to the conveyor belt where it will be left. For each of the stages,

two artificial intelligence techniques based on Deep Learning

were implemented: a Faster R-CNN [28] and a CNN by
regression, respectively. This system is used within a virtual

environment previously built, where a UR3 robot and two

types of tools (scissors and screwdriver) are used. The

development of the system is described.

A. Tool Detection

For the implementation of the tool detection subsystem, a

database is created, which consists of 1400 images of size

640x480 pixels in RGB format, taken from the top of the work
environment. Each image was manually labeled, locating the

tools by means of a bounding box, as shown in Fig. 1. In total,

1100 of the images are used to perform the network training

and 300 for the validation of this.

Fig. 1 Samples of the database for tool detection

The model selected for detection was the ResNet-50 [29],

which was modified to match the Faster R-CNN architecture,

as described in Shaoqing et al. [28]. As it is a pre-trained

model, transfer learning is done by fine-tuning its weights.

For this, the training parameters shown in Table 1 are

established for each learning stage since the model used was

trained with a learning rate of 0.1. Also, a large number of

training epochs are not required, thanks to the patterns that the

model has already learned.

TABLE I
TRAINING PARAMETERS OF THE FASTER R-CNN.

 Learning Rate Epochs

Stage 1 1x10-3 10

Stage 2 1x10-3 10

Stage 3 5x10-4 8

Stage 4 5x10-4 8

B. Trajectory Estimation

It was decided to employ a CNN whose output is done

using regression for the implementation of the second stage

of the system. It will not classify the image but will produce a

continuous output that depends on what is seen in the working

environment. The output in this situation refers to the path that

the UR3's final effector must take from the tool's location to
the conveyor where it will exit it. Based on this, the database

is built, with 400 of the photos used in the detection stage (300

images for training and 100 for validation). The network

developed in the first stage is used to tell the network which

tool to focus on as a starting point. The distance between each

object and the robot base is estimated based on the center of

the detection boxes, taking into account the real dimensions

of the workspace. Once the closest object has been found, a

marker is placed to the image obtained at the center of the

detection box (the tool's position in the image) and, in turn, at

the end of the path on the conveyor belt.

With this, the manual labeling of each path in all the images
is done. For this labeling, three factors are taken into account:

first, the initial reference point (0.0.0), in millimeters, is

located at the base of the robot. Second, depending on the

location of the tool, the robot must take the most appropriate

path; for example, if the nearest object is on the right (or with

a negative value on the X-axis), the robot must go from the

object to the conveyor belt on the right side, similarly if the

object is on the left of the robot (positive value on the X-axis),

it must follow a path on this same side. Third, the estimated

path is made up of 10 points in space, so that in total, the

network must estimate 30 values (three values for each point
representing its position on the X-, Y- and Z-axes). Fig. 2

shows the two possible paths for the manipulator movement,

depending on the location of the nearest tool.

9

C. Training

For the neural network to be used, the ResNet-50 model is

proposed. Since based on tests made to three different models

for trajectory estimation in a 2D plane [30], this obtained the

best performance. For its training, the following training

parameters are set, initial learning rate of 10-4, with a

reduction factor of 0.5 every 40 periods, 250 training epochs,

and a mini-batch size of 10 images per iteration. With this, the

network is trained, obtaining the results shown in Fig. 3.

Fig. 3 CNN regression’s behavior during training (Loss).

As it is possible to observe, because the model used
specializes mainly in classification when used for regression,

it causes significant losses in its first iterations since the root

mean square error (RMSE) of the estimation of each of the

points of the trajectory exceeds 1000 mm. However, the

network improves its learning around iteration 600,

stabilizing over iteration 3000, reaching an RMSE of less than

150 mm (Fig. 4).

Fig. 4 CNN regression’s behavior during training (RMSE)

III. RESULTS AND DISCUSSIONS

To verify the performance of the detection network in a

more detailed way, the precision vs. recall plot is made, which
shows the robustness of the network by locating the bounding

boxes on each of the objects, using the validation set. Fig. 5

shows this plot, where it is possible to see that the network

was able to detect the two tools, with an average accuracy

above 97%. This is reflected in the example in Fig. 6a, whose

Fig. 2 Samples of paths used for network training.

10

detection boxes were remarkably close to the established

ground-truth. On the other hand, the accuracy drop in the

screwdriver was due to situations where the scissors were

occluding it entirely, causing the network to find only the

scissors. However, when the screwdriver is placed over the

scissors, as in Fig. 6b, the network was able to detect it.

Fig. 5 Precision vs recall plot of the network for tool detection

Fig. 6 Examples of detection on the validation set

For the validation of the CNN regression in charge of

estimating the paths to be followed, the accuracy of each of

the points estimated in each axis is verified, i.e., how much

deviation they had with respect to the proposed trajectory. For

this, it is proposed to use a threshold, within which, if the point
exceeds its distance above it, then it will be given as an

erroneous estimate. Likewise, the RMSE is used to verify the

total deviation on each axis and the average of the entire

trajectory.

Because not all points necessarily need to be strictly subject

to the proposed path, different thresholds are chosen for each

section of the path. For example, the grip and the final position

points of the tool must have a small deviation, as if a point is

estimated far from these, then the grip would not be made, and

the tool would not be correctly located on the belt. On the

other hand, the intermediate points of the path can have a

higher degree of deviation without affecting it, however, they

must be within the robot's range, to avoid singularities.

Bearing this in mind, it is proposed to establish three threshold

distances in each path section, as can be seen in Table 2,

although for the Z-axis, the threshold used is constant, of 20

mm. With this, it is obtained that the two points with the
greatest deviation were point 1 (located on the tool), 2 and 8

on the X-axis, with average accuracies of less than 70%. In

contrast to the X-axis, in the Y- and Z-axis, the accuracy

results with respect to the thresholds were above 90%, with

the exception of point 4 on the Y-axis.

TABLE II

ACCURACY OF EACH POINT, AVERAGE RMSE AND OVERALL PERFORMANCE

OF THE NEURAL NETWORK

Point X-axis Y-

axis

Z-axis Threshold

X-Y [mm]

1 61% 98% 100%
20

2 58% 94% 100%

3 90% 91% 100%
50

4 85% 76% 100%

5 94% 97% 100%

70 6 93% 100% 100%

7 89% 100% 100%

8 68% 99% 100%
50

9 86% 100% 100%

10 100% 100% 100% 20
Average

accuracy
82.4% 95.5% 100%

RMSE

[mm]
35.77 23.31 2.66

Total Network RMSE [mm] 24.7
Network Accuracy 92.63%

In general, the network obtained an overall accuracy of

92.63% in estimating the points on the trajectory, even having

a relatively small RMSE of 24.7 mm, which is very close to

the 20 mm threshold set for the points requiring the highest

accuracy. The axis with the greatest deviation was the X, with

35.77 mm.

To understand these results more clearly, some examples
of estimated paths compared to the proposals are shown in Fig.

7. Fig. 7a represents a very precise trajectory, which follows

very closely the trajectory that was proposed. Another correct

path, although it does not fully follow the one proposed, is

presented in Fig. 7b, where in the first stage of the estimation

the network locates the initial and final point accurately, while

in points 6 to 9, a shorter path is generated, but within the

limits of the established threshold and robot’s workspace.

On the other hand, there is the path estimated in Fig. 7c, in

which, although the initial and final points were correct, the

intermediate points are very far from the X-axis, reaching
distances of more than 200 mm at point 6 with respect to the

proposed path, even taking them to areas out of the robot's

workspace. Fig. 7d presents another case of erroneous

estimation, mainly because of the initial points, since these

were located far from the grip point that would cause the robot

not to collect the tool. These last two examples show possible

11

reasons why on the X-axis, the RMSE was higher than on the

other axes.

Fig. 7 Trajectory estimation generated by the CNN regression

In the same way, the boxplot of each of the axes is

presented in Fig. 8 since they show the deviation of each of

the points in the whole validation set in a more detailed way.

It should be noted that the median and even the ranges

obtained at all points remained within the thresholds
established for each section of the path, with the median of

the furthest error at point 5 on the Y-axis having a value of 21

mm. Although it was the least accurate axis on the X-axis, the

medians remained close to 0; however, it is on this axis where

there are more outliers, reaching maximum values of up to

219 mm of error in point 6. Also, in most cases on this axis,

the minimum and maximum values (quartiles 1 and 4,

respectively) remained above the threshold of each point. On

the other hand, on the Y-axis, these values only exceeded the

threshold in points 3, 4, and 5. As for the Z-axis, it was the

one that obtained the smallest deviation in the estimation of

its values, with atypical errors of less than 20 mm.

Fig. 8 Boxplot for the points on (a) the X-axis, (b) the Y-axis, and (c) the Z-

axis

Once the two neural networks to be used have been

validated, their coupling is carried out within the virtual

12

environment so that the robot collects the two tools within the

workspace. The whole system follows the logic of the

flowchart shown in Fig. 9, where first, a capture of the

environment is taken. This image is entered into the Faster R-

CNN, which performs tool detection. If there are tools in the

environment, the system will calculate the distances of the

tools from the robot base to verify which one is closer. The

closest one is tagged, and the image captured with the tag is

entered into CNN regression. This network estimates the

trajectory the robot should follow. The first step that is

indicated to the robot is to go to the first point of the path,
which is where the tool is located, so that the tool grip is

performed. Once the end-effector gripper is closed, the robot

follows the estimated path until it reaches the last point, which

is the location of the conveyor belt. In this part, the robot

releases the tool and then returns to its initial position. Finally,

the work environment is captured again. If there are no more

tools available, the program ends.

Fig. 9 System flowchart

An example of this can be seen in Fig. 10, where the robot

collects both the screwdriver (left) and the scissors (right), in

three frames sequences for each. The image shows the

trajectory made in the environment during the tests, drawn by

a green line. In the screwdriver collection test, the start of the

trajectory can be observed, where the robot is placed in its

initial position, descends to where the tool was, and then

moves it to the belt. In the second case, part of the trajectory

of the previous grip is shown, evidencing that the robot
actually passed through the belt to leave the tool, then to its

initial position, to finally pick up the scissors in order to leave

them on the conveyor. The estimated trajectory that the robot

is performing to collect the scissors can be seen in Fig. 11.

In total, 20 repetitions were performed, randomly placing

both tools in position and in angle. The results obtained from

the operation of the total system are shown in Table 3. The

tool that more times were able to collect the robot was the

screwdriver, making a mistake only twice, in which the

estimated grip point was located very close to the edge of it,

making the robot did not make a good grip and let the tool fall

down.

Fig. 10 Tool collection tests and the trace of the trajectory made by the robot

Fig. 11 Estimated trajectory during the test for collecting the scissors

13

On the other hand, the successful attempts of collecting in

the scissors were only 35% (7 correct), due to the difficulty of

the grip of these. Since these are thin and most of the time,

their grip point was estimated in the area of the blades, making

the robot to release it at the beginning. It also failed due to the

label generated based on the bounding box, since this was

outside the scissors and. Therefore, the network located the

initial point away from the tool. The average collection time,

from when the system takes the workspace capture to its

initial positioning after leaving the tool on the belt, was 51.3

seconds.

TABLE III

RESULTS OF THE TESTS PERFORMED

 Screwdriver

collection

Scissors Collection

Correct/Repetitions 18/20 7/20
Success rate 90% 35%
Average time 51.3 s

IV. CONCLUSION

In the present work, a tool collection system was

implemented, using Deep Learning techniques for the

detection of these tools and subsequent trajectory to follow

for the collection and location of them. One of the techniques

used was a Faster R-CNN, which obtained a performance in

the detection of the two required tools higher than 97% of

average accuracy, even managing to detect the tools when

they overlapped one over the other. The other technique used

was a CNN regression, which was responsible for estimating

the path that the robot should follow in order to collect the

tools and place them on a conveyor belt. This last network
achieved an accuracy of 92.63% in the correct estimation of

the 10 established points, even making trajectories obeying

the rule of their location. If the tool was located on the right

side of the robot, the trajectory had to be made on that side,

also for the left side.

When coupling the algorithms for the global system,

operational and success tests were performed to collect the

tools, showing that the system has a high success rate to

collect the screwdriver. However, for thin or difficult-to-

handle tools, such as scissors, the system tends to fail. This is

because the grip point depends only on the starting point of

the path, with no estimation of the tool position angle or a
better tool grip point. For this reason, it is expected to

implement an addition to the system as future work, which is

the use of a Deep Learning technique for the estimation of

angle and grip point of the tool to be manipulated.

ACKNOWLEDGMENT

The authors are grateful to the Universidad Militar Nueva

Granada, which, through its Vice chancellor for research,
finances the present project with code IMP-ING-2935 (being

in force 2019-2020) and titled " Prototipo robótico flexible

para asistencia alimentaria” from which the present work is

derived.

REFERENCES

[1] F. Xiaoqing, B. Qun, X. Hongjun, f. Xiaolan, “Diffusion of industrial

robotics and inclusive growth: Labour market evidence from cross

country data”, Journal of Business Research, 2020, ISSN 0148-2963,

DOI :10.1016/j.jbusres.2020.05.051.

[2] M. Cho, M. Jang and Y. Cho, "Evaluation of Social Robot Intelligence

in Terms of Social Interactive Motion," 17th International Conference

on Ubiquitous Robots (UR), Kyoto, Japan, pp. 608-611, 2020, DOI:

10.1109/UR49135.2020.9144920.

[3] P. Galambos, "Cloud, Fog, and Mist Computing: Advanced Robot

Applications," in IEEE Systems, Man, and Cybernetics Magazine, vol.

6, no. 1, pp. 41-45, Jan. 2020, DOI: 10.1109/MSMC.2018.2881233.

[4] F. Sherwani, M. M. Asad and B. S. K. K. Ibrahim, "Collaborative

Robots and Industrial Revolution 4.0 (IR 4.0)," International

Conference on Emerging Trends in Smart Technologies (ICETST),

Karachi, Pakistan, pp. 1-5, 2020, DOI:

10.1109/ICETST49965.2020.9080724.

[5] T. Cvitanic, V. Nguyen, S. N. Melkote, “Pose optimization in robotic

machining using static and dynamic stiffness models”, Robotics and

Computer-Integrated Manufacturing, Volume 66, 2020, 101992,

ISSN 0736-5845, DOI: 10.1016/j.rcim.2020.101992.

[6] S. Campbell, N. O'Mahony, A. Carvalho, L. Krpalkova, D. Riordan

and J. Walsh, "Path Planning Techniques for Mobile Robots A

Review," 6th International Conference on Mechatronics and Robotics

Engineering (ICMRE), Barcelona, Spain, 2020, pp. 12-16, DOI:

10.1109/ICMRE49073.2020.9065187.

[7] Y. Hou, Y. Liu and F. Wang, "Research on Intelligent Path Planning

Based on Transit Point," Asia-Pacific Conference on Image

Processing, Electronics and Computers (IPEC), Dalian, China, 2020,

pp. 419-422, DOI: 10.1109/IPEC49694.2020.9115175.

[8] Y. Zhang, C. Wang, L. Hu and G. Qiu, "Inverse kinematics problem

of industrial robot based on PSO-RBFNN," 2020 IEEE 4th

Information Technology, Networking, Electronic and Automation

Control Conference (ITNEC), Chongqing, China, 2020, pp. 346-350,

DOI: 10.1109/ITNEC48623.2020.9085179.

[9] S. Ivanov, L. Ivanova and Z. Meleshkova, "Calculation and

Optimization of Industrial Robots Motion," 26th Conference of Open

Innovations Association (FRUCT), Yaroslavl, Russia, 2020, pp. 115-

123, DOI: 10.23919/FRUCT48808.2020.9087376

[10] B. Yang, W. Li, J. Wang, J. Yang, T. Wang and X. Liu, "A Novel Path

Planning Algorithm for Warehouse Robots Based on a Two-

Dimensional Grid Model," in IEEE Access, vol. 8, pp. 80347-80357,

2020, DOI: 10.1109/ACCESS.2020.2991076.

[11] J. Herrera, D. Espitia, R. Jimenez-Moreno, R. Hernández, "Flood Fill

Algorithm Dividing Matrices for Robotic Path Planning".

International Journal of Applied Engineering Research ISSN: 0973-

4562,v.13 fasc.11 p.8862 - 8870 ,2018.

[12] J. Herrera, C. Pachon-Suescun, R. Jimenez-Moreno, "Scara Robot

Path Planning Through flood fill Algorithm". International Journal of

Applied Engineering Research ISSN: 0973-4562, v.13 fasc.19

p.14273 - 14281 ,2018.

[13] H. Xizhi, J. Zhihui and X. Congcong, "Vehicle Path Planning Fusion

Algorithm Based on Road Network," 2020 IEEE 4th Information

Technology, Networking, Electronic and Automation Control

Conference (ITNEC), Chongqing, China, 2020, pp. 98-102, DOI:

10.1109/ITNEC48623.2020.9084895.

[14] S. D. Han and J. Yu, "DDM: Fast Near-Optimal Multi-Robot Path

Planning Using Diversified-Path and Optimal Sub-Problem Solution

Database Heuristics," in IEEE Robotics and Automation Letters, vol.

5, no. 2, pp. 1350-1357, April 2020, DOI:

10.1109/LRA.2020.2967326.

[15] R. Kumar, L. Singh and R. Tiwari, "Comparison of Two Meta –

Heuristic Algorithms for Path Planning in Robotics," 2020

International Conference on Contemporary Computing and

Applications (IC3A), Lucknow, India, 2020, pp. 159-162, DOI:

10.1109/IC3A48958.2020.233289.

[16] R. Jiménez-Moreno and L. Brito, "Planeación de trayectorias para un

móvil robótico en un ambiente 3D," 2014 IEEE Biennial Congress of

Argentina (ARGENCON), Bariloche, 2014, pp. 125-129, DOI:

10.1109/ARGENCON.2014.6868483.

[17] I. G. M. I. Moteir, K. Ismail, F. M. Zawawi and M. M. M. Azhar,

"Urban Intelligent Navigator for Drone Using Convolutional Neural

Network (CNN)," 2019 International Conference on Smart

Applications, Communications and Networking (SmartNets), Sharm El

Sheik, Egypt, 2019, pp. 1-4, DOI:

10.1109/SmartNets48225.2019.9069781.

[18] J. Wang, W. Chi, C. Li, C. Wang and M. Q. -H. Meng, "Neural RRT*:

Learning-Based Optimal Path Planning," in IEEE Transactions on

Automation Science and Engineering, vol. 17, no. 4, pp. 1748-1758,

Oct. 2020, DOI: 10.1109/TASE.2020.2976560.

14

[19] I. Rafegas, M. Vanrell, L. A. Alexandre, G. Arias, “Understanding

trained CNNs by indexing neuron selectivity”, Pattern Recognition

Letters, 2019, ISSN 0167-8655. DOI: 10.1016/j.patrec.2019.10.013.

[20] K. Elawaad, M. Ezzeldin and M. Torki, "DeepCReg: Improving

Cellular-based Outdoor Localization using CNN-based Regressors,"

2020 IEEE Wireless. Communications and Networking Conference

(WCNC), Seoul, Korea (South), 2020, pp. 1-6, DOI:

10.1109/WCNC45663.2020.9120714.

[21] R. Jiménez-Moreno, J. Pinzón-Arenas, C. Pachón-Suescún, “Assistant

robot through deep learning”, International Journal of Electrical and

Computer Engineering (IJECE), Vol 10, No 1: February 2020, p.

1053-1062.

[22] Z. Zhong, L. Sun, Q. Huo, “Improved localization accuracy by LocNet

for Faster R-CNN based text detection in natural scene images”,

Pattern Recognition, Volume 96, 2019, 106986, ISSN 0031-3203,

DOI: 10.1016/j.patcog.2019.106986.

[23] J. Li, D. Zhang, J. Zhang, J. Zhang, T. Li, Y. Xia, Q. Yan, L. Xun,

“Facial Expression Recognition with Faster R-CNN”, Procedia

Computer Science, Volume 107, 2017, Pages 135-140, ISSN 1877-

0509, DOI: 10.1016/j.procs.2017.03.069.

[24] S. Wan, S. Goudos, “Faster R-CNN for multi-class fruit detection

using a robotic vision system”, Computer Networks, Volume 168,

2020, 107036, ISSN 1389-1286, DOI:

10.1016/j.comnet.2019.107036.

[25] W. Xie, X. Fang and S. Wu, "2.5D Navigation Graph and Improved

A-Star Algorithm for Path Planning in Ship inside Virtual

Environment," 2020 Prognostics and Health Management Conference

(PHM-Besançon), Besancon, France, 2020, pp. 295-299, DOI:

10.1109/PHM-Besancon49106.2020.00057.

[26] J. Qi, H. Yang and H. Sun, "MOD-RRT*: A Sampling-based

algorithm for robot path planning in dynamic environment," in IEEE

Transactions on Industrial Electronics, ISSN: 1557-9948 June 2020.

DOI: 10.1109/TIE.2020.2998740.

[27] G. Bolano, A. Roennau, R. Dillmann and A. Groz, "Virtual Reality for

Offline Programming of Robotic Applications with Online Teaching

Methods," 2020 17th International Conference on Ubiquitous Robots

(UR), Kyoto, Japan, 2020, pp. 625-630, DOI:

10.1109/UR49135.2020.9144806.

[28] R. Shaoqing, et al. “Faster R-CNN: Towards real-time object detection

with region proposal networks”. Advances in neural information

processing systems. p. 91-99. 2015.

[29] H. Kaiming, et al. “Deep residual learning for image recognition”.

Proceedings of the IEEE conference on computer vision and pattern

recognition. p. 770-778. 2016.

[30] J. Pinzón-Arenas, R. Jiménez-Moreno and A. Rubiano. “Comparative

approach of CNN regression architectures for robotic manipulator 2D

trajectory estimation”. In Multimedia Conference 2019.

15

